ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ

2010. Том 51, № 3

Май – июнь

C. 575 – 586

ОБЗОРЫ

УДК 541.632:548.734

УПАКОВКА ХИРАЛЬНЫХ МОЛЕКУЛ ТРИС-АЦЕТИЛАЦЕТОНАТОВ МЕТАЛЛОВ

© 2010 П.А. Стабников*, Г.И. Жаркова, Л.А. Комиссарова, А.И. Смоленцев, С.В. Борисов

Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 22 мая 2009 г.

В КБСД (Cambridge Structural Database) проведены поиск и систематизация упаковок *трис*-ацетилацетонатов металлов M(aa)₃ (около 70 структур за последние 50 лет). Во всех структурах обнаружены плоскости с гексагональным окружением молекул. С учетом хиральности молекул выявлено три типа ближайшего гексагонального окружения в таких плоскостях. Различное наложение этих плоскостей дает пять типов упаковки *трис*-ацетилацетонатов металлов: α , β , γ , δ и η . Синтезированы спектрально-чистые комплексы Al(aa)₃, Cr(aa)₃, Mn(aa)₃ и Fe(aa)₃ и изучены их твердые растворы. Установлено влияние примесей на кристаллизацию. Обозначена температурная область 210—100 K, в которой ранее нами был установлен термохромизм β -дикетонатов металлов. В этой же области ранее было обнаружено изменение симметрии для Al(aa)₃ и Mn(aa)₃. Найдено, что для Cr(aa)₃ в этой области температуры изменения симметрии нет. Экспериментально установлены соотношения компонентов в твердых растворах, при которых фиксируется низкотемпературное изменение симметрии комплексов. Обсуждена взаимосвязь термохромизма и изменения симметрии.

Ключевые слова: хиральные молекулы, *трис*-ацетилацетонаты металлов, низкотемпературный термохромизм и фазовые превращения.

введение

Хелатные комплексы металлов с пентандионом-2,4 (ацетилацетоном, Наа) находят все большее применение. Их можно использовать как катализаторы для различных процессов: полимеризации непредельных углеводородов [1, 2], окисления спиртов до альдегидов и кетонов [3], получения сульфоксидных производных пенициллина [4], синтеза углеродных нанотрубок [5], для консервирования эпоксидной смолы [6], очистки металлов зонной плавкой [7] и многих других. В кристаллическом состоянии ацетилацетонаты металлов (M(aa)₃) относят к молекулярным кристаллам, в которых, как и в органических соединениях, молекулы связаны слабыми ван-дер-ваальсовыми силами [8, 9]. Это позволяет при небольшом нагревании переводить молекулы в газовую фазу без их разрушения. Данное свойство широко используется для получения металлических и оксидных покрытий (метод MO CVD [10, 11]). Все это способствовало тому, что за последние 50 лет ацетилацетонаты металлов широко исследовались. К настоящему времени разработаны методы синтеза [12, 13], очистки [7], установлены такие термодинамические свойства как энтальпия плавления [14, 15], точки плавления [13, 15, 16], теплота сублимации и испарения [17, 18], теплота разрушения [19] и образования [20], теплоемкость комплексов [15, 21, 22], энергия связи металл-кислород [20, 23] и другие физикохимические характеристики. Данные комплексы подробно исследовали и в структурном плане, что отражено в КБСД. В настоящее время хорошо известные фирмы (Sigma-Aldrich, Merck,

^{*} E-mail: stabnik@niic.nsc.ru

Strem и др.) предлагают для продажи ацетилацетонаты металлов различной степени чистоты — от 95 до 99,999 %.

В данной работе мы решили упорядочить и систематизировать известные к настоящему времени структурные и кристаллографические данные для *трис*-ацетилацетонатов металлов. Необходимость в упорядочении возникает, в частности, из-за того, что для новых модификаций — ромбической $Pna2_1$ (Al(aa)₃, код ALACAC10) и моноклинной $P2_1/n$ (Mn(aa)₃, код АСАСМN21) авторами предлагалось одно и то же обозначение: у-фаза. Основная цель систематизации, проводимой в данной работе, — установить, сколько же различных типов упаковки трис-ацетилацетонатов металлов существует, их сходство и отличие. Известно, что фазообразование — сложный процесс, на который влияет множество факторов: природа металлакомплексообразователя, чистота соединения, условия роста кристаллов — скорость, температура, давление в системе, концентрация вещества в газовой фазе или в растворе, наличие зародышей кристаллов определенной фазы и т.д. Все эти условия в разной степени влияют на зарождение и рост кристаллов. В частности, нам всегда удавалось вырастить α-фазу из спектральночистого Al(aa)₃. Но вырастить у-фазу этого комплекса при испарении ацетонового раствора, как это описано в работах [24, 25], нам удалось только в том случае, когда мы добавляли немного (1-10%) Fe(аа) [26]. Так как в цитируемых работах не приводится данных о чистоте комплексов, то логично предположить, что и в исследуемых образцах была примесь железа. Но недавно в работе [27] описано исследование у-фазы Al(аа)₃, выращенной не из ацетона, а из этилацетата. Возможно, в этилацетате создаются более благоприятные условия для выращивания этой фазы. В связи с этим условия выращивания у-фазы Al(aa)₃ пока остаются не до конца выясненными.

В нашей работе мы решили на основе чистых комплексов более подробно изучить условия выращивания фаз *трис*-ацетилацетонатов Al, Cr, Mn, Fe как из спектрально-чистых комплексов, так и из их смесей. Представляет также интерес установить, возможно ли вырастить γ -фазу в системах Cr(aa)₃—Fe(aa)₃ и Mn(aa)₃—Fe(aa)₃, как это нам удалось в системе Al(aa)₃—Fe(aa)₃ [26]. Так как в последнее время появились данные о фазовых переходах в кристаллах *трис*ацетилацетонатов Al [28] и Mn [29] при 180—100 K, было решено исследовать особенности этих переходов в спектрально-чистых комплексах и их смесей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез Al(aa)₃ (1), Cr(aa)₃ (2), Mn(aa)₃ (3), Fe(aa)₃ (4). Основная цель — синтез спектральночистых комплексов. Ниже описаны условия и методы такого синтеза.

