УДК 620.193:669.295:669.243

# ВЛИЯНИЕ УСЛОВИЙ ТЕПЛООБМЕНА НА КРИТИЧЕСКОЕ ДАВЛЕНИЕ ВОЗГОРАНИЯ МЕТАЛЛОВ В КИСЛОРОДЕ

# В. И. Болобов

Университет «Горный», 199106 Санкт-Петербург, boloboff@mail.ru

Проанализированы экспериментальные данные по критическому давлению возгорания в газообразном кислороде фрагментов титановых сплавов, полученных при разрушении образцов в динамическом режиме  $(p_2^*)$  и в условиях естественной конвекции  $(p_1^*)$ , в сопоставлении с коэффициентами теплоотдачи от инициаторов возгорания материалов в аналогичных условиях. Из вида экспериментальных термограмм охлаждения пластин установлен коэффициент теплоотдачи  $\alpha_2 \approx 11 \text{ kBt/(m}^2 \cdot \text{K)}$  от микрократеров с ювенильной поверхностью, образующихся в результате вырывания из пластины высокоскоростным потоком частиц металла. Величина  $\alpha_2$ близка к значению этого показателя, рассчитанного с использованием коэффициента теплоотдачи  $\alpha_1 \approx 5 \text{ кBт/(м}^2 \cdot \text{K})$  от микрофрагментов (порядка размера зерна металла) титановых стержней, образованных при их разрыве в кислороде в условиях естественной конвекции, с учетом соотношения  $p_2^*/p_1^*$ .

Ключевые слова: критическое давление возгорания, кислород, инициаторы возгорания, фрагменты разрушения, титановые сплавы, коэффициент теплоотдачи.

DOI 10.15372/FGV20160206

#### ВВЕДЕНИЕ

Известна способность к возгоранию металлов и сплавов при разрушении конструкций в кислородсодержащей среде (здесь и далее — самовозгорание). Как показано в [1–4], инициатором возгорания выступают микрофрагменты разрушения, уже разогретые к моменту взаимодействия с кислородом до температуры

$$T^* = T_0 + \Delta T,\tag{1}$$

представляющей собой сумму начальной температуры  $T_0$  и температуры разогрева  $\Delta T$ за счет тепла, выделившегося от работы разрушения. При этом температура  $T^*$ , до которой способны разогреться указанные микрофрагменты, является критическим параметром, связанным с другим критическим параметром — давлением кислорода  $p^*$  (критическое давление возгорания) уравнением теории теплового взрыва Семенова для гетерогенной реакции [5]

$$\frac{Q}{\alpha} \frac{K_0 E}{RT^{*2}} \bar{p}^{0.5} \exp\left(-\frac{E}{RT^*}\right) = \frac{1}{e},\tag{2}$$

где Q — удельная теплота химической реакции взаимодействия материала микрофрагмен-

та разрушения с кислородом; а — суммарный

коэффициент теплоотдачи от микрофрагмента, подвергающегося возгоранию; R — универсальная газовая постоянная;  $K_0$ , E — предэкспонент и энергия активации уравнения Аррениуса процесса диссоциативной адсорбции молекул кислорода на ювенильной поверхности фрагментов разрушения;  $\bar{p} \equiv p^*/p_{0.1}, p_{0.1} =$ 0.1 МПа — давление кислорода.

Так, например, в [1] показано, что к моменту контакта с кислородом фрагменты разрушения образцов титана BT1-0 способны разогреться до температуры  $\approx 698 \text{ K}$  (значение  $T^*$ для данного сплава). Если давление кислорода равно или превышает 2.3 МПа (значение  $p^*$ ), указанные фрагменты подвергаются возгора-

Как следует из предложенной в [3, 4] теории, критическая температура возгорания металла  $T^*$  зависит только от его работы разрушения [1], которая, в свою очередь, определяется прочностными свойствами материала. Отсюда следует (см. (2)), что критическое давление возгорания  $p^*$  образцов, изготовленных из одного и того же металлического материала, но разрушаемых различными способами, будет определяться условиями теплообмена (значениями коэффициентов теплоотдачи, например, при естественной конвекции  $\alpha_1$  и обдуве кислородом  $\alpha_2$ ) от фрагментов разрушения. В. И. Болобов

