УДК 534.222.2+622.81+622.411.52

ДЕТОНАЦИОННЫЕ ВОЛНЫ В СИСТЕМАХ МЕТАН/ВОДОРОД/КИСЛОРОД/ВЗВЕСЬ УГЛЯ

А. В. Пинаев, П. А. Пинаев

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, avpin@ngs.ru

Экспериментально исследованы детонационные волны в газовых двухтопливных системах $CH_4/H_2/O_2$ и гетерогенных трехтопливных системах $CH_4/H_2/O_2/$ угольная взвесь. В опытах использовали взвеси угля с размерами частиц $0 < d \leq 200$ мкм со среднеобъемной плотностью $160 \div 400$ г/м³. В исследованных системах измерены скорости по длине трубы и профили давления в падающих детонационных и отраженных волнах. Проведен анализ влияния горючих компонентов на параметры волн. Выполнено сравнение экспериментальных параметров детонации с расчетными термодинамическими равновесными параметрами детонации.

Ключевые слова: метан, водород, угольная взвесь, детонация, взрывная волна, шахтные взрывы, многотопливные системы.

DOI 10.15372/FGV20220410

ВВЕДЕНИЕ

В процессе промышленной добычи угля на стенках угольных шахт постепенно оседает и скапливается угольная пыль. Слой угольной пыли в случае распространения по штреку взрывной волны (головной ударной волны с движущимися медленнее фронта продуктами реакции) или волны горения может поддерживать и усиливать волну. По разным причинам в шахте иногда происходит внезапный залповый выброс из породы угольного газа, содержащего преимущественно метан и частично водород. После смешения горючих газов с воздухом существует вероятность воспламенения газовой смеси и возникновения взрыва. Взрывная или детонационная волна, распространяясь по штреку, способна сорвать угольную пыль со стенок, образовать взвесь угольной пыли и воспламенить ее. Угольная пыль взрывоопасна, если ее концентрация в воздухе превышает нижний предел взрываемости $\rho^* \approx 30 \div 80 \ \mathrm{r/m^3}$ [1, 2]. До настоящего времени предметом дискуссии является вопрос о сравнительном влиянии метана и угольной пыли на параметры взрывных и детонационных волн [3–6].

Отдельной важной задачей обеспечения безопасности работ при угледобыче является проблема гашения волн сжатия инертной пы-

© Пинаев А. В., Пинаев П. А., 2022.

левой завесой. Анализу и решению этой задачи посвящены теоретические [7] и экспериментальные [8, 9] работы.

Двухтопливные системы метан/угольная пыль менее изучены, чем газовые смеси метана. Практически не изучены трехтопливные системы метан/водород/угольная пыль. Наличие в метановой газовой смеси водорода должно упростить инициирование смеси и сделать ее более взрывоопасной. Для облегчения возбуждения детонации газоугольных систем в данной работе эксперименты выполнены с кислородом. Цель исследования — выяснить возможность распространения детонационных волн в системах метан/водород/кислород/угольная взвесь, изучить структуру и параметры падающих и отраженных волн.

ПОСТАНОВКА ЭКСПЕРИМЕНТОВ

Принципиальная схема экспериментальной установки приведена на рис. 1. В контейнер 2 генератора пыли 1 засыпали угольный порошок. Исследуемые взрывчатые смеси $CH_4/H_2/O_2$ из баллона 11 через редуктор 12, контейнер 2 и генератор пыли 1 подавали в предварительно вакуумированную ударную трубу 5 (длина $L_5 = 6.75$ м, диаметр $d_5 =$ 70 мм), заполняя ее до начального давления $p_0 = 0.1 \div 0.025$ МПа.

Инициирование газовзвесей осуществляли с помощью двух наклонных, диаметрально расположенных секций инициирования 3, которые

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (соглашение № 075-15-2020-806 от 29.09.2020).