Реагенты: ацетон, этилацетат, толуол, ацетилацетон (99 % чистоты, Merck), щавелевая кислота (ОСЧ), КМпО₄ (ОСЧ), К₂CO₃ (ОСЧ), NaOH (ЧДА) — использовали без дополнительной очистки. AlCl₃·6H₂O (ЧДА) и [Cr(H₂O)₆](ac)₃ (ЧДА) очищали согласно [30]; FeCl₃·6H₂O (ЧДА) перекристаллизовывали из воды. Синтез **1**, **2** и **4** проводили согласно методике [30]. Синтез **3** проводили в два этапа: сначала по методике [30] получали водный раствор K₃[Mn(C₂O₄)₃], затем при перемешивании к нему добавляли эквивалентное количество пентандиона-2,4 и доводили pH смеси до 5 водным раствором аммиака (ОСЧ). Образующийся комплекс экстрагировали толуолом. После испарения толуола получили порошок Mn(аа)₃. Все полученные комплексы были очищены сублимацией в вакуумной градиентной печи ($P \sim 10^{-2}$ Topp, T = 50—300 °C).

Элементный анализ проведен на приборе Carlo-Erba 1106 (Италия). Рассчитано (найдено), % для 1: С 55,55 (55,51), Н 6,53 (6,63); для 2: С 51,57 (51,30), Н 6,06 (6,08); для 3: С 51,14 (51,20), Н 6,01 (6,16); для 4: С 51,01 (51,12), Н 5,99 (6,05).

Атомно-эмиссионный спектральный анализ проводили на спектрографе PGS-2 в дуге постоянного тока (I = 13,5 A, время экспозиции 25 с). Калибровочные графики строили на основе графитового порошка, содержащего 4 % NaCl и несколько десятков примесей в интервале концентраций 10^{-6} — 10^{-2} мас.%. Навеску пробы разбавляли спектрографическим буфером (графитовый порошок с 4 % NaCl) в соотношении 1:50. Навеска подготовленной пробы в графитовом электроде составляла 20 мг. Спектральный анализ проводили из трех параллельных.

Таблица 1

Элемент	Al(aa) ₃	Cr(aa) ₃	Mn(aa) ₃	Fe(aa) ₃	Элемент	Al(aa) ₃	Cr(aa) ₃	Mn(aa) ₃	Fe(aa) ₃
Al	Основа	<10	<10	<10	Bi	<2	<2	<5	<10
Cr	<5	Основа	<10	<10	Co, Pd, V	<5	<5	<5	<5
Mn	<0,5	<0,5	Основа	<5	Pb	<5	<5	<10	<5
Fe	<5	<5	<10	Основа	Zn	<5	<5	<10	<10
Ag, Be	<0,5	<0,5	<0,5	<0,5	Zr	<5	<5	<10	<5
Cu	<0,5	<0,5	<1	<0,5	Mg	<5	<5	<5	<5
Cd, In	<2	<2	<5	<2	Sn	<10	<10	<10	<10

Результаты атомно-эмиссионного спектрального анализа, мкг/г

Метод обеспечивает пределы обнаружения на уровне $n \cdot 10^{-5}$ — $n \cdot 10^{-3}$ мас.% Результаты анализа представлены в табл. 1.

Кристаллические твердые растворы готовили следующим образом. В бюкс помещали $\sim 0,1$ г смеси комплексов с разным соотношением компонентов. Затем смесь растворяли в ацетоне. Испарение растворителя проводили при комнатной температуре. Для определения параметров элементарной ячейки отбирали несколько кристаллов, отличающихся по форме и размерам.

Определение параметров элементарных ячеек проводили по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Арех, оснащенном двухкоординатным ССD-детектором с использованием MoK_{α} ($\lambda = 0,71073$ Å) и графитового монохроматора. Эксперименты проводили при 293 и 90 К. Данные обрабатывали с помощью поставляемого с дифрактометром программного обеспечения [31].

Поиск в КБСД. Для поиска создавали графическую модель, в которой металл окружен тремя ацетилацетонатными лигандами. Поиск ограничивали только мономерным строением молекул *трис*-ацетилацетонатов металлов, а также отсутствием в кристалле других молекул. Отнесение упаковки к той или иной фазе проводили с учетом пространственной группы, метрики элементарной ячейки и числа формульных единиц. Результаты этой работы представлены в табл. 2.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Следует отметить, что кристаллохимический анализ ацетилацетонатов трехвалентных металлов уже неоднократно проводился. Еще в 1926 г. Эстбери [32] предложил обозначения для трех известных к тому времени кристаллических фаз: моноклинной (α) и двух ромбических (β и γ). В 1959 г. Л.М. Школьникова в работе [24] использовала эти обозначения, но в 1982 г. в обзоре [33] Л.М. Школьникова и М.А. Порай-Кошиц уже используют другие обозначения, предложенные в работе [25]. Различие в обозначениях фаз затрудняет ответ на вопрос, сколько различных типов упаковок *трис*-ацетилацетонатов металлов к настоящему времени обнаружено и каковы отличия этих упаковок друг от друга. В данной работе мы решили воспользоваться обозначениями, предложенными [32]. Данный выбор определялся не только тем, что это самые ранние обозначения типов упаковок *трис*-ацетилацетонатов металлов, но и тем, что они отражают общее число структур, установленных для рассматриваемых комплексов. Так, больше всех структур в КБСД с α -упаковкой, затем с β -упаковкой, и далее все остальные структуры *трис*-ацетилацетонатов металлов к настоящеми структуры *трис*-ацетилацетонатов металлов к настояцемых комплексов. Так, больше всех структур в КБСД с α -упаковкой, затем с β -упаковкой, и далее все остальные структуры

Строение *трис*-ацетилацетонатов металлов. Координация трех лигандов приводит к двум хиральным формам молекул. На рис. 1 показаны две возможные оптически-активные формы *трис*-ацетилацетонатов металлов (С) и (С*). Для большинства металлов наблюдается быстрый обмен между энантиомерами, поэтому в большинстве случаев растут кристаллы-рацематы. Но для металлов с заторможенным вращением лигандов в молекуле (например, для комплексов