Для двух различных способов разрушения одного материала в соответствии с (2) должно соблюдаться равенство

$$(p_1^*)^{0.5}/\alpha_1 \approx (p_2^*)^{0.5}/\alpha_2.$$
 (3)

Целью настоящей статьи является анализ влияния коэффициента теплоотдачи  $\alpha$  от инициаторов возгорания металлических материалов при различных способах разрушения образцов в кислороде на критическое давление возгорания  $p^*$ . Поскольку наибольшее количество исследований по самовозгоранию металлов посвящено титановым сплавам, именно эти материалы выбраны в качестве объекта анализа.

# АНАЛИЗ УСЛОВИЙ САМОВОЗГОРАНИЯ ТИТАНОВЫХ СПЛАВОВ ПРИ РАЗРУШЕНИИ ОБРАЗЦОВ

Анализировались условия самовозгорания технического титана марок BT1-0, BT1-1 и титановых сплавов ОТ4-1, BT14, BT6 в газообразном кислороде при разрушении образцов из этих материалов двумя способами: разрыв стержней в условиях естественной конвекции [1–3, 6, 7], лобовое воздействие на пластину высокоскоростного потока [8, 9].

В работе [3] на основании фрактометрических и металлографических наблюдений выдвинуто предположение, что при разрыве металлических стержней в кислороде первичными инициаторами возгорания являются полностью или полуотделившиеся микрофрагменты разрушенного объема величиной порядка размера зерна металла. Возгорание происходит в момент нахождения этих фрагментов в еще непроточной трещине разрушения, заполненной кислородом при рабочем давлении. Коэффициент теплоотдачи  $\alpha_1$  от указанных фрагментов — инициаторов возгорания титана и титановых сплавов оценен [3] в 5 кВт/(м<sup>2</sup> · K).

В экспериментах [8, 9] обнаружено самовозгорание пластин из титановых сплавов (рис. 1) и циркония при воздействии на их поверхность высокоскоростного потока ( $\approx 340 \text{ м/c}$ ), истекающего из емкости, заполненной кислородом при повышенном давлении ( $p_0 \leqslant 70 \text{ М}\Pi a$ ).

Для условий эксперимента [8, 9] выведена формула, связывающая полное давление газа у поверхности пластины  $(p_w)$  с начальным давлением кислорода в емкости  $(p_0)$ , с расстоянием от среза насадка до пластины (l) и с диаметром отверстия насадка (d):

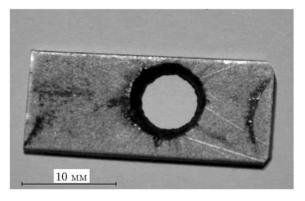



Рис. 1. Вид пластины титана ВТ1-1 после самовозгорания в потоке кислорода ( $p_w=p_w^*=7.7~\mathrm{MHa}$ )

$$p_w = 0.49p_0 \exp(-0.65l/d).$$
 (4)

Сделан вывод, что возгорание пластины происходит при критическом давлении газа у ее поверхности  $(p_w^*)$ , значения которого различны для разных сплавов.

Объясняя механизм возгорания металлов в потоке кислорода, автор [9] приходит к заключению, что вследствие высокой скорости и возрастающего динамического напора газового потока уже при сравнительно низком давлении  $p_w$  (для титана при  $p_w \geqslant 0.5 \text{ M}\Pi a$ ) в поверхностном слое пластины возникают значительные нормальные напряжения, приводящие к локальному разрушению оксидной пленки и подложки в наиболее ослабленных ее местах. Разрушение проявляется в вырывании из пластины металлических частиц, мгновенно воспламеняющихся в потоке, что обеспечивает его свечение [8, 9], и в образовании на поверхности пластины микрократеров (рис. 2), свободных от оксидной пленки.

При достаточно большом давлении ( $p_w \geqslant 3$  МПа) интенсивному разогреву, достигающему температуры плавления титана (1941 K), начинает подвергаться и металл ювенильной поверхности микрократеров, о чем свидетельствует появление на поверхности пластин после обдува полусфер блестящего цвета (рис. 3) из ранее расплавленного и впоследствии закристаллизовавшегося металла.

