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Представлены результаты теоретического исследования реакции окисления 1-аценафтила моле-
кулярным кислородом. Молекулярные параметры и относительные энергии получены с исполь-
зованием композитной расчетной схемы G3(MP2,CC)//B3LYP/6-311G(d,p), обеспечивающей хи-
мическую точность. Значения констант скоростей и относительные выходы продуктов реакции
были рассчитаны с кинетической точностью при различных условиях в рамках теории RRKM
с пакетом MESS. Предложенный механизм включает в себя конкурирующие пути реакции, из
которых при высокой температуре и низком давлении доминирует канал, ведущий к отрыву
атомарного кислорода, а при низких температуре и давлении — канал, ведущий к отрыву мо-
нооксида углерода.
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ВВЕДЕНИЕ

Актуальной проблемой является образова-
ние сажи и полициклических ароматических

углеводородов (ПАУ) в процессе неполного сго-
рания углеводородного топлива. Эти химиче-
ские соединения могут нанести вред как чело-
веку (вызывать рак, а также проблемы с ды-
хательной системой и сердцем), так и окружа-
ющей среде [1–4]. Сокращение нежелательных
выбросов возможно при переходе к более чи-
стым и эффективным системам сжигания топ-
лива. Для проектирования такого оборудова-
ния необходимо применение физически обосно-
ванных моделей, позволяющих достоверно мо-
делировать процессы горения вплоть до моле-
кулярного уровня. Однако в настоящее время
все еще существует дефицит соответствующих

данных высокой точности об энергетике и воз-
можных механизмах реакций, а также их кине-
тике.

Поскольку частицы сажи состоят из ПАУ

[5, 6], характеризуемых различными типами

реакционных центров, которые в значительной
степени определяют процессы роста и окисле-
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ния, то образование и разрушение частиц сажи
должны в конечном итоге зависеть от реакци-
онных механизмов содержащихся в ней ПАУ.
Действительно, в исследованиях химических

взаимодействий на саже [7–10] крупные моле-
кулы ПАУ используются как модельные моле-
кулы. Таким образом, в кинетических исследо-
ваниях реакции с участием сажи надежно ап-
проксимируются реакциями для ПАУ [10].

Большой интерес среди ПАУ представля-
ет аценафтилен, занимающий важное место в
НАСА-механизме (H abstraction C2H2 addition)
[11] роста ПАУ. Так, начиная с нафталина,
рост концентрации ПАУ по известному меха-
низму в основном приводит к образованию аце-
нафтилена, а не антрацена или фенантрена

[11]. Позже это было экспериментально под-
тверждено в работе [12]. В данном эксперимен-
те при температурах горения образование ан-
трацена и фенантрена не наблюдалось, а ос-
новными продуктами оказались аценафтилен и

пирациклен в соотношении 95.1± 1 и 5.1± 1 %.
В работе [13] авторы объяснили полученные в
[12] результаты особенностью строения краев

ПАУ. Был сделан вывод, что реализация ме-
ханизма НАСА в орто-положениях молекул, а
также на поверхности с краями типа «кресло»
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кинетически невыгодна из-за относительно вы-
сокого энергетического барьера по сравнению

с другими типами краев ПАУ, что уменьша-
ет вероятность образования нового бензольно-
го кольца в молекуле. Также было обнаруже-
но [14], что реакция отрыва водорода от атома
углерода в пятичленном кольце аценафтилена

невыгодна из-за относительно высокого энерге-
тического барьера.Однако константы скорости
последующей реакции присоединения C2H2 к

пятичленному кольцу оказались самыми высо-
кими. Последнее обстоятельство в значитель-
ной степени подогревает интерес к исследова-
нию реакции окисления с радикальным цен-
тром именно в пятичленном кольце при ис-
пользовании аценафтилена в качестве модель-
ной молекулы для реакции окисления сажи.

1. ОПИСАНИЕ МЕТОДИКИ

В данной работе кинетические константы

определялись при помощи новейших вычисли-
тельных методов квантовой химии по расче-
ту электронной структуры и статистических

способов расчета коэффициентов ветвления, ос-
нованных на теории Райса — Рамспергера —
Касселя — Маркуса (RRKM).

С помощью ab initio методов подтвержде-
ны и найдены новые критические точки по-
верхностей потенциальной энергии: минимумы
и седла первого порядка, определяющие реа-
генты, переходные состояния реакций и про-
дукты исследуемых реакций. Точность таких
расчетов составляет 4 ÷ 8 кДж/моль (хими-
ческая точность) для относительных энергий
реактантов, промежуточных и переходных со-
стояний и продуктов пиролиза и соответствует

геометрическим параметрам < 0.02 Å и 2◦. По-
грешность значений колебательных частот ле-
жит в пределах нескольких десятков обратных

сантиметров. Метод расчета, который исполь-
зовался в работе, состоит из трех этапов.