Таблица 2

		-	-	n	г	2	и
Комплекс	Фаза	Простр. группа	Z	R	Год	Эксперимент	Код в КБСД
1	2	3	4	2	6	/	8
$Cr(aa)_3$	α_1	$P2_{1}/c$	4	6,6	1965	<i>RT</i> неизвестно	ACACCR
$Cr(aa)_3$	α_1	$P2_{1}/c$	4	—	1969	<i>RT</i> дифрактом.	ACACCR01
$Cr(aa)_3$	α_1	$P2_{1}/c$	4	4,7	1982	<i>RT</i> дифрактом.	ACACCR02
$Cr(aa)_3$	α_1	$P2_{1}/c$	4	4,9	2001	<i>RT</i> дифрактом.	ACACCR05
Cr(aa) ₃ Cr:Al 0,82:0,18	α_1	$P2_{1}/c$	4	6,42	2001	<i>RT</i> дифрактом.	ACACCZ
Cr(aa) ₃ Cr:Al 0,73:0,27	α_1	$P2_{1}/c$	4	6,11	2001	<i>RT</i> дифрактом.	ACACCZ01
$Cr(aa)_3$	(C)	$P2_1$	4	3,7	1979	<i>RT</i> дифрактом.	ACACCT
$Ga(aa)_3$	α_1	$P2_{1}/c$	4	6,0	1974	<i>RT</i> дифрактом.	ACACGA
$Ga(aa)_3$	δ	$P2_1/n$	4	3,12	2005	100 К дифрактом.	ACACGA02
In(aa) ₃	δ	$P2_1/n$	4	9,2	1979	<i>RT</i> дифрактом.	ACACIN
In(aa) ₃	β	Pbca	8	3,4	1980	<i>RT</i> дифрактом.	ACACIN02
In(aa) ₃	δ	$P2_1/n$	4	2,6	2001	<i>RT</i> дифрактом.	ACACIN04
$Mn(aa)_3$	α_1	$P2_{1}/c$	4	9,0	1964	<i>RT</i> неизвестно	ACACMN
$Mn(aa)_3$	α_1	$P2_{1}/c$	4	8,4	1974	<i>RT</i> дифрактом.	ACACMN02
$Mn(aa)_3$?	$P2_1/n$	4	4,5	1979	<i>RT</i> дифрактом.	ACACMN21
$Mn(aa)_3$	α_4	$P2_1/n$	8	5,31	2005	100 К дифрактом.	ACACMN22
$Mn(aa)_3$	α3	$P2_1$	8	7,66	2005	<i>RT</i> дифрактом.	ACACMN23
$Mo(aa)_3$	δ	$P2_1/n$	4	4,0	1979	<i>RT</i> дифрактом.	ACACMO
$Rh(aa)_3$	α_1	$P2_{1}/c$	4	3,5	1973	<i>RT</i> дифрактом.	ACACRH10
$Ru(aa)_3$	(C)	$P2_1$	4	4,6	1988	<i>RT</i> дифрактом.	ACACRS
$Ru(aa)_3$	α_1	$P2_{1}/c$	4	9,6	1973	<i>RT</i> фото	ACACRU
$Ru(aa)_3$	β	Pbca	8	3,7	1993	<i>RT</i> дифрактом.	ACACRU02
$Ru(aa)_3$	α_1	$P2_{1}/c$	4	4,9	1994	<i>RT</i> дифрактом.	ACACRU03
$Ru(aa)_3$	α_1	$P2_{1}/c$	4	2,8	1998	11 К дифрактом.	ACACRU04
$Ru(aa)_3$	α_1	$P2_{1}/c$	4	3,64	1998	92 К дифрактом.	ACACRU05
$Ru(aa)_3$	α_1	$P2_{1}/c$	4	2,78	1998	<i>RT</i> дифрактом.	ACACRU06
$Sc(aa)_3$	β	Pbca	8	5,0	1973	<i>RT</i> дифрактом.	ACACSC
Al(aa) ₃	α_1	$P2_{1}/c$	4	7,0	1973	<i>RT</i> фото	ALACAC01
Al(aa) ₃	α_1	$P2_{1}/c$	4	5,0	1990	<i>RT</i> дифрактом.	ALACAC02
Al(aa) ₃	γ	$Pna2_1$	16	9,2	1975	<i>RT</i> дифрактом.	ALACAC10
Al(aa) ₃ Al:Cr 0,87:0,13	α_1	$P2_{1}/c$	4	7,25	2001	<i>RT</i> дифрактом.	ALACAC11
Al(aa) ₃ Al:Cr 0,98:0,02	α_1	$P2_{1}/c$	4	10,8	2001	<i>RT</i> дифрактом.	ALACAC12
$Al(aa)_3$	α_1	$P2_{1}/c$	4	4,9	2001	<i>RT</i> дифрактом.	ALACAC16
$Al(aa)_3$	γ	$Pna2_1$	16	3,13	2006	110 К дифрактом.	ALACAC19
Al(aa) ₃	α_1	$P2_{1}/c$	4	4,11	2007	240 К дифрактом.	ALACAC20
Al(aa) ₃	α_1	$P2_{1}/c$	4	3,92	2007	210 К дифрактом.	ALACAC21
Al(aa) ₃	α_1	$P2_{1}/c$	4	3,67	2007	180 К дифрактом.	ALACAC22
$Al(aa)_3$	α_1	$P2_{1}/c$	4	3,41	2007	150 К дифрактом.	ALACAC23
$Al(aa)_3$	α_2	$P2_{1}/c$	12	3,83	2007	110 К дифрактом.	ALACAC24
Al(aa) ₃ Al:Cr 0,92:0,08	α_1	$P2_{1}/c$	4	6,43	2000	<i>RT</i> дифрактом.	ALACAZ
Al(aa) ₃ Al:Cr 0,83:0,17	α_1	$P2_{1}/c$	4	5,5	2001	<i>RT</i> дифрактом.	ALACAZ01
Al(aa) ₃ Al:Cr 0,72:0,28	α_1	$P2_{1}/c$	4	5,83	2001	<i>RT</i> дифрактом.	ALACAZ02