При давлении  $p_w$ , принимаемом в [8, 9] за критическое  $(p_w^*)$ , участок пластины, подвергаемый обдуву, воспламеняется и полностью сгорает (см. рис. 1). Логично заключить, что инициатором возгорания пластины служат ранее упомянутые микрократеры, на поверхности которых взаимодействие металла с кислородом

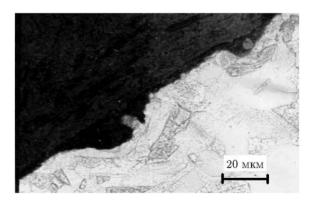



Рис. 2. Вид поперечного сечения пластины титана ВТ1-1 с микрократерами на поверхности после воздействия потока кислорода ( $p_w < p_w^*$ , l=5 мм, d=2 мм)

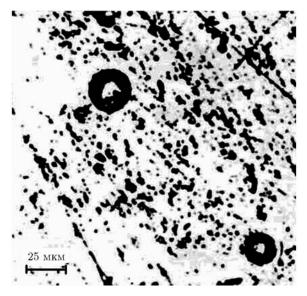



Рис. 3. Микрофотография поверхности образца титана BT1-1 после воздействия потока кислорода

при  $p_w \geqslant p_w^*$  переходит в стадию устойчивого горения.

Поскольку сведения о значениях коэффициента теплоотдачи  $\alpha_2$  от указанных микрократеров в работах [8,9] отсутствуют, их оценка приведена ниже.

# РАСЧЕТНЫЙ АНАЛИЗ

Тепло от разогревающегося за счет химической реакции окисления инициатора возгорания (поверхности микрократера) отводится конвективным тепловым потоком  $q_{\alpha}$  в омывающий микрократер газовый поток с коэффици-

ентом теплоотдачи  $\alpha_{\alpha}$ , кондуктивным потоком  $q_{\lambda}$  отводится в окружающие неповрежденные потоком части пластины с коэффициентом  $\alpha_{\lambda}$ , радиационным потоком  $q_{\varepsilon}$  отводится в окружающую среду с коэффициентом  $\alpha_{\varepsilon}$ :

$$q = q_{\alpha} + q_{\lambda} + q_{\varepsilon}. \tag{5}$$

Критерий подобия Био для данного случая рассчитывался по формуле  $Bi = \alpha_{\alpha} l_1/\lambda$ , где  $l_1$  — половина длины (30/2 мм) или ширины (15/2 мм) пластины в испытаниях [8, 9],  $\lambda$  — коэффициент теплопроводности испытанных титановых сплавов  $(8.4 \div 16.8 \text{ Bt/(м} \cdot \text{K}))$ . Значения этого критерия для всех направлений пластины существенно больше единицы (Bi ≈  $6 \div 12$  при  $\alpha_{\alpha} \approx 10 \text{ кВт/(м}^2 \cdot \text{K)}$ ). Это свидетельствует о том, что вследствие большой относительной интенсивности конвективного теплообмена температура поверхности пластины в месте воздействия потока практически совпадает с температурой газа. По этой причине кондуктивной составляющей  $q_{\lambda}$  теплоотвода в (5) можно пренебречь. Как оказалось, и вклад излучения в общий теплоотвод также незначителен ( $q_{\varepsilon} \leq 1.0 \%$ ). Отсюда следует, что суммарный коэффициент теплоотдачи  $\alpha_2$  от разогревающихся инициаторов возгорания пластин титановых сплавов определяется конвективной составляющей  $\alpha_{\alpha}$  теплоотдачи в газовый поток:  $\alpha_2 \approx \alpha_\alpha$ . (Такой вывод косвенно подтверждают результаты наблюдения [8, 9], в соответствии с которыми критическое давление возгорания  $p_w^*$  того или другого титанового сплава практически не зависит от размеров пластин из этих материалов, подвергаемых обдуву.)