На первом этапе определение молекуляр-
ных параметров реагентов, продуктов, локаль-
ных минимумов и переходных состояний бы-
ло реализовано при помощи теории функцио-
нала плотности с трехпараметрическим функ-
ционалом Бекке, корреляционным функциона-
лом Ли — Янга — Парра B3LYP [15, 16] и ба-
зисным набором Попла 6-311G(d,p). Этим же
способом были рассчитаны гармонические ко-
лебательные частоты и энергия нулевых ко-
лебаний. Связность найденных стационарных

состояний через соответствующие переходные

состояния была подтверждена расчетами IRC.
Второй этап состоял в расчете значений

энергии. Это необходимо, так как точность

расчета энергии с использованием теории

функционала плотности составляет несколько

килокалорий на моль, что не позволяет гово-
рить о химической точности. Желаемое значе-
ние 1 ÷ 2 ккал/моль связано с типичной ошиб-
кой термохимических экспериментов, и при до-
стижении этой величины можно говорить о ре-
алистичных химических прогнозах.

Итоговые значения электронной энергии

определялись с помощью композитной расчет-
ной схемы G3(MP2,CC) на основе молекуляр-
ных параметров из предыдущих вычислений.
Сначала методом связанных кластеров с оди-
ночными, двойными и тройными (в рамках

теории возмущений) возбуждениями CCSD(T)
с базисным набором 6-311G(d,p) рассчитыва-
лась энергия E[CCSD(T)/6-311G(d,p)]. Далее
проводились расчеты по теории возмущений

Мёллера — Плессета второго порядка с двумя

базисными наборами: G3Large и 6-311G(d,p).
Окончательное значение относительной энер-
гии рассчитывалось по формуле

E[G3(MP2,CC)] = E[CCSD(T)/6-311G∗∗] +

+ ∆EMP2 + E(ZPE),

где ∆EMP2 = E[MP2/G3Large] − E[MP2/6-
311G∗∗] — коррекция, обусловленная примене-
нием более широкого базиса; E(ZPE) — по-
правки на энергию нулевых колебаний. Для
проведения ab initio расчетов электронной

структуры использовались программные паке-
ты Gaussian 09 и Molpro 2010 [17–19].

Третий этап — непосредственный расчет

констант скорости реакций. Феноменологиче-
ские константы скорости, зависящие от тем-
пературы и давления, вычислялись в рамках
теории RRKM с решением основного кинети-
ческого уравнения при помощи программного

пакета MESS [20, 21]. Столкновительный пере-
нос энергии в основном кинетическом уравне-
нии описывался с использованием модели «экс-
поненциальный спуск» [22]. Модели жесткого
ротора и гармонического осциллятора (RRHO)
применялись в расчетах плотности состояний

и статистических сумм для локальных ми-
нимумов и некоторых переходных состояний.
Низкочастотные моды, которые представля-
ют собой внутренние вращения, рассматрива-
лись как одномерные заторможенные роторы
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при расчете статистических сумм, где соответ-
ствующие колебательные частоты были удале-
ны.

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1. Поверхность потенциальной энергии

На рис. 1 представлена основная часть по-
верхности потенциальной энергии для реакции

между 1-аценафтилом и молекулярным кис-
лородом в основном состоянии, полная энер-
гия которых устанавливает нулевой уровень

для всех последующих относительных зна-
чений. Реакция начинается с безбарьерного

присоединения O2 к радикальному участку

1-аценафтила, что приводит к образованию

1-аценафтильного перокси-радикала (i 01). Для
установления факта отсутствия барьера были

проведены расчеты частичной оптимизации на

уровне B3LYP/6-311G∗∗, при котором рассто-
яние между ближайшим атомом кислорода и

Рис. 1. Поверхность потенциальной энергии реакции окисления 1-аценафтила молекулярным
кислородом

углеродом фиксировалось в пределах значений

[1.257, 3.257] Å. Результаты показали, что по-
тенциальная энергия меняется плавно и моно-
тонно, что свидетельствует об отсутствии чет-
ко выраженного переходного состояния.

После образования перокси-радикал мо-
жет трансформироваться четырьмя способами.
Первый из них — потеря терминального атома

кислорода, которая ведет к образованию про-
дукта P 1, находящегося на 26.9 ккал/моль ни-
же, чем исходные реагенты. Это один из наибо-
лее выгодных каналов, что будет подтверждено
кинетическими расчетами в п. 2.2.