Рис. 1. Экспериментальная установка:

1 — генератор пыли, 2 — контейнер с порошком каменного угля, 3 — секции инициирования ($d_3 = 50$ мм, $L_3 = 0.45$ м), 4 — источник высокого напряжения, 5 — рабочая секция ударной трубы, 6 — оптическая секция, 7, 8 — шаровые вентили, 9 — мановакуумметр, 10 — форвакуумный насос, 11 — баллон объемом 40 л с газовой смесью, 12 — редуктор, Д1 ÷ Д8 — пьезодатчики, ФЭУ1 ÷ ФЭУ3 — фотоумножители

были отделены от ударной трубы лавсановыми диафрагмами и содержали смесь $C_2H_2 + 2.5O_2$ при начальном давлении $p_{0i} = 0.1$ и 0.15 МПа. Смесь в секциях инициировали искрой с энергией около 1 Дж. При детонационном сгорании смеси в секциях инициирования выделялась энергия $Q_i \approx 30$ и 45 кДж соответственно (удельная энергия инициирования $w_i \approx 7.7$ и 11.5 МДж/м²), температура продуктов сгорания газовой смеси ≈ 4000 К. Тем же значениям w_i в угольном штреке диаметром $d_C = 3$ м соответствуют энергии $Q_i = w_i \pi d_C^2 / 4 \approx 54.3$ и 81.39 МДж (эквивалентно энергии при детонации 12.9 и 19.4 кг тротила соответственно).

Профили свечения и давления регистрировали тремя осциллографами Tektronix TDS2014. Сигналы поступали с трех фотоумножителей ФЭУ и восьми пьезодатчиков. Собственная частота пьезодатчиков [10] 300 кГц, постоянная времени $\tau \ge 0.5$ с. Ошибки измерения давления не превышали 5 %, скорости волн — 2 %.

ФРАКЦИИ КАМЕННОГО УГЛЯ

Опыты проведены с порошком частиц кузбасского угля размером $0 < d \leq 200$ мкм при среднеобъемной плотности $160 \div 400$ г/м³. Снимки частиц угля на электронном микроскопе, элементный и химический состав угля и примесей в угле содержатся в работах [5, 6].

Массовое распределение частиц по фракциям угля, полученное «мокрым» способом с помощью сит с ячейками 40, 64, 94, 140 и 200 мкм, приведено на рис. 2. Наибольшее по массе количество угля содержится в самой крупной фракции $d = 140 \div 200$ мкм (≈ 33.7 %) и в самой мелкой фракции $0 < d \leq 40$ мкм (≈ 26.6 %).

При «мокром» способе угольный порошок помещают вначале в верхнее наиболее крупное сито. Затем струю воды направляют сверху вниз через набор сит. После окончания разделения частиц по фракциям (ситам) порции порошка просушивают и взвешивают. Способ вибрационного просеивания угольного порошка через набор сит не годится, поскольку происходит быстрое налипание мелких частиц угля на сита и закупорка ячеек.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

В качестве примера остановимся более подробно на результатах экспериментов с системами $CH_4 + (2/3)H_2 + 11O_2$ и $(CH_4 + (2/3)H_2 + 11O_2)/угольная взвесь при <math>p_0 = 0.1$,

Рис. 2. Массовый состав по фракциям частиц угля размером $0 < d \leqslant 200$ мкм

0.05 и 0.025 МПа. Смесь $CH_4 + (2/3)H_2 + 11O_2$ в 4.71 раза богаче кислородом по сравнению со стехиометрической смесью $CH_4 + (2/3)H_2 + 2.33O_2$. Уменьшение p_0 от 0.1 до 0.025 МПа позволяет при сохранении состава смеси увеличить примерно в четыре раза размер детонационной ячейки (эффективную длину зоны реакции). При этом одновременно должна будет увеличиваться доля сгоревшего угля в зоне реакции детонационной волны (ДВ).

Ниже все расчетные термодинамические параметры детонации Чепмена — Жуге (CJ) для смесей $CH_4/H_2/O_2$ и $CH_4/H_2/O_2/C$ взяты из работы [3]. Для смеси $CH_4 + (2/3)H_2 + 11O_2$ при нормальных условиях ($p_0 = 0.1$ МПа) расчетные значения были следующими: скорость детонации $D_0 = 1733$ м/с, давление и температура в плоскости Чепмена — Жуге $p_{CJ} =$ 1.68 МПа, $T_{CJ} = 2798$ K, размер детонационной ячейки $a \approx 5.1$ мм. Аналогичная по газовым компонентам стехиометрическая система с углеродом имеет состав $CH_4 + (2/3)H_2 +$ $11O_2 + 8.67C.$

Поскольку углерода в каменном угле содержится 78.4 % [5, 6], стехиометрическая система с углем будет следующего состава: $CH_4 + (2/3)H_2 + 11O_2 + 11.06$ уголь. В нашей ударной трубе объемом $V_5 = 26.2$ л для стехиометрии при $p_0 = 0.1$ МПа необходима масса углерода $m_C = 9.04$ г. Такое количество углерода содержится в угле массой $m_{coal} = 11.53$ г ($\rho \approx 440$ г/м³). Для условно гомогенной системы $CH_4 + (2/3)H_2 + 11O_2 + 8.67C$ с наноуглеродом в конденсированной фазе термодинамические расчетные параметры детонации ($D_0 = 3328$ м/с, $p_{CJ} = 4.85$ МПа, $T_{CJ} = 5517$ K) существенно выше, чем в смеси без углерода.

