УДК 661.937:544.022.38:546.083:544.015.3:544.43 DOI: 10.15372/KhUR20180515

Влияние технологических параметров метода фазовой инверсии на морфологию микротрубчатых мембран

Н. В. НИФТАЛИЕВА^{1,2}, Е. В. ШУБНИКОВА¹, А. П. НЕМУДРЫЙ¹

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, Новосибирск (Россия)

E-mail: nemudry@solid.nsc.ru

²Новосибирский государственный университет, Новосибирск (Россия)

Аннотация

Изучено влияние ряда технологических параметров метода фазовой инверсии (состав внешнего коагулянта, величина воздушного зазора) на морфологию кислородпроницаемых микротрубчатых мембран (МТ), приготовленных из нестехиометрических перовскитов Ва_{0.5}Sr_{0.5}Co_{0.8 - x}Mo_xFe_{0.2}O_{3 - δ} (BSCFMx). Методом сканирующей электронной микроскопии показано, что при увеличении воздушного зазора между фильерой и ванной с коагулянтом до 15 см либо при использовании раствора этанола в качестве внешнего коагулянта исчезает специфическая пористая структура МТ-мембран. Исследована кислородная проницаемость МТ-мембран на основе Ва_{0.5}Sr_{0.5}Co_{0.8 - x}Mo_xFe_{0.2}O_{3 - δ} (x = 0, 0.02, 0.05, 0.10) оптимальной морфологии на воздухе и в атмосфере CO₂.

Ключевые слова: керамические микротрубчатые мембраны, кислородпроницаемые мембраны, нестехиометрические оксиды, кислородная проницаемость

введение

Материалы на основе нестехиометрических оксидов со структурой перовскита обладают смешанной кислород-электронной проводимостью и рассматриваются в качестве перспективных мембран в химической, газовой и энергетической промышленностях. В частности, они могут применяться для получения синтез-газа (CO + H₂) в каталитических мембранных реакторах. Как правило, кислородпроницаемые мембраны в зависимости от геометрических характеристик разделяют на планарные и трубчатые. Сегодня широко распространена планарная геометрия мембран, поскольку она обеспечивает хорошую теплои массопередачу, имеет компактную сборку и готовится стандартными керамическими методами. Трубчатая геометрия, в свою очередь, имеет преимущество перед планарной в процессах герметизации. Однако оба типа имеют существенный недостаток: значительные температурные градиенты вдоль мембраны приводят к разрушению материала во время термоциклирования. Для решения этой проблемы предложено использовать микротрубчатые (МТ) мембраны, которые выгодно отличаются не только более высокими кислородными потоками из-за малой толщины газоплотного слоя между пористыми слоями, но и улучшенной механической прочностью [1–3]. Кроме того, МТ-мембраны имеют повышенную термическую прочность, простоту при герметизации и масштабировании.

Один из наиболее перспективных путей получения МТ-мембран – метод фазовой инверсии. Согласно данным [4–6], контроль над микроструктурой полученных мембран можно осуществлять, варьируя технологическими параметрами процесса. Например, изменяя время осаждения, температуру пасты и коагулянта, величину воздушного зазора [7], пару растворитель/коагулянт и т. д.

Согласно [1, 2], нестехиометрические оксиды на основе перовскитов состава $Ba_{0.5}Sr_{0.5}Co_{0.8-x}Fe_{0.2}Mo_xO_{3-\delta}$ (BSCFMx) обладают высокой химической и термической стабильностью, благодаря чему могут применяться в качестве мембранных материалов для процессов сепарации кислорода из воздуха.