Значения  $\alpha_{\alpha}$  определяли расчетно-графическим путем из вида термограмм (рис. 4), полученных при замере температуры титановых пластин в момент их обдува потоком кислорода в экспериментах [9]. (В [9] с использованием термопары с зачеканенным в металл спаем измеряли температуру  $T_w$  участка пластины, подвергающегося воздействию потока.)

Незначительное возрастание температуры от  $T_{w,0}=303~{\rm K}$  до  $T_{w,{\rm max}}$  на термограммах (см. рис. 4) в начальный момент обдува объясняли [9] сжатием воздуха, находящегося между насадком и образцом, а последующее охлаждение в течение  $\approx 0.3~{\rm c}$  до постоянного во времени значения  $T_{w,k}$  — дроссельным эффектом. При этом оказалось, что каждое значение температуры  $T_{w,k}$ , принимаемое обдуваемым

В. И. Болобов

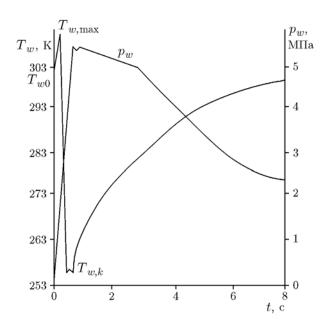



Рис. 4. Изменение во времени параметров  $T_w$ ,  $p_w$  при обдуве пластины титанового сплава ВТ14 потоком кислорода ( $p_0=20\,$  МПа,  $l=2\,$  мм,  $d=2\,$  мм,  $\delta=1.5\,$  мм)

участком пластины, соответствует определенному начальному давлению кислорода в емкости и монотонно убывает, достигая при  $p_0=50~{\rm M\Pi a}$  значения  $222~{\rm K.}$  Наличие указанных закономерностей  $(T_{w,k}={\rm const}(t)=f(p_0))$  позволило предположить, что регистрируемые в экспериментах значения  $T_{w,k}$  представляют собой температуру торможения потока  $T_g$  в его пристеночном слое на пластине и могут быть использованы вместо значений  $T_g$  в последующих расчетах.

К полученным кривым  $T_w = f(t)$  на участке  $T_{w,\max} \div T_{w,k}$  проводили касательные, тангенс угла наклона которых принимали за скорость охлаждения  $\frac{\partial T_w}{\partial t}$  фрагмента пластины, подвергающегося воздействию потока, при том или ином давлении кислорода  $p_0$ . Величину  $\frac{\partial T_w}{\partial t}$ , соответствующую  $p_0 = 20$  МПа (уровню давления в емкости, при котором наблюдалось возгорание пластин титановых сплавов в опытах [8, 9]), использовали при решении приведенного ниже уравнения (6) теплового баланса

охлаждаемого фрагмента относительно его коэффициента теплоотдачи  $\alpha$ .

С учетом результатов наблюдения [9] процесса обдува пластины задача решалась при следующих допущениях:

- получаемые термограммы (см. рис. 4) соответствуют термограммам охлаждения цилиндрического фрагмента с площадью основания, равной площади сечения отверстия насадка (d=2 мм), откуда истекает поток, и высотой, равной толщине пластины (1.5 мм);
- вследствие равенства температур обдуваемого фрагмента и остальной части пластины в самый начальный момент обдува теплоприход  $q_{\lambda}$  к фрагменту можно не учитывать;
- ввиду близости температур пластины и окружающих стенок бокса радиационной составляющей теплоприхода  $q_{\varepsilon}$  к охлаждаемому фрагменту можно пренебречь, и, как следствие,  $\alpha \approx \alpha_{\alpha}$ .

С учетом этих допущений уравнение теплового баланса охлаждаемого фрагмента пластины принимает вид

$$\left(\pi \frac{d^2}{4}\right) \delta \rho c_p \left(\frac{\partial T_w}{\partial t}\right) = 
= \alpha_\alpha (T_{w,\text{max}} - T_{w,k}) \left(\pi \frac{d^2}{4}\right),$$
(6)

откуда

нию  $\alpha$ .

$$\alpha \approx \alpha_{\alpha} = \delta \rho c_p \left(\frac{\partial T_w}{\partial t}\right) / (T_{w,\text{max}} - T_{w,k}), (7)$$

где  $\rho$ ,  $c_p$  — плотность и теплоемкость материала пластины в интервале температуры  $T_{w,\max} \div T_{w,k}$  (4.52 · 10<sup>3</sup> кг/м<sup>3</sup> и 0.521 кДж/(кг · K) соответственно).

