УДК 544.77, 665.642 DOI: 10.15372/KhUR2021345

Крекинг нефтяного остатка в присутствии наночастиц гематита

М. А. КОПЫТОВ¹, А. Ю. ГОДЫМЧУК², И. Н. ЛАПИН³, В. А. СВЕТЛИЧНЫЙ³

¹Институт химии нефти СО РАН, Томск (Россия)

E-mail: kma@ipc.tsc.ru

²Тобольская комплексная научная станция УрО РАН, Тобольск (Россия)

³Национальный исследовательский Томский государственный университет, Томск (Россия)

(Поступила 23.12.20; после доработки 22.04.21)

Аннотация

Получены и диспергированы в углеводородной среде наночастицы гематита (23–150 нм). Введение диспергированных наночастиц гематита в концентрации от 0.02 до 0.30 мас. % в нефтяной остаток в процессе крекинга позволяет увеличить выход бензиновых фракций и снизить выход смол. Роль гематита объясняется участием в окислительно-восстановительных процессах и его способностью сорбировать на своей поверхности смолы и асфальтены.

Ключевые слова: гематит, магнетит, наночастицы гематита, наночастицы гематита в углеводородной среде, нефтяные остатки, продукты крекинга

введение

Истощение запасов легких и средних нефтей приводит к необходимости увеличения глубины переработки тяжелого углеводородного сырья и нефтяных остатков [1, 2]. Имеются публикации [3-6] по разработке каталитических систем для такой переработки. Однако современные каталитические процессы не эффективны для переработки тяжелого углеводородного сырья с высоким содержанием смолисто-асфальтеновых компонентов [1, 7]. Считается, что если коксуемость сырья превышает 4 % по Кондарсону, то использование традиционного каталитического крекинга нецелесообразно из-за быстрого выхода из строя дорогостоящих катализаторов [7, 8].

При этом уже несколько лет проводятся исследования по применению наноразмерных частиц для переработки углеводородного сырья [3, 9–14]. Активность железосодержащих частиц в качестве инициирующих и каталитических добавок вызывает интерес в первую очередь ввиду их доступности, дешевизны и экологичности [4, 15–19].

Для получения наночастиц (НЧ) оксида железа используют различные методы, такие как соосаждение [20], золь-гель синтез [21], микроэмульсионный метод [22], пиролиз распылением в пламени [23], разложение органических прекурсоров [24] и др.

На примере оксида никеля и оксида железа показано, что каталитическая и адсорбционная активность НЧ может зависеть от их размера [25]. Авторы объясняют этот эффект не только изменением удельной поверхности НЧ разного размера, но и существенным изменением топологии и функциональности поверхности, что влияет и на их реакционную способность [26].

Использование НЧ имеет большие перспективы в различных отраслях, но применение некоторых из них может быть ограничено из-за склонности НЧ к агрегации и сложности равномерного распределения в среде [27, 28]. Для повышения эффективности их использования в качестве инициирующей добавки в процессе крекинга нефтяного остатка в работе был предложен способ диспергирования частиц в углеводородном сырье. Несмотря на применение НЧ в процессе термической переработки тяжелого углеводородного сырья [9–14], фактически отсутствуют литературные данные об их эффективном диспергировании в сырье.

Цель работы – исследование влияния присутствия диспергированных и недиспергированных частиц гематита (α -Fe₂O₃) в процессе крекинга нефтяного остатка на состав получаемых продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследования

В качестве исходного сырья использовали остаток (мазут), полученный при атмосферновакуумной разгонке западно-сибирской нефти. Характеристики нефтяного остатка представлены в табл. 1.

Приготовление каталитической дисперсии

В работе исследовали НЧ оксида железа (α-Fe₂O₂, гематит), полученные отжигом нанопорошка Fe₃O₄ (магнетит). Магнетит синтезировали с помощью сфокусированного излучения Nd:YAG-лазера LS-2131M-20 (LOTIS TII, Белоруссия) на длине волны 1064 нм. Длительность импульса составляла 7 нс, частота повторения поддерживалась на уровне 20 Гц. В данной работе использовалась полная энергия лазерного импульса наносекундного лазера (150 мДж). Изменение фокусировки позволяет варьировать плотность мощности излучения на поверхности мишени. В данном случае была выбрана плотность мощности 400 МВт/см². Железная мишень (99.5 мас. %) размером 40 × 40 × 5 мм закреплялась в крышке на заднем торце цилиндрического реактора из кварцевого стекла [29].