Цель данной работы – получение МТ-мембран на основе нестехиометрических оксидов BSCFM*x*, а также изучение влияния технологических параметров метода фазовой инверсии на морфологию и транспортные характеристики кислородпроницаемых МТ-мембран.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследуемые нестехиометрические оксиды состава $\operatorname{Ba}_{0.5}\operatorname{Sr}_{0.5}\operatorname{Co}_{0.8-x}\operatorname{Fe}_{0.2}\operatorname{Mo}_x\operatorname{O}_{3-\delta}(\operatorname{BSCFM} x)$ ($0 \leq x \leq 0.10$) синтезировали керамическим методом. Для синтеза в качестве исходных веществ использовали оксиды, нитраты и карбонаты металлов классификации "х. ч.". Уравнение реакции образования BSCFMx выглядит следующим образом:

 $0.5 {\rm SrCO}_3 + 0.5 {\rm Ba} ({\rm NO}_3)_2 + 0.1 {\rm Fe}_2 {\rm O}_3$

$$+ (0.8 - x)/3 \text{Co}_3 \text{O}_4 + x \text{MoO}_3$$

 $\rightarrow \mathrm{Ba}_{0.5}\mathrm{Sr}_{0.5}\mathrm{Co}_{0.8~-~x}\mathrm{Fe}_{0.2}\mathrm{Mo}_{x}\mathrm{O}_{3~-~\delta} + \mathrm{CO}_{2} + \mathrm{NO}_{2}$

Фазовый состав и структуру образцов определяли с использованием дифрактометра Bruker D8 Advance (Cu K_{α} -излучение), линейный детектор Lynx-Eye. Уточнение структуры оксидов состава BSCFMx осуществляли методом полнопрофильного анализа Ритвельда с помощью программного обеспечения Тораs 4.2 (Bruker, Германия).

Микротрубчатые мембраны получены методом фазовой инверсии. Смесь, состоящую из 62.96% порошка BSCFMx (BSCF), полученного после нагревания при 900 °C, 7.40% PESf и 29.63% NMP, гомогенизировали в стальных барабанах на валковой мельнице PROSTAR PR6000 в течение 40 ч до получения однородной пасты. Вязкость пасты контролировали с помощью ротационного вискозиметра Fungilab Smart, она составила 67 Па · с.

Морфологию МТ-мембран исследовали методом сканирующей электронной микроскопии (СЭМ) с помощью электронного микроскопа HitachiTM 1000 при ускоряющем напряжении 15 кВ, оснащенного рентгеноспектральным анализатором SwiftED-TMEDX. Высокотемпературные исследования кислородной проницаемости МТ-мембран проводили с использованием специально разработанного реактора [2]. Омический нагрев мембраны (l ~ 8 см, d ~ 0.4 см) до рабочей температуры осуществляли путем пропускания через нее переменного тока [3]. Газовые потоки создавали с помощью газового смесителя УФПГС-4 (СоЛО, Новосибирск). Поток газа на выходе из мембраны анализировали с использованием квадрупольного масс-спектрометра QMS 200. Измерения стабильности кислородных потоков через МТ-мембраны в атмосфере СО2 проводили при заданном парциальном давлении кислорода с питающей стороны мембраны ($pO_{21} = 0.2$ атм) и при концентрации СО2 в смеси с Не, равной 10 % (скорость потока 90 мл/мин).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены дифрактограммы синтезированных соединений $Ba_{0.5}Sr_{0.5}Co_{0.8} - {}_xFe_{0.2}Mo_xO_3 - \delta$ (BSCFM*x*) (x = 0, 0.02, 0.05, 0.10), полученных медленным охлаждением на воздухе. Согласно данным рентгенофазового анализа (РФА), в ходе синтеза оксидов BSCFM*x* (x = 0, 0.02, 0.05)

Рис 1. Дифрактограммы образцов состава $Ba_{05}Sr_{05}Co_{08} - {}_{x}Fe_{02}Mo_{x}O_{3-\delta}$ (BSCFMx), x: 0 (1), 0.02 (2), 0.05 (3), 0.10 (4). Фаза двойного перовскита обозначена стрелками.