При давлении  $p_0=20$  МПа, соответствующем (см. (4)) уровню  $p_w^*$  титановых сплавов в опытах [8, 9] ( $p_w^*=3.1\div 10.0$  МПа), скорость охлаждения цилиндрического фрагмента  $\frac{\partial T_w}{\partial t}$  оценена 180 К/с (см. рис. 4), а оценка  $\left(\frac{\partial T_w}{\partial t}\right) / (T_{w,\max} - T_{w,k})$  составила  $3.3 \, \mathrm{c}^{-1}$ , откуда  $\alpha \approx \alpha_\alpha \approx 11 \, \mathrm{кBt}/(\mathrm{M}^2 \cdot \mathrm{K})$ . Предполагали, что коэффициент теплоотдачи  $\alpha_2$  от инициатора возгорания — микрократера на поверхности пластины также близок к полученному значе-

| Марка сплава | $\lambda$ , Bt/(M·K) | Способ разрушения образца                           |                                       |                                         |                                                      |
|--------------|----------------------|-----------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------|
|              |                      | разрыв стержня в условиях<br>естественной конвекции |                                       | воздействие газового потока на пластину |                                                      |
|              |                      | $p_1^*$ , МПа                                       | $\alpha_1$ , кВт/(м <sup>2</sup> · K) | $p_2^*$ , МПа                           | $\alpha_2$ , кВт/(м $^2$ ·К) (расчет по формуле (3)) |
| BT1-0        | 16.8                 | 2.3 [1, 6]                                          | 5 [3]                                 | 10.0                                    | 10.4                                                 |
| BT1-1        | 16                   | 2.0 [7]                                             |                                       | 7.7 [8]                                 | 9.8                                                  |
| OT4-1        | 9.6                  | 1.5 [1]                                             |                                       | 6.5 (OT4) [8]                           | 10.4                                                 |
| BT14         | 8.4                  | 1.3 [7]                                             |                                       | 7.0 [8]                                 | 11.6                                                 |
| BT6          | 8.4                  | 0.8 [7]                                             |                                       | 3.1 [8]                                 | 9.9                                                  |

Критическое давление возгорания сплавов в газообразном кислороде ( $T_0 \approx 303\,$  K) и коэффициенты теплоотдачи от инициаторов возгорания при различных способах разрушения образцов

## ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как можно заключить из представленного расчетного анализа, теплоотвод от разогревающегося инициатора возгорания в экспериментах [8, 9] определяется конвекцией в обдувающий пластину газовый поток с коэффициентом теплопередачи  $\alpha_2 = \alpha_\alpha$  и, как следствие, не зависит от теплофизических свойств материала пластины. По этой причине коэффициенты  $\alpha_2$  для всех анализируемых титановых сплавов в условиях эксперимента [8, 9] не должны существенно различаться и должны приближаться к значению  $11 \text{ kBt/(m}^2 \cdot \text{K)}$ .

Коэффициент теплоотдачи  $\alpha_2$ , рассчитанный по уравнению (3) с учетом коэффициента  $\alpha_1 \approx 5 \text{ кBT/(m}^2 \cdot \text{K})$ , полученного для разрушения стержня в условиях естественной конвекции, и с учетом соотношения критических давлений возгорания материалов в потоке кислорода  $(p_2^* = p_w^*)$  и при разрыве стержней  $(p_1^*)$ , действительно оказался равным установленному выше значению  $\approx 11 \text{ кBT/(m}^2 \cdot \text{K})$  для всех анализируемых титановых сплавов (см. таблицу).

Как видно из таблицы, вне зависимости от теплофизических свойств испытанных титановых сплавов ( $\lambda=8.4\div16.8~\mathrm{Br/(m\cdot K)}$ ) установленные из соотношения (3) коэффициенты теплоотдачи  $\alpha_2$  от инициаторов возгорания при обдуве пластин потоком кислорода близки к рассчитанному по уравнению (7) значению  $\approx 11~\mathrm{kBr/(m^2\cdot K)}$ .