Фазы трис-ацетилацетонатов металлов

УПАКОВКА ХИРАЛЬНЬ	Х МОЛЕКУЛ	ТРИС-АЦЕТИЛАЦИ	ЕТОНАТОВ МЕТАЛЛОВ
		, , ,	

Окончание табл.							е табл. 2
1	2	3	4	5	6	7	8
Al(aa) ₃ Al:Cr 0,56:0,44	α_1	$P2_{1}/c$	4	6,35	2001	<i>RT</i> дифрактом.	ALACAZ03
Al(aa) ₃ Al:Fe 0,9:0,1	γ	$Pna2_1$	16	4,16	2006	<i>RT</i> дифрактом.	GEPTIF
Al(aa) ₃ Al:Fe 0,5:0,5	β_1	$P2_{1}2_{1}2_{1}$	8		2006	<i>RT</i> дифрактом.	GEPTIF01
$Co(aa)_3$	α_1	$P2_{1}/c$	4	18,0	1958	<i>RT</i> фото	COACAC01
$Co(aa)_3$	α_1	$P2_{1}/c$	4	8,0	1973	<i>RT</i> фото	COACAC02
$Co(aa)_3$	α_1	$P2_{1}/c$	4	3,8	1974	<i>RT</i> дифрактом.	COACAC03
$Co(aa)_3$	(C)	$P2_1$	4		1971	<i>RT</i> неизвестно	COACAC04
$Co(aa)_3$	α_1	$P2_{1}/c$	4	3,98	2007	240 К дифрактом.	COACAC06
$Co(aa)_3$	α_1	$P2_{1}/c$	4	3,88	2007	210 К дифрактом.	COACAC07
$Co(aa)_3$	α_1	$P2_{1}/c$	4	3,6	2007	180 К дифрактом.	COACAC08
$Co(aa)_3$	α_1	$P2_{1}/c$	4	3,45	2007	150 К дифрактом.	COACAC09
$Co(aa)_3$	α_1	$P2_{1}/c$	4	2,88	2007	110 К дифрактом.	COACAC10
Fe(aa) ₃	β	Pbca	8	7,9	1967	<i>RT</i> фото	FEACAC
Fe(aa) ₃	β_1	$P2_{1}2_{1}2_{1}$	8	3,8	1996	<i>RT</i> дифрактом.	FEACAC02
Fe(aa) ₃	β	Pbca	8	5,3	2001	20 К дифрактом.	FEACAC03
Fe(aa) ₃	β	Pbca	8	23,0	1956	<i>RT</i> фото	FEACAC04
Fe(aa) ₃	β	Pbca	8	3,1	2001	<i>RT</i> дифрактом.	FEACAC05
Yb(aa) ₃	η	<i>P</i> -1	2	3,1	1986	<i>RT</i> дифрактом.	FEBGAU
$Tc(aa)_3$	α_1	$P2_{1}/c$	4	3,9	1988	<i>RT</i> дифрактом.	KABMIJ
$Tc(aa)_3$	α_1	$P2_{1}/c$	4	4,0	1991	<i>RT</i> дифрактом.	KABMIJ10
$Os(aa)_3$	α_1	$P2_{1}/c$	4	2,44	1998	<i>RT</i> дифрактом.	NIRLAB
Ti(aa) ₃	α_1	$P2_{1}/c$	4	5,8	1999	<i>RT</i> дифрактом.	QAMCAI
Co(aa) ₃ Co:Al 0,5:0,5	(C)	$P2_1$	2		1971	<i>RT</i> фото	QCOAAL
Ir(aa) ₃	α_1	$P1_{1}2_{1}/b$	4	4,4	1999	<i>RT</i> дифрактом.	QQQCXJ01
Ir(aa) ₃	α_1	$P1_{1}2_{1}/b$	4	4,4	2000	<i>RT</i> дифрактом.	QQQCXJ02
V(aa) ₃	β	Pcab	8	6,6	1969	<i>RT</i> дифрактом.	VAACAC
V(aa) ₃	δ	$P2_1/n$	4	10,2	1969	<i>RT</i> дифрактом.	VAACAC01
V(aa) ₃	β	Pcab	8	4,4	2001	<i>RT</i> дифрактом.	VAACAC02
V(aa) ₃	δ	$P2_1/n$	4	11,5	1970	<i>RT</i> фото	VAACAC12
V(aa) ₃	β	Pbca	8	5,75	2005	120 К дифрактом.	VAACAC13

Co³⁺, Cr³⁺, Ru³⁺) возможно разделение энантиомеров и выращивание кристаллов, построенных из оптически-активных молекул одного сорта. В табл. 2 такие структуры обозначены (С).

По данным поиска в КБСД были выявлены 5 различных фаз рацематов *трис*-ацетилацетонатов металлов — α , β , γ , δ и η . (Для α -фаз введены подстрочные обозначения α_1 , α_2 , α_3 , α_4 , смысл которых будет пояснен ниже.) В табл. 2 приведены также данные о структуре, обозначенной ?-**ACACMN21**. Кристаллы данной фазы Mn(aa)₃ получены в виде небольшой примеси к α_1 -фазе в условиях, когда трудно гарантировать стабильность иона Mn³⁺. Кроме того, за последние почти 30 лет не появилась ни одной работы, в которой была бы повторно установлена эта фаза для *трис*-ацетилацетонатов металлов.

Упаковка молекул в кристаллах. Анализ упаковок молекул показал, что во всех фазах *mpuc*-ацетилацетонатов металлов выделяются плоскости с плотной

Рис. 1. Две хиральные молекулы *трис*-ацетилацетоната металла

Рис. 2. Ближайшее гексагональное окружение в плотноупакованных плоскостях с учетом хиральности молекул (⊕ — молекулы с хиральностью (С), ○ — молекулы с хиральностью (С*)

гексагональной укладкой комплексов. В этих плоскостях каждая молекула имеет 6 ближайших соседей с расстояниями между центрами ~ 7,4—8,1 Å. Центры молекул не выходят из таких плоскостей более чем на 0,8 Å. Дополнительно на расстояниях ~ 7,5—8,2 Å расположены молекулы из соседних плоскостей (упаковка A A). Таким образом, ближайшее молекулярное окружение в кристалле является почти правильной гексагональной бипирамидой. При анализе рацемических упаковок важна хиральность молекул. Приписывание молекуле формы (С) или (С*) проводили следующим образом: если в элементарной ячейке одна независимая молекула, то этой молекуле присваивали форму (С), а остальным молекулам приписывали формы (С) или (С*) согласно элементам симметрии. Если в элементарной ячейке более чем одна независимая молекула, то первой молекуле присваивали форму (С). Остальным независимым молекулам форму приписывали визуально в графических редакторах по результатам их совмещения с первой молекулой. После этого все размножаемые молекулы в ячейке получали формы в соответствии с элементами симметрии. При анализе укладок молекул с учетом их хиральности выявлены три типа гексагонального молекулярного окружения в плотнейших плоскостях, которые представлены на рис. 2.

Гексагональное окружение 2а обнаружено только в структуре δ -фазы (Ga(aa)₃, ACACGA02, пр. гр. $P2_1/n$.) В кристалле одна независимая молекула, а в элементарной ячейке четыре молекулы, две формы (С) и две (С*). В плоскости (001) центры молекул формируют гексагональную сетку 2a, в которой молекулы только одной хиральности. Вдоль оси Z идет последовательное чередование плоскостей (упаковка A(C) A(C*)). С учетом хиральности ближайшее окружение для молекулы формы (С) можно записать [6(C)] + 2(C*), а для формы (C*) — [6(C*)] + 2(C).

Гексагональное окружение 2b наблюдается в α - и η -фазах. В кристалле α_1 -фазы (Al(aa)₃, ALACAC16), пр. гр. $P2_1/c$ одна независимая молекула и четыре молекулы в элементарной ячейке, две формы (C) и две (C*). В плоскости (002) центры молекул формируют гексагональную сетку 2b. В таких плоскостях каждая молекула вдоль оси Y имеет две трансляционно связанных молекулы и еще четыре ближайших молекулы другой хиральности. Вдоль оси Z соседние сетки накладываются так, что гексагональное окружение дополняется до бипирамиды еще двумя молекулами другой хиральности. С учетом хиральности ближайшее окружение симметрично, его можно записать для молекулы формы (C) [2(C) + 4(C*)] + 2(C*), а для формы (C*) — [2(C*) + 4(C)] + 2(C). При понижении температуры до 100—90 К симметрия кристаллов α_1 -фазы немного изменяется (см. табл. 2, ALACAC24), но сохраняется укладка молекул. При низких температурах становятся различимы те молекулы, которые при комнатной температуре были эквивалентны. Из-за этого приходится выбирать новую элементарную ячейку, объем которой в 3 раза больше. Эта фаза Al(aa)₃ в данной работе обозначена α_2 .