В опытах при $p_{0i} = 0.15$ МПа ($w_i = 81.39$ МДж) в газовой смеси CH₄ + (2/3)H₂ + 11O₂ и в этой же смеси с угольной взвесью всегда возбуждается детонация. Скорость ДВ D устанавливается с начального участка и незначительно меняется по длине трубы.

С изменением p_0 от 0.1 до 0.025 МПа скорость установившейся детонации для газовых систем уменьшается в диапазоне $D \approx$ $1760 \div 1690$ м/с, для гетерогенных систем в диапазоне $D \approx 1800 \div 1740$ м/с. Значения Dдля газовой смеси близки к расчетным значениям скорости детонации D_0 .

На рис. 3 приведены осредненные по нескольким опытам на каждом участке измерения значения *D* для падающих и отра-

Рис. 3. Скорости детонационных (1, 2) и отраженных (1', 2') волн по длине трубы при $p_0 = 0.1$ МПа:

1, 1' — CH₄ + (2/3)H₂ + 11O₂, 2, 2' — (CH₄ + (2/3)H₂ + 11O₂)/угольная взвесь, $\rho = 290 \div 390$ г/м³

Рис. 4. Скорости детонационных (1, 2) и отраженных (1', 2') волн по длине трубы при $p_{0i} = 0.1$ и 0.15 МПа, $p_0 = 0.1 \div 0.025$ МПа: 1, 1' — СН₄ + (2/3)H₂ + 11O₂, 2, 2' — (СН₄ + (2/3)H₂ + 11O₂)/угольная взвесь, $\rho = 160 \div 390$ г/м³

женных волн при $p_0 = 0.1$ МПа (здесь $\rho = 290 \div 390$ г/м³). Аналогичные кривые осредненных скоростей детонации приведены при $p_0 = 0.1 \div 0.025$ МПа и $\rho = 0 \div 390$ г/м³ на рис. 4. Здесь в смесях с угольной взвесью скорость падающей ДВ на $40 \div 80$ м/с выше, чем в газовых смесях, но существенно (примерно на 1 500 м/с) ниже расчетной термодинамической скорости детонации D_0 . Это объясняется тем, что частицы угля хотя и воспламеняются

Смесь	p_0 , МПа	<i>D</i> ₀ , м/с	$p_{ m CJ}/p_0$	$T_{\rm CJ},{\rm K}$	$Q_{gd},$ кал/г	а, мм	Ез, Дж	<i>Е</i> ₁ , Дж
$CH_4 + 5O_2 + 2H_2$	0.1	2 2 3 9	21.9	3535	995	1.3	7.1	1.1
$\mathrm{CH}_4 + 5\mathrm{O}_2 + 2\mathrm{H}_2$	0.05	2213	21.4	3 4 2 8	952	2.8	42	1.3
$CH_4 + 5O_2 + 2H_2$	0.025	2 186	20.9	3 323	912	6.3	250	1.4
$CH_4 + 5.5O_2 + (2/3)H_2$	0.1	2 0 2 2	21.3	3 343	803	2	47.3	2.2
$CH_4 + 5.5O_2 + (2/3)H_2$	0.05	2 001	20.9	3255	773	4.5	276	2.5
$CH_4 + 5.5O_2 + (2/3)H_2$	0.025	1 979	20.5	3 168	744	10	1 640	2.9
$CH_4 + 11O_2 + (2/3)H_2$	0.1	1 733	16.8	2 798	550	5.1	944	6
$CH_4 + 11O_2 + (2/3)H_2$	0.05	1 723	16.6	2 761	539	10.6	4 361	6.3
$CH_4 + 11O_2 + (2/3)H_2$	0.025	1711	16.5	2 7 2 0	528	22	2 070	6.8

Расчетные термодинамические параметры детонации смесей $\mathsf{CH}_4/\mathsf{O}_2/\mathsf{H}_2$ при $p_0=0.1\div0.025$ МПа

в зоне реакции ДВ, но из-за медленного и неполного сгорания выделяют энергию значительно меньшую, чем предполагается в термодинамических расчетах для смесей с углеродом.