Сравнивая закономерности самовозгорания в кислороде стержня в статических условиях и пластины в динамическом режиме, можно отметить, что в обоих случаях процесс на-

чинается с воспламенения микрочастиц металла. При разрыве стержня микрочастицы, представляющие собой полностью или полуотделившиеся микрофрагменты разрушенного объема, находясь в узкой непроточной трещине разрушения в условиях затрудненного теплообмена ( $\alpha_1 \approx 5 \text{ кBT/(м}^2 \cdot \text{K})$ ), воспламеняются при сравнительно низком давлении кислорода и выступают как инициаторы возгорания основной массы металла, обеспечивая ему невысокое критическое давление возгорания  $(p_1^*)$ . В случае же пластины вырываемые из нее частицы сразу подхватываются газовым потоком и сгорают вдали от металлической поверхности. По этой причине инициатором возгорания пластин выступают микрократеры, остающиеся на их поверхности после вырывания оттуда микрочастиц, находящиеся в более интенсивном теплообмене с окружающей средой  $(\alpha_2 \approx 11 \; \mathrm{kBt/(m^2 \cdot K)})$  и требующие для своего возгорания более высокого давления кислорода  $(p_2^*)$ . Указанное различие в природе инициаторов возгорания материала в статических и динамических условиях и обусловливает существование неравенства  $p_2^* > p_1^*$ .

## выводы

Показано, что при самовозгорании пластин титановых сплавов в высокоскоростном потоке кислорода основной теплоотвод от инициаторов возгорания — микрократеров с ювенильной поверхностью осуществляется конвекцией с коэффициентом теплоотдачи  $\alpha_2 \approx 11~{\rm kBt/(m^2 \cdot K)}$ , не зависящим от теплофизических свойств материала пластины. Установленное значение  $\alpha_2$  близко к рассчитанным

В. И. Болобов

 $(9.8 \div 11.6 \text{ кBt/(m}^2 \cdot \text{K}))$  при использовании коэффициента теплоотдачи  $\alpha_1 \approx 5 \text{ кBt/(m}^2 \cdot \text{K})$  от инициаторов возгорания в виде титановых стержней при их разрыве в кислороде в условиях естественной конвекции с учетом соотношения критических давлений возгорания анализируемых титановых сплавов в динамических  $(p_2^*)$  и статических  $(p_1^*)$  условиях.

#### **ЛИТЕРАТУРА**

- 1. **Болобов В. И.** К механизму самовозгорания титановых сплавов в кислороде // Физика горения и взрыва. 2002. Т. 38, № 6. С. 37–45.
- 2. **Болобов В. И.** Возможный механизм самовозгорания титановых сплавов в кислороде // Физика горения и взрыва. 2003. Т. 39, № 6. С. 77–81.
- 3. **Болобов В. И., Подлевских Н. А.** Механизм возгорания металлов при разрушении // Физика горения и взрыва. 2007. Т. 43, № 4. С. 39–48.

- 4. **Болобов В. И.** К теории возгорания металлов при разрушении // Физика горения и взрыва. 2012. Т. 48, № 6. С. 35–40.
- Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. — М.: Наука, 1987.
- Littman F. E., Church F. M., Kinderman E. M. A study of metal ignitions. The spontaneous ignition of titanium // J. Less-Common Metals. 1961. V. 3. P. 367–378.
- 7. **Борисова Е. А., Барданов К. В.** О загорании титановых сплавов в кислородсодержащих средах // Цв. металлургия. 1963. № 2. С. 47–48.
- Болобов В. И. Возгорание титана в потоке кислорода // Физика горения и взрыва. 1993. Т. 29, № 2. С. 12–15.
- 9. **Болобов В. И.** Возможный механизм процесса воспламенения металлов в потоке кислорода // Физика горения и взрыва. 1998. Т. 34, № 1. С. 50–56.

Поступила в редакцию 28/І 2015 г.