В кристалле α_3 -фазы (Mn(aa)₃, ACACMN22), пр. гр. $P2_1$ в элементарной ячейке две независимых молекулы с центрами Mn(1), Mn(2), которые имеют хиральности (С) и (С*) соответственно. Общее число молекул в элементарной ячейке равно восьми, четыре формы (С) и четыре (С*). В плоскости (200) центры молекул образуют гексагональную сетку 2b, в которой представлены все независимые молекулы и все энантиомеры. В таких плоскостях каждая молекула вдоль оси Y имеет две трансляционно связанных молекулы и еще четыре ближайших молекулы другой хиральности. Соседние сетки вдоль оси X накладываются так, что гексагональное окружение дополняется до бипирамиды еще двумя молекулами другой хиральности. Ближайшее окружение молекул симметрично, его можно записать для молекулы формы (C) $[2(C) + 4(C^*)] + 2(C^*)$, а для формы $(C^*) - [2(C^*) + 4(C)] + 2(C)$. Если учитывать только хиральность молекул, то данная упаковка аналогична структуре α_1 -фазы. За счет удвоения одного из параметров объем элементарной ячейки α_3 -фазы в 2 раза больше. При понижении температуры до 100 К укладка молекул Mn(aa)₃ в кристаллах сохраняется, но изменяется симметрия от пространственной группы $P2_1$ до $P2_1/n$ (см. табл. 2, **АСАСМN23**). Этот фазовый переход аналогичен переходу $\alpha_1 - \alpha_2$. Низкотемпературная фаза Mn(aa)₃ в данной работе обозначена α_4 .

В кристалле **η-фазы** (Yb(aa)₃, **FEBGAU**), пр. гр. *P*-1, в элементарной ячейке одна независимая молекула. Общее число молекул в элементарной ячейке равно двум, одна формы (C) и одна (C*). В плоскости (101) центры молекул образуют гексагональную сетку 2*b*, в которой представлены все энантиомеры. В таких плоскостях каждая молекула вдоль оси *Y* имеет две трансляционно связанных аналогичных молекулы и еще четыре ближайших молекулы другой хиральности. Соседние сетки накладываются так, что гексагональное окружение дополняется до бипирамиды еще двумя молекулами той же хиральности. С учетом хиральности ближайшее окружение молекул симметрично, его можно записать для молекулы формы (C) [2(C) + $+4(C^*)$] + 2(C), а для формы (C*) — [2(C*) + 4(C)] + 2(C*). Если учитывать только хиральность молекул, то строение гексагональных плоскостей такое же, как и в структуре α-фазы, но наложение плоскостей другое.

Гексагональное окружение 2b наблюдается в β - и γ -фазах. В кристалле β -фазы (Fe(аа)₃, FEACAC05), пр. гр. *Рbca*, одна независимая молекула элементами симметрии размножается до восьми молекул в элементарной ячейке, четыре формы (С) и четыре (С*). В плоскости (002) центры молекул образуют гексагональную сетку. В ней каждая молекула окружена двумя молекулами той же хиральности, что и центральная. Эти две молекулы располагаются в положении 1, 3 или 1, 5 шестиугольника (см. рис. 2, *в*), остальные четыре — другой хиральности. Эта несимметричность в окружении одинакова как для энантиомеров (С), так и для (С*). Вдоль оси *Z* соседние сетки накладываются так, что гексагональное окружение дополняется до бипирамиды еще двумя молекулами другой хиральности. С учетом хиральности ближайшее окружение несимметрично, его можно записать для молекулы формы (С) [2(С) + 4(С*)] + 2(С*), а для формы (С*) — [2(С*) + 4(С)] + 2(С).

В кристалле **у-фазы** (Al_{0.9}Fe_{0.1}(aa)₃, **GEPTIF**), пр. гр. *Pna*2₁, четыре независимых молекулы с центрами Al(1), Al(2), Al(3) и Al(4), хиральности которых (С), (С*), (С) и (С*) соответственно. Элементы симметрии размножают каждую молекулу так, что все они в элементарной ячейке представлены двумя молекулами формы (С) и двумя молекулами (С*). Общее число молекул в элементарной ячейке 16. В плоскостях (004) центры молекул образуют гексагональную сетку. На трансляции вдоль оси Y располагаются четыре таких плоскости: (C)Al(1)+(C*)Al(3), $(C)Al(2)+(C^*)Al(2)+(C)Al(4)+(C^*)Al(4), (C^*)Al(1)+(C)Al(3)$ и $(C)Al(2)+(C^*)Al(2)+(C)Al(4)+(C^*)Al(2)+(C)Al(4)+(C^*)Al(2)+(C^*)$ +(C*)Al(4). В каждой плоскости только два вида независимых молекул и равное число энантиомеров. С учетом только хиральности укладка молекул во всех плоскостях аналогична. Каждая молекула имеет по две ближайших молекулы той же хиральности и четыре молекулы другой хиральности. Эти две молекулы располагаются в положении 1, 3 или 1, 5 шестиугольника (см. рис. 2, в). Кроме того, имеются еще две ближайших молекулы другой хиральности из соседних плоскостей. С учетом хиральности ближайшее окружение несимметрично, его можно записать для молекулы формы (C) $[2(C) + 4(C^*)] + 2(C^*)$, а для формы (C*) — $[2(C^*) + 4(C)] +$ + 2(С). Если рассматривать только хиральность молекул, то данная упаковка аналогична структуре β-фазы.

В кристалле **Mn(aa)**₃ (**ACACMN21**) одна независимая молекула. В элементарной ячейке четыре молекулы: две формы (С) и две (С*). Плоскости с гексагональным окружением молекул не выделяются.