Скорость отраженных волн в смесях с угольной взвесью выше, чем в газовых смесях (см. рис. 3, 4), за счет дополнительного горения частиц угля. Она изменяется от $D' \approx 650 \div 990$ м/с до $D' \approx 1\,200 \div 1\,250$ м/с. Рост скорости отраженных волн в обратном направлении при удалении от торца трубы объясняется замедлением встречного потока продуктов детонации. С увеличением концентрации взвеси угля при $p_0 = 0.1 \div 0.025$ МПа наблюдается небольшое уменьшение D из-за торможения потока о частицы угля.

Влияние плотности угольной взвеси на скорость падающей ДВ и скорость отраженной волны по длине трубы показано на рис. 5. Здесь $D_1 > D_2$ на всех участках измерения: с ростом плотности ($\rho_1 = 290 \text{ г/m}^3$, $\rho_2 = 390 \text{ г/m}^3$) потери импульса на разгон частиц угля преобладают над увеличением энерговыделения.

В газовых смесях $CH_4/H_2/O_2$ с изменением p_0 все расчетные параметры детонации (кроме *a* и *E*) меняются незначительно, величина $a \sim 1/p_0$ (см. таблицу). В бедных по горючим компонентам смесях с уменьшением доли H_2 в смеси и увеличением доли O_2 наблюдается уменьшение интенсивности ДВ (убывают $D_0, p_{CJ}/p_0, T_{CJ}$ и тепловыделение в зоне реакции Q_{gd}) и увеличиваются критические энергии инициирования сферической (E_3) и плоской (E_1) детонационных волн. Рост доли H_2 в смеси существенно уменьшает энергию инициирования, газовая смесь становится более взры-

Рис. 5. Скорости детонационных (1, 2) и отраженных (1', 2') волн по длине трубы в системе $(CH_4 + (2/3)H_2 + 11O_2)/угольная взвесь при <math>p_0 = 0.1$ МПа:

1, 1' — $\rho = 290 \ {\rm r/m}^3, \, 2, \, 2' - \rho = 393 \ {\rm r/m}^3$

воопасной. С уменьшением p_0 параметры D_0 , $p_{\rm CJ}/p_0$, $T_{\rm CJ}$, Q_{gd} незначительно убывают, но существенно увеличиваются E_1 и особенно E_3 .

Типичные профили давления и свечения на нижнем участке трубы для газовых и гетерогенных газоугольных систем приведены на рис. 6. Профили давления ДВ во всех системах имеют характерный химпик, начало свечения практически совпадает с фронтом ДВ (здесь $\Delta p = p - p_0$). Отраженная от нижнего торца трубы волна (вторая на осциллограммах) это взрывная волна примерно с прямоугольным профилем давления. В газовых смесях без взвеси частиц угля свечение в ДВ короткое и длится около 0.5 мс (рис. 6,*a*), в системах (CH₄ + (2/3)H₂ + 11O₂)/угольная взвесь све-

Рис. 6. Профили давления (Д6, Д7, Д8) и свечения (ФЭУЗ) в падающей детонационной и отраженной волнах на нижнем участке ударной трубы:

a— CH₄ + (2/3)H₂ + 11O₂, p_0 = 0.1 МПа, б
— (CH₄ + (2/3)H₂ + 11O₂)/уголь, p_0 = 0.1 МПа,
 ρ = 290 г/м³,
 ϵ — (CH₄ + (2/3)H₂ + 11O₂)/уголь, p_0 = 0.025 МПа,
 ρ = 198 г/м³

чение более длительное $(1 \div 2 \text{ мс})$ (рис. 6, 6, 6) из-за горения частиц угля не только в зоне реакции, но и за зоной.

Результаты измерения относительного давления p_2/p_0 в ударной трубе после опытов представлены на рис. 7. По величине p_2/p_0 можно судить о степени сгорания частиц угля в ДВ: чем больше p_2/p_0 , тем выше степень сгорания угля. Доля сгоревшего угля в опытах

выводы

Рис. 7. Изменение относительного давления после опыта в зависимости от концентрации угля при $p_0 = 0.025$ (1), 0.05 (2), 0.1 МПа (3)

Впервые экспериментально исследованы взрывные и детонационные волны в газовых двухтопливных системах CH₄/H₂/O₂ и гетерогенных трехтопливных системах CH₄/H₂/O₂ с взвесями частиц угля. Изучена структура и определены параметры падающих детонационных и отраженных волн.