Альтернативные пути реакции — по-
средством многократной изомеризации —
ведут к образованию различных интермеди-
атов, среди которых необходимо выделить

i 04, i 12, i 14, а также i 09, от которых

возможен последующий отрыв моноокси-
да углерода. Отрыв монооксида углерода

от интермедиата i 04 сопровождается пре-
одолением барьера высотой 22.4 ккал/моль
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и представляется вторым наиболее энергетиче-
ски выгодным путем данной реакции, что так-
же будет подтверждено кинетическими расче-
тами в следующем параграфе. Отрыв СО от

i 14 ведет к образованию продукта P 3, находя-
щегося на 110.7 ккал/моль ниже, чем исходные
реагенты. Высота данного барьера составляет
4.4 ккал/моль.

2.2. Константы скорости и относительные выходы

На рис. 2 представлены константы ско-
ростей различных каналов реакции окисле-
ния аценафтила молекулярным кислородом,
рассчитанные в диапазоне температур 500 ÷
2 500 К и давлений 0.01 ÷ 100 атм.

Константа скорости образования продук-
та P 1 (рис. 2,а) демонстрирует аррениусов-
ское поведение. При давлении 0.01 атм она уве-
личивается от 1 · 10−14 см3/с при 500 К до 3.5 ·
10−12 см3/с при 2 500 К. Поведение несколько
меняется с увеличением давления и приобрета-
ет более сильную зависимость от температу-
ры. Константа скорости образования продук-
та P 2 (рис. 2,б) демонстрирует более слабую,
но уже немонотонную температурную зависи-
мость при низких давлениях (0.01 ÷ 1 атм).
При 0.01 атм она меняется от 4.5 · 10−15 см3/с
при 500 К до 5.4 · 10−13 см3/с при 2 500 К.
И снова при более высоких давлениях темпе-
ратурная зависимость оказывается более силь-
ной.

Константа скорости образования продук-
та P 3 (рис. 2,в) наиболее сильно зависит от
температуры во всем диапазоне давлений. Од-
нако по сравнению с константами для первых

двух продуктов она принимает очень малые

значения. По этой причине вклад данного ка-
нала незначителен, и подробное его обсуждение
не представляет интереса.

Таким образом, анализ результатов рас-
чета констант скоростей показал, что наи-
более вероятными представляются пути ре-
акции, приводящие к образованию продуктов

P 1 и P 2. Коэффициенты скорости развития

реакции по этим каналам близки к значе-
нию 10−12 см3/с в диапазоне низких давлений
(0.01 ÷ 0.1 атм) (см. рис. 2,а,б). В то же вре-
мя константы скорости образования продукта

P 3 на порядки меньше (в), поэтому вклад в
реакцию канала образования P 3 оказывается
незначительным.

На рис. 3 представлены результаты рас-

Рис. 2. Константы скоростей образования раз-
личных продуктов в реакции окисления аце-
нафтила молекулярным кислородом:

а — образование продукта P 1, б — образование

продукта P 2, в — образование продукта Р 3
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Рис. 3. Относительный выход различных про-
дуктов в реакции окисления аценафтила моле-
кулярным кислородом:

а — образование продукта P 1, б — образование

продукта P 2, в — образование продукта Р 3

Рис. 4. Относительный выход конкурирую-
щих продуктов в реакции окисления аценаф-
тила молекулярным кислородом

четов относительных выходов продуктов реак-
ции, а на рис. 4 — их зависимости для наибо-
лее вероятных конкурирующих продуктов P 1
и P 2. Конкуренцию при высокой температуре
и низком давлении выигрывает отрыв атома

О (P 1), в то время как при низких темпера-
туре и давлении преобладает отрыв СО (P 2).
Данное поведение можно объяснить более низ-
кими энергетическими требованиями для ша-
га i 01 → ts 15 → i 15, чем для i 01 → ts 17 →
P 1, что делает первый более вероятным при
более низких температурах. В то же время вли-
яние энтропийного фактора усиливается с ро-
стом температуры, что приводит к выигрышу
прямого отрыва атома кислорода.

ЗАКЛЮЧЕНИЕ

В данной работе предложен механизм

окисления аценафтила молекулярным кислоро-
дом и исследована его кинетика. Построен про-
филь поверхности потенциальной энергии для

изучаемой реакции, включающий в себя энер-
гетически наиболее выгодные пути. Значения
относительных энергий получены с химиче-
ской точностью при помощи композитной схе-
мы G3(MP2,CC)//B3LYP/6-311G(d,p). Для ис-
следованных путей реакции рассчитаны зна-
чения констант их скоростей при различных

внешних условиях в рамках теории RRKM с

пакетомMESS с кинетической точностью. Наи-
более энергетически выгодными оказались ка-
налы реакции, приводящие к отрыву атома O и
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отрыву СO. Показано, что при высокой темпе-
ратуре и низком давлении доминирует канал

отрыва О (образование продукта P 1), а при
низких температуре и давлении — канал от-
рыва СО (образование продукта P 2).
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