Исследования β-дикетонатов металлов при низких температурах. Первые работы по исследованию теплоемкости β-дикетонатов металлов в широком интервале температур проведены в конце 60-х годов прошлого века [34]. Отметим аналогичную работу 1987 г. [35] и ряд

наших работ с В.Н. Наумовым по исследованию теплоемкости и некоторых других свойств Al(aa)₃, Cr(aa)₃, Fe(aa)₃ и Ir(aa)₃ в интервале 8—300 К в 2000—2008 гг. [36, 37]. Для Al(aa)₃ и Ir(aa)₃ аномалий в теплоемкости не обнаружено, а для Cr(aa)₃ и Fe(aa)₃ примерно при 60 К выделяются небольшие отклонения в теплоемкости, природа которых до конца пока не ясна. Кроме того было отмечено, что при пониженных температурах происходят заметные и обратимые изменения в окраске кристаллов. Наиболее заметен термохромизм для комплексов хрома. Так, по данным работы [36] при охлаждении Cr(aa)₃ от комнатной температуры до ~210 K его темно-фиолетовая окраска не меняется. Изменение окраски происходит в интервале 210-120 К. При температуре 120 К образец становится ярко-красным. При дальнейшем понижении температуры вплоть до температуры жидкого азота его окраска больше не меняется. Таким термохромизмом обладают только ярко окрашенные комплексы. Для бесцветного Al(aa)₃ и черного Mn(аа)₃ при понижении температуры заметных изменений в рассеянии света нет. Было также установлено, что эта интересная особенность характерна не только для ацетилацетонатов, но и для всех комплексов, относящихся к классу β-дикетонатов металлов. При охлаждении до температуры жидкого азота β-дикетонаты металлов становятся заметно ярче и светлее, часто меняется окраска. Так, при погружении в жидкий азот темно-зеленый Со(аа)₃ становится фиолетовым, а зеленый при комнатной температуре ацетилацетонат-гексафторацетилацетонат мели(II) становится синим [36].

Структурных исследований *трис*-ацетилацетонатов металлов при низких температурах пока немного (см. табл. 2). Они стали появляться в самом конце прошлого века. Недавно установлено, что охлаждение кристаллов Al(aa)₃ [28] и Mn(aa)₃ [29] до 150—100 К приводит к изменению симметрии этих комплексов. Отличия высоко- и низкотемпературных упаковок Al(aa)₃ и Mn(aa)₃ незначительны. Понижение симметрии объясняется тем, что при охлаждении замораживаются некоторые виды колебаний лигандов (концевых групп и хелатных узлов), в результате этого становятся различимыми те молекулы, которые при высоких температурах были эквивалентны. В данной работе мы это явление будем называть низкотемпературным структурным разупорядочением. Для Al(aa)₃ и Mn(aa)₃ такое разупорядочение приводит к усложнению структуры. Аналогичное понижение симметрии при 236-226 К установлено для трис-дипивалоилметаната Fe(III) [38]. Мы нашли в КБСД, что бис-гексафторацетилацетонат Cu(II) при комнатной температуре и при 100 К имеет немного различающиеся структуры: при 270 К **ВАМСАУ01** пр. гр. *P*1, *Z* = 1, *Z'* = 1 и при 100 К **ВАМСАУ** пр. гр. *P*1, *Z* = 1, *Z'* = 0,5. При высокой температуре оба лиганда в молекуле различаются строением, а при низкой — они эквивалентны, в результате чего появляется центр инверсии. В данном случае понижение температуры приводит к упрощению структуры. Такое упорядочение можно назвать внутримолекулярным. Но известны примеры β-дикетонатов металлов, в кристаллах которых структурного упорядочения или разупорядочения нет. Как следует из табл. 2, α_1 -Co(aa)₃, α_1 -Ru(aa)₃ и β-Fe(aa)₃ исследовали при комнатной и низких температурах, но изменений в симметрии не установлено. Бис-дипивалоилметанат Cu(II) в работе [39] исследовали при 290, 250 и 130 К, в работе [40] при 100 К. Каких-либо изменений симметрии также не установлено.

В данной работе мы проверяли, различается ли симметрия кристаллов **1**, **2**, **3** и **4** при комнатной температуре и 100—90 К. Мы смогли повторить превращение фаз $\alpha_1 \rightarrow \alpha_2$ для Al(aa)₃, описанное в работе [28]. Результаты работы [29] мы подтвердить полностью не смогли. Если переход $\alpha_3 \rightarrow \alpha_4$ для Mn(aa)₃ мы смогли повторить, то подтвердить необратимость фазового перехода нам не удалось. По нашим данным, все описанные выше переходы полностью обратимы. Мы также установили, что для α_1 -Cr(aa)₃ в интервале температур 300—90 К фазовых изменений нет. Для β-фазы Fe(aa)₃ в интервале температур 300—90 К фазовые изменения отсутствуют, что согласуется с данными, приведенными в табл. 2.

КРИСТАЛЛОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ТВЕРДЫХ РАСТВОРОВ (Al—Mn)(aa)₃, (Mn—Fe)(aa)₃, (Al—Cr)(aa)₃ И (Cr—Fe)(aa)₃

Результаты исследования кристаллов, полученных при испарении ацетоновых растворов, представлены в табл. 3—6. Температура плавления образцов определена на столике Кефлера.

	Таблица З					
Система (Al—Mn)(aa) ₃						
Состав стартового раствора, Al,%	Фаза при 273 К	Фаза при 90 К	<i>Т</i> _{пл} , К	-		
100	α_1	α_2	471			
80	α_1	α_2	469			
50	α_1	α_2	465*			
40	α_1	α_2	454*			
30	α_3	α_4	453*			
10	α3	α_4	448*			
0	α ₃	α_4	445*			

* Термодеструкция.

30

0

 α_1

 α_1

 α_1

 α_1

Таблица 5

* См. сноску к таол. 5.

Таблица б

ĸ		Cucme	<i>ма</i> (Cr—Fe)($aa)_3$		
пл, 11	Состав	Ć	Раза α_1	Фаза β		
471	стартового раствора, Cr,%	<i>Т</i> _{пл} , К	Отношение Cr:Fe	<i>Т</i> _{пл} , К	Отношение Fe:Cr	
471	100	100	1.0			
472	100	490	1:0			
473	90	489	1:0,05	485	1:5,5	
473	80	487	1:0,1	482	1:3	
175	70	484	1:0,25	479	1:1,8	
4/3	50	477	1:0,7	472	1:0,6	
481	20	466	1:4	462	1:0,1	
486	10	462	1:9	461	1:0,06	
490	0			459	1:0	

Фаза Состав Фаза стартового при при Τ 90 K раствора, Al,% 273 K 100 α_1 α_2 95 α_1 α_2 90 α_1 α_2 85 α_1 α_1 80 α_1 α_1 75 α_1 α_1 50 α_1 α_1

Система (Al—Mn)(аа)₃. Согласно литературным данным (см. табл. 2), Al(аа)₃ при комнатной температуре кристаллизуется в α_1 -фазе [28], а Mn(аа)₃ — в α_3 [29]. Согласно данным, приведенным в табл. 3, α₁-фаза образуется из смесей, в которых содержание A1 от 100 до 40 %. При меньшем содержании Al формируется аз-фаза. При понижении температуры до 90 K установлены только фазовые переходы $\alpha_1 \leftrightarrow \alpha_2$ и $\alpha_3 \leftrightarrow \alpha_4$.