ческого перовскита наблюдаются дополнительные рефлексы, которые относятся к фазе двойного перовскита Ba/SrCoMoO₆ с тетрагональной структурой *I4/m*. Полученные данные согласуются с результатами работы [2].

Рис. 2. Микрофотографии МТ-мембран состава BSCFM2 ($T_{cnex} = 1150$ °C) до (a, e, ∂) и после спекания (b, e, e). Величина воздушного зазора, см: 0.5 (a, b), 5 (e, e), 15 (∂, e).

Варьирование величины воздушного зазора

Согласно данным [9], контролировать морфологию и микроструктуру МТ-мембран можно варьируя технологическими параметрами процесса фазовой инверсии. Нами исследовано влияние величины воздушного зазора между фильерой и внешним коагулянтом, а также состава внешнего коагулянта на микроструктуру полученных МТ-мембран.

Проведен анализ микроструктуры полученных МТ-мембран на основе $Ba_{0.5}Sr_{0.5}Co_{0.78}Fe_{0.2}Mo_{0.02}O_{3-\delta}$ (BSCFM2) с помощью СЭМ. На микрофотографиях МТ-мембран состава BSCFM2 до (рис. 2, *a*, *s*, *d*) и после спекания при температуре 1150 °С (см. рис. 2, *б*, *г*, *е*) видно, что микроструктура МТмембран сохраняется после спекания. При минимальной величине воздушного зазора, равной 0.5 см, формируются удлиненные поры в виде каналов с внешней и внутренней сторон мембраны (finger-like) с размерами 230– 245 мкм и тонкий (20–50 мкм) газоплотный слой между ними (см. рис. 2, *a* и б). При увеличении воздушного зазора до 5 см внешний слой пор исчезает, мембрана состоит из внешнего газоплотного слоя толщиной 180–200 мкм и внутреннего пористого слоя толщиной 230–250 мкм (см. рис. 2, *в*, *г*). При воздушном зазоре в 15 см открытые поры в мембране не наблюдаются (см. рис. 2, *д*); при спекании стенки МТ-мембраны становятся газоплотными (см. рис. 2, *е*).

Исчезновение внешнего пористого слоя связано с локальным увеличением вязкости на внешней стороне мембраны за счет одновременного испарения растворителя и конденсации влаги из воздуха [8].

Таким образом, изменяя величину воздушного зазора можно получать керамические

Рис. 3. Микрофотографии МТ-мембран состава BSCFM2, полученные методом фазовой инверсии при варьировании состава внешнего коагулянта: *a* – вода; б, *в* – водный раствор этилового спирта с массовой долей 30 (б) и 50 % (*в*).

МТ-мембраны с различным положением и толщиной газоплотного слоя. В свою очередь, это может существенным образом влиять как на процессы кислородной проницаемости, так и на механическую прочность изделий. Согласно данным [10], МТ-мембраны с тонким газоплотным слоем между слоями с открытой пористостью имеют максимальные значения кислородных потоков.

Варьирование состава внешнего коагулянта

На микроструктуру МТ-мембран, получаемых методом фазовой инверсии, также влияет состав внешнего коагулянта [8]. В данной работе в этом качестве использованы вода и водный раствор этилового спирта с массовой долей 30 и 50 %. На микрофотографиях полученных MT-мембран на основе BSCFM2 (воздушный зазор 0.5 см; температура спекания 1150 °C) видно, что при использовании воды в качестве внешнего коагулянта формируются удлиненные (пальчиковые) поры в виде каналов с внешней и внутренней сторон мембраны, разделенные газоплотным слоем (рис. 3, а). При использовании 30 % раствора этилового спирта в качестве внешнего коагулянта (см. рис. 3, б) поры с внешней стороны мембраны исчезают, а с внутренней - уменьшаются в размерах. При использовании 50 % раствора этилового спирта открытая пористость (пальчиковая) МТ-мембраны исчезает и при спекании мембрана становится газоплотной.