Скорости установившейся детонации для бедной по горючим компонентам газовой смеси CH₄ + (2/3)H₂ + 11O₂ и систем (CH₄ + (2/3)H₂ + 11O₂)/угольная взвесь при $p_0 = 0.1 \div 0.025$ МПа равны $D \approx 1800 \div 1740$ м/с. Скорости отраженных волн в смесях с угольной взвесью выше, чем в газовых смесях, за счет дополнительного горения частиц угля и изменяются по длине трубы примерно от $D' \approx 650 \div 990$ м/с до $D' \approx 1200 \div 1250$ м/с.

Рост содержания водорода в метанокислородной смеси уменьшает энергию инициирования, газовая смесь становится более взрывоопасной.

Экспериментальные скорости детонации в системах (CH₄ + (2/3)H₂ + $11O_2$)/угольная взвесь примерно на 1500 м/с ниже расчетной термодинамической равновесной скорости детонации. Это объясняется тем, что из-за медленного и неполного сгорания частиц угля в зоне реакции ДВ энергии выделяется значительно меньше, чем это предполагается в термодинамических расчетах с углеродом.

Метан и водород химически активнее углерода угля. Сгорание угля в зоне реакции неполное и не превышает $20 \div 30$ %.

ЛИТЕРАТУРА

- Лебецки К. А., Романченко С. Б. Пылевая взрывоопасность горного производства. — М.: Горное дело; ООО «Киммерийский центр», 2012.
- Айруни А. Т., Клебанов Ф. С., Смирнов О. В. Взрывоопасность угольных шахт. — М.: Горное дело; ООО «Киммерийский центр», 2011.
- 3. Васильев А. А., Васильев В. А. Расчетные и экспериментальные параметры горения и детонации смесей на основе метана и угольной пыли // Вестн. Науч. центра по безопасности работ в угольной пром-сти. 2016. № 2. С. 8–39.
- Васильев А. А., Пинаев А. В., Трубицын А. А., Грачев А. Ю., Троцюк А. В., Фомин П. А., Трилис А. В. Что горит в шахте: метан или угольная пыль? // Физика горения и взрыва. — 2017. — Т. 53, № 1. — С. 11–18. — DOI: 10.15372/FGV20170102.

- 5. Пинаев А. В., Пинаев П. А. Изучение сравнительной химической активности метана и взвесей частиц угля при горении, взрывах и детонации // Вестн. Науч. центра по безопасности работ в угольной пром-сти. — 2019. — № 4. — С. 5–16.
- Пинаев А. В., Пинаев П. А. Волны горения и детонации в смесях газов CH₄/Air, CH₄/O₂, O₂ с взвесями каменного угля // Физика горения и взрыва. — 2020. — Т. 56, № 6. — С. 56– 68. — DOI: 10.15372/FGV20200606.
- Федоров А. В., Фомин П. А., Фомин В. М., Тропин Д. А., Чен Дж.-Р. Физикоматематическое моделирование подавления детонации облаками мелких частиц. — Новосибирск: НГАСУ (Сибстрин), 2011.
 Pinaev A. V., Vasil'ev A. A., Pinaev P. A.
- Pinaev A. V., Vasil'ev A. A., Pinaev P. A. Suppression of gas detonation by a dust cloud at reduced mixture pressures // Shock Waves. — 2015. — V. 25, N 3. — P. 267–275. — DOI: 10.1007/s00193-014-0543-2.
- Пинаев А. В., Васильев А. А., Пинаев П. А. О критических параметрах пылевой завесы, обеспечивающих полное гашение волны газовой детонации // Вестн. Науч. центра по безопасности работ в угольной пром-сти. 2016. № 2. С. 113–120.
 Лямин Г. А., Пинаев А. В., Лебедев А. С.
- Лямин Г. А., Пинаев А. В., Лебедев А. С. Пьезоэлектрики для измерения импульсных и статических давлений // Физика горения и взрыва. — 1991. — Т. 27, № 3. — С. 94–103.

Поступила в редакцию 10.01.2022. После доработки 07.02.2022. Принята к публикации 28.02.2022.