Результаты исследования системы (Mn—Fe)(аа)₃ приведены в табл. 4. Согласно литературным данным (см. табл. 2) Mn(аа)₃ при комнатной температуре кристаллизуется в α₃-фазе, а Fe(aa)₃ — в β. В системе (Mn—Fe)(aa)₃ обнаружено только две фазы: α₃ и β. В этой системе не установлено образование γ -фазы, как это обнаружено в системе (Al—Fe)(aa)₃ [26]. При понижении температуры установлено только изменение фаз $\alpha_3 \leftrightarrow \alpha_4$.

Результаты исследования системы (Al-Cr)(аа)₃ приведены в табл. 5. Согласно литературным данным оба комплекса кристаллизуются в α_1 -фазе (см. табл. 2). Тщательное структурное исследование твердых растворов в этой системе при комнатной температуре уже проведено

Система (Al—Cr)(aa)₃

Система (Fe—Mn)(aa) ₃							
Состав стартового раствора, Fe,%	Фаза при 273 К	Фаза при 90 К	<i>Т</i> _{пл} , К				
100	β	β	459				
90	β	β	459				
70	β	β	458				
60	β	β	458				
50	α_3	α_4	456*				
30	α_3	α_4	448*				
25	α_3	α_4	443*				
20	α_3	α_4	441*				
10	α_3	α_4	438*				
2	α_3	α_4	441*				
0	α_3	α_4	445*				

[41], что следует также и из табл. 2. Наш интерес к данной системе обусловлен тем, что для Al(aa)₃ известно низкотемпературное разупорядочение, а для Cr(aa)₃ мы его не обнаружили. Поэтому основной задачей было установить, при каком соотношении компонентов наблюдается низкотемпературное разупорядочение. В результате найдено, что изменение фаз $\alpha_1 \leftrightarrow \alpha_2$ при понижении температуры до 90 К заметно тогда, когда содержание Al в смеси не менее 90 %.

Результаты исследования системы (Cr—Fe)(aa)₃ приведены в табл. 6. Как следует из литературных данных, Cr(aa)₃ и Fe(aa)₃ кристаллизуются в α_1 - и β -фазах соответственно. Однако в этой системе, в отличие от описанных выше, обе фазы α_1 и β растут одновременно из ацетонового раствора в широком интервале соотношений между исходными комплексами. Эти фазы являются твердыми растворами, в которых α_1 -фаза обогащена Cr, а β — Fe. Образования других фаз не обнаружено.

ЗАКЛЮЧЕНИЕ

Предложенный нами подход, основанный на анализе укладок хиральных молекул в кристалле, позволяет провести систематизацию упаковок и выделить структуры с близким строением. Нам удалось выделить три типа укладок молекул в кристаллах с разной картиной ближайшего окружения (α_1 , α_2 , α_3 , α_4 , η), (β , β_1 , γ) и (δ). На этой основе разработано обозначение фаз упаковок *mpuc*-ацетилацетонатов металлов, которое является развитием подхода Эстбери. Предлагаемое обозначение заключается во введении подстрочной цифровой нумерации близких по строению фаз, например, α_1 , α_2 , α_3 , α_4 , β , β_1 . Такое обозначение весьма удобно для родственных фаз, которые либо обратимо и без разрушения кристалла могут превращаться одна в другую (α_1 и α_2 , α_3 и α_4), либо успешно могут быть расшифрованы в разных пространственных группах (β и β_1).

За последние 50 лет для *трис*- β -дикетонатов металлов наработан большой массив структурных данных, в котором можно выделить пять типов укладок молекул в кристаллах: α , β , γ , δ , η . Это близкие структуры, отличающиеся разным типом упаковок хиральных молекул в кристалле. До конца не выясненным пока остается вопрос об условиях и методах выращивания этих фаз. В некоторых случаях параллельно могут расти несколько фаз, например α_1 и γ , α_1 и β .

В работе специально описана область 150—90 К, в которой проявляется термохромизм β-дикетонатов металлов и в некоторых случаях изменение симметрии кристаллов. Структурных исследований β-дикетонатов металлов в этой области температур пока немного. Для α_1 -Al(aa)₃ и α_3 -Mn(aa)₃ установлено изменение симметрии. Описанное в данной работе исследование α_1 -Cr(aa)₃ изменения симметрии не выявило. На основании этого можно заключить, что изменение симметрии связано не с типом упаковки, а скорее это свойство металла-комплексообразователя.

Следует отметить, что небольшое изменение симметрии можно и не рассматривать как фазовое превращение. Предположим, что при низкой температуре существует некоторая фаза. Затем при повышении температуры интенсивность внутримолекулярных колебаний увеличивается. В результате этого либо разные молекулы, либо разные части одной и той же молекулы становятся все более похожими, а затем и неотличимыми. Принципиально фаза не меняется, но заметно изменяются интенсивности пиков дифракционной картины. Некоторые слабые отражения становится трудно заметить на общем фоне. И отнесение структуры к той или иной симметрии зависит от точности рентгеновского эксперимента и особенностей компьютерной обработки экспериментальных данных. Именно эта ситуация и складывается при расшифровке структуры *трис*-ацетилацетонатов некоторых металлов.

Явление термохромизма потенциально можно привлечь для подтверждения фазового перехода, так как эти явления наблюдаются в близких температурных интервалах и оба явления обратимы. Однако пока изменение симметрии установлено только для комплексов, не обладающих термохромизмом (Al(aa)₃, Mn(aa)₃), по крайней мере, в видимой области. А термохромизмом обладают комплексы, для которых изменения симметрии нет (Cr(aa)₃, Fe(aa)₃). Но, несмотря на это, мы считаем, что эти два явления взаимосвязаны, так как есть надежда, что термохромизм будет установлен для Al(aa)₃ в ультрафиолетовой области. Кроме того, небольшие деформации в окружении металла-комплексообразователя при понижении температуры могут происходить и при сохранении общей симметрии кристалла. Чтобы надежно установить это, необходимо провести специальное исследование структуры одного и того же кристалла при температурах, при которых заметен термохромизм. А пока взаимосвязь этих двух явлений остается дискуссионной.

Проблема структур, относящихся к α -упаковкам. Из табл. 2 следует, что Mn(аа)₃ в прошлом веке расшифровывали в α_1 -упаковке, а в этом веке, включая и настоящую работу, в α_3 и α_4 . Чтобы разобраться в этой проблеме, при выращивании кристаллов Mn(аа)₃ мы специально добавили свободный лиганд в ацетоновый раствор. После испарения всех растворителей мы получили для Mn(аа)₃ α_1 -фазу. Таким образом, присутствие свободного лиганда способствует образованию α_1 -фазы Mn(аа)₃.