Согласно литературным данным, влияние растворов этилового спирта с различной концентрацией на порообразование обусловлено массопереносом между растворителем и коагулянтом. В табл. 1 приведены коэффици-

ТАБЛИЦА 1

Коэффициенты диффузии NMP и этанола (D) [11]

Вещество/среда	$D\cdot 10^{-6},\mathrm{cm}^2/\mathrm{c}$	
NMP/вода	8.04	
NMP/этанол	8.51	
Вода/NMP	14.80	
Этанол/NMP	10.76	

енты диффузии для растворителя NMP и этилового спирта [11].

Согласно [11], процесс осаждения суспензии условно можно разделить на два типа. Один представляет собой замедленное разделение жидкой и твердой фаз, в котором относительно небольшое количество коагулянта диффундирует в суспензию (пасту). Другой предполагает быстрое разделение фаз, при котором большое количество коагулянта быстро диффундирует в суспензию. Из сравнения коэффициентов диф
фузии $D_{\scriptscriptstyle \rm BOJa/NMP}$ и $D_{_{\rm Этанол/NMP}}$ следует, что использование воды в качестве коагулянта будет способствовать быстрому разделению фаз, в отличие от растворов этилового спирта. Таким образом, после контакта суспензии с водой при погружении происходят быстрая коагуляция и образование удлиненных пор в виде каналов. При использовании растворов этилового спирта осаждение твердой фазы сдерживается относительно медленной диффузией коагулянта в пасту. В этом случае из-за полного удаления растворителя и недостаточного количества диффундирующего в суспензию коагулянта локально возрастает концентрация полимера, что способствует коагуляции суспензии и образованию сначала беспористого слоя. Последний будет препятствовать образованию удлиненных пор, что подтверждают полученные экспериментальные данные (см. рис. 3, б, в).

Определены оптимальные технологические параметры при приготовлении МТ-мембран для катод-несущих подложек ТОТЭ методом фазовой инверсии, обеспечивающие развитую микроструктуру материала: внешний коагулянт – вода, величина воздушного зазора – 0.5 см.

Исследования стабильности МТ-мембран в атмосфере CO₂

Одно из основных требований, предъявляемых к катодным материалам ТОТЭ – их стабильность в атмосфере, содержащей продукты окисления углеводородов (CO, CO₂, H₂). В данной работе исследована стабильность МТмембран на основе нестехиометрических оксидов состава $Ba_{0.5}Sr_{0.5}Co_{0.78}Fe_{0.2}O_{3-\delta}$ (BSCF); $Ba_{0.5}Sr_{0.5}Co_{0.75}Fe_{0.2}Mo_{0.02}O_{3-\delta}$ (BSCFM2), $Ba_{0.5}Sr_{0.5}Co_{0.75}Fe_{0.2}Mo_{0.05}O_{3-\delta}$ (BSCFM5)

Рис. 4. Зависимость кислородных потоков МТ-мембран на BSCFMx (x = 0, 0.02, 0.05, 0.10) в атмосфере CO₂ при T = 630 °C. Условия: $J_{\rm He} = 90$ мл/мин; $pO_{2.1} = 0.2$ атм.

и Ва_{0.5}Sr_{0.5}Co_{0.7}Fe_{0.2}Mo_{0.1}O_{3 - δ} (BSCFM10) в атмосфере CO₂. Согласно работе [12], нестехиометрический оксид BSCF химически нестабилен в атмосфере CO₂ из-за образования на поверхности карбонатов стронция и бария [13]. Однако введение катионов Mo⁶⁺ позволяет предотвратить деградацию материала и стабилизировать кислородные потоки за счет образования композиционного материала, состоящего из фазы двойного перовскита и кубического перовскита [2], и снижения основности оксида при введении кислых катионов молибдена.