В заключение следует отметить, что исследования β -дикетонатов металлов, проведенные за последние 50 лет, показали, что чистота сказывается на многих свойствах этих комплексов, в том числе и на возможности выращивания кристаллов той или иной фазы. В течение этих лет постоянно повышались требования к чистоте комплексов. Так, если в большинстве ранних работ о происхождении и чистоте комплексов вообще не упоминалось, то в более поздних работах эта информация стала обязательной. Особенно возросли требования к происхождению и чистоте комплексов в XXI веке. Это и понятно, так как без этой информации невозможно ни повторить результаты, ни оценить их надежность. Поэтому дополнительно мы хотели подчеркнуть важность подробного описания характеристик исследуемых комплексов, методов выращивания кристаллов и их исследования, математических процедур обработки результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Shin Y.W., Nakatani H., Uozumi T. et al. // Polym. Int. 2003. 52. P. 29 34.
- 2. Ban H.T., Kase T., Murata M.J. // Polym. Sci., Part A: Polym. Chem. 2001. 39. P. 3733 3738.
- 3. Xu L., Trudell M.L. // Tetrahedron Lett. 2003. 44. P. 2553 2555.
- 4. Hu Q.Y., Zhao J.Q., Wang J. et al. // J. Mol. Catal. A: Chem. 2003. 200. P. 271 277.
- 5. Nisibulin A.G., Moisala A., Brown D.P., Kauppinen E.I. // Carbon. 2003. 41. P. 2711 2724.
- 6. Hamerton I., Howlin B.J., Jepson P. // Coord. Chem. Rev. 2002. 224. P. 67 85.
- 7. Варламова Л.М., Тананаева О.И., Мартыненко Л.И. // Проблемы химии и применения β-дикетонатов металлов / под ред. В.И. Спицына М.: Наука, 1982. С. 184 199.
- 8. Китайгородский А.И. Молекулярные кристаллы. М.: Наука, 1971.
- 9. Wright J.D. Molecular crystals. Cambridge, Univer. Press, 1995.
- 10. *Chemical* Vapor Deposition XVI and EUROCVD-14. Proc. Internat. Symp. Paris, 2003. Electrochem. Soc. Proc. V. 2003-08 / Ed.: M.D. Allendorf, F. Maury, F. Teyssandier.
- Proc. Fifteenth International European Conference on Chemical Vapor Deposition (EUROCVD-15). Bochum, Germany, 2005, 1. The Electrochemical Society, Inc., Pennington, NJ, USA, Proc. V. 2005-09 / Ed.: A. Devi, R. Fischer, H. Parala, M.D. Allendorf, M.L. Hitchman.
- 12. Fackler J.P. // Progress Inorg. Chem. 1966. 7. P. 362 425.
- 13. *Moshier R.W., Sievers R.E.* Gas Chromatography of Metal Chelates. Oxford, London, Edinburgh, New York, Paris, Frankfurt: Pergamon Press, 1967.
- 14. Sabolovic J., Mrak Z., Kostrun S., Janekovic A. // Inorg. Chem. 2004. 43. P. 8479 8489.
- 15. Melia T.P., Merrifield R.J. // Inorg. Nucl. Chem. 1970. 32. P. 2573 2579.
- 16. Beech G., Lintonbon R.M. // Thermochim. Acta. 1971. 3. P. 97 105.
- 17. Игуменов И.К., Чумаченко Ю.В., Земсков С.В. // Проблемы химии и применения β-дикетонатов металлов / под ред. В.И. Спицына М.: Наука, 1982. С. 100 120.
- 18. Murray J.P., Hill J.O. // Thermochim. Acta. 1984. 72. P. 341 347.
- 19. Cavell K.J., Pilcher G.J. // J. Chem. Soc., Faraday Trans. 1977. 73. P. 1590 1594.
- 20. Hill J.O., Irving R.J. // J. Chem. Soc. A. 1968. P. 1052 1054.
- 21. Naumov V.N., Frolova G.I., Bespyatov M.A. et al. // Thermochim. Acta. 2005. 436. P. 135 139.
- 22. Беспятов М.А., Наумов В.Н., Стабников П.А. // Журн. физ. химии. 2008. 4. С. 621 624.
- 23. Farran D.T., Jones M.M. // J. Phys. Chem. 1964. 68. P. 1717 1721.
- 24. Школьникова Л.М. // Кристаллография. 1959. 4. С. 419 420.
- 25. McClelland B.W. // Acta Crystallogr. 1975. B31. P. 2496 2498.

- 26. Alekseev A.V., Gromilov S.A., Baidina I.A. et al. // Журн. структур. химии. 2006. **47**, № 2. С. 318 325.
- 27. Chrzanowski L.S., Lutz M., Spek A.L. // Acta Crystallogr. 2006. E62. m3318 m3320.
- 28. Chrzanowski L.S., Lutz M., Spek A.L. // Ibid. 2007. C63. m129 m134.
- 29. Geremia S., Demitri N.J. // Chem. Education. 2005. 82. P. 460 465.
- 30. *Handbuch* der Preparativen Anorganischen Chemie / Ed. G. Brauer. 1981. in drei Banden.
- 31. *Bruker* AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- 32. Astbury W.T. // Proc. Roy. Soc. 1926. A112. P. 448 467.
- 33. *Школьникова Л.М., Порай-Кошиц М.А.* // Итоги науки и техники. Сер. Кристаллохимия. ВИНИТИ. 1982. **16**. С. 117 231.
- 34. Melia T.P., Merrifield R.J. // Chem. Soc. (A). 1968. 11. P. 2819.
- 35. *Жилина М.Н., Карякин Н.В., Маслова В.А. и др. //* Журн. физ. химии. 1987. **61**. С. 1633 1634.
- Наумов В.Н., Фролова Г.И., Ногтева В.Б. и др. // Химия в интересах устойч. развития. 2000. 8. – С. 185 – 189.
- 37. Беспятов М.А., Наумов В.Н., Стабников П.А. // Журн. физ. химии. 2008. 4. С. 1 4.
- 38. Смоленцев А.И., Алексеев А.В., Горвард Р.В. и др. // Журн. структур. химии. 2008. 2. С. 371 374.
- 39. Sans-Lenain S., Gleizes A. // Inorg. Chim. Acta. 1993. P. 67, 211.
- 40. Hamid M., Mazhar M., Zeller M., Hunter A. // Private Comm., 2005.
- 41. Bott S.G., Fahlman B.D., Pierson M.L., Barron A.R. // J. Chem. Soc., Dalton Trans. 2001. P. 2148 2152.