На рис. 4 представлена временная зависимость кислородных потоков через МТ-мембраны состава BSCFMx (x = 0, 0.02, 0.05, 0.10) в атмосфере с содержанием CO₂ 10 % при 630 °C. Кислородные потоки остаются стабильными и не претерпевают деградации в течение 70 ч в случае BSCFM2 и ~110 ч – в случае BSCFM10.

ЗАКЛЮЧЕНИЕ

Нами получены МТ-мембраны на основе оксидов $Ba_{0.5}Sr_{0.5}Co_{0.8} - {}_{x}Fe_{0.2}Mo_{x}O_{3} - {}_{\delta}$ (BSCFM*x*) (*x* = 0, 0.02, 0.05, 0.10) методом фазовой инверсии. С помощью сканирующей электронной микроскопии показано изменение морфологии Ва_{0.5}Sr_{0.5}Co_{0.8} – $_x$ Fe_{0.2}Mo_xO₃ – $_{\delta}$ (BSCFMx) (x = 0.02) МТ-мембран при варьировании величины воздушного зазора и состава внешнего коагулянта. Определены оптимальные технологические параметры процесса приготовления этим методом МТ-мембран для катод-несущих подложек ТОТЭ: величина воздушного зазора – 0.5 см; внешний коагулянт – вода. Согласно исследованиям кислородной проницаемости, МТ-мембраны состава BSCFMx (x = 0.02, 0.05, 0.10) стабильны в атмосфере CO₂.

Работа выполнена при финансовой поддержке рамках государственного задания ИХТТМ СО РАН (проект 0301-2019-0002).

СПИСОК ЛИТЕРАТУРЫ

- Markov A. A., Savinskaya O. A., Patrakeev M. V., Nemudry A. P., Leonidov I. A., Pavlyukhin Yu. T., Ishchenko A. V., Kozhevnikov V. L. // J. Solid State Chem. 2009. Vol. 182. P. 799-806.
- 2 Shubnikova E. V., Bragina O. A., Nemudry A. P. // J. Ind. Eng. Chem. 2018. Vol. 59. P. 242–250.
- 3 Popov M. P., Bychkov S. F., Nemudry A. P. // Solid State Ionics. 2017. Vol. 312. P. 73–79.
- 4 Kim H. J., Tyagi R. K., Fouda A. E., Jonasson K. // J. Appl. Polym. Sci. 1996. Vol. 62. P. 621–629.
- 5 Zheng Q. Z., Wang P., Yang Y. N., Cui D. J. // J. Membr. Sci. 2006. Vol. 286. P. 7–11.
- 6 Amirilargani M., Saljoughi E., Mohammadi T., Moghbeli M. R. // Polym. Eng. Sci. 2010. Vol. 50. P. 885–893.
- 7 Kingsbury B. F. K., Li K. // J. Membr. Sci. 2009. Vol. 328. P. 134–140.
- 8 Cong Ren. Fabrication and Characterization of Anode-Supported Micro-Tubular Solide Oxide Fuel Cell by Phase Inversion Method [Electronic resource]: PhD thesis. University of South Carolina, Columbia, 2015. 128 p. URL: https://scholarcommons.sc.edu/etd/3134/ (date of application 25.07.2018).
- 9 Sumi H., Yamaguchi T., Hamamoto K., Suzuki T., Fujishiro Y. // J. Am. Ceram. Soc. 2013. Vol. 96. P. 3584–3588.
- 10 Tan X., Liu N., Meng B., Liu S. // J. Membr. Sci. 2011. Vol. 378. P. 308-318.
- 11 Reuvers A. J., Smolders C. A. // J. Membr. Sci. 1987. Vol. 34. P. 67–86.
- 12 Yan A. Y., Bin L., Dong Y. L., Tian Z. J., Wang D. Z., Cheng M. J. // Appl. Catal., B. 2008. Vol. 80. P. 24–31.
- 13 Arnold M., Wang H. H., Feldhoff A. // J. Membr. Sci. 2007. Vol. 293. P. 44–52.