Отжиг порошка магнетита проводили в муфельной печи SNOL 6.7/1300 (Латвия) при

500 °C в воздушной атмосфере, скорость нагрева составляла 10 °C/мин, при достижении заданной температуры образец выдерживали в течение 4 ч с последующим охлаждением до комнатной температуры [29].

Полученный образец НЧ α -Fe₂O₃ смешивали с олеатом натрия (NaC₁₈H₃₃O₂, 15 %-й раствор в олеиновой кислоте (C₁₇H₃₃COOH), ООО "ИКО-Хим", Россия) в индустриальном масле марки И-8А (ГОСТ 20799–88) в массовом соотношении Fe₂O₃/NaC₁₈H₃₃O₂/масло, равном 1 : 2.2 : 16.8. Суспензии готовили в два этапа. Сначала в пластиковой емкости при температуре 25±2 °C с помощью ультразвуковой обработки в течение 5 мин смешивали НЧ α -Fe₂O₃ и олеата натрия, затем в полученную смесь добавляли масло с последующей обработкой в течение 10 мин при 50 °C. Обработку образцов проводили в ультразвуковой ванне "ГРАД 28-35" (Grade Technology, Россия) при мощности 55 Вт.

Полученную суспензию вводили в нефтяной остаток таким образом, чтобы общее содержание НЧ в исходном мазуте варьировалось от 0.02 до 0.30 мас. %.

ТАБЛИЦА 1

Физико-химическая характеристика нефтяного остатка с температурой кипения выше 360 °C.

Показатель	Значение
Вязкость условная, при температуре, °С:	
50	Нет
	свободного
	истечения
80	7.69
100	3.73
Массовая доля механических примесей, $\%$	0.01
Коксуемость, мас. %	6.57
Температура застывания, °С	24
Температура вспышки в закрытом тигле, $^\circ\!\mathrm{C}$	203
Зольность, мас. %	0.013
Плотность при 20 °C, кг/м ³	939.4
Компонентный состав, мас. %:	
Масла	85.7
Смолы силикагелевые	12.4
Асфальтены	1.9
Элементный состав, мас. %:	
С	85.05
Н	11.75
S	1.57
Ν	0.38
0	1.25
Отношение Н/С	1.65

Исследование наночастиц

Для определения фазового состава исходных НЧ и образцов после термолиза применяли метод рентгенофазового анализа (РФА). Рентгенограммы были получены с помощью рентгеновского дифрактометра Discover D8 (Bruker, Германия) на монохромном Cu K_{α} -излучении. Сканирование проводили в диапазоне углов 20 = 10–90°. Обработку результатов осуществляли с использованием базы данных дифракционных спектров PDF-2 2010 г.

С помощью просвечивающего электронного микроскопа JEM-1400 (JEOL, Япония, разрешение 0.24 нм) получены ПЭМ-изображения образцов, максимальное ускоряющее напряжение составило 200 кВ.

Удельную поверхность порошков по БЭТ измеряли на газоадсорбционном анализаторе удельной поверхности и пористости TriStar II 3020 (Micromeritics, США). Перед анализом порошковые образцы материала дегазировали в вакууме $(10^{-2}$ торр) при 200 °С в течение 2 ч.

Распределение частиц гематита в суспензии после диспергирования определяли с помощью метода динамического рассеяния света на лазерном анализаторе размеров частиц Zetasizer Nano (Malvern, CША) при 25 °C (гелий-неоновый лазер, мощность лазера 4 мВт, длина волны 633 нм).

Проведение крекинга

Термический крекинг (термолиз) нефтяного остатка проводили без добавления НЧ и с добавлением предварительно диспергированных частиц (ДЧ) гематита, а также с добавлением "сухих" недиспергированных частиц (НДЧ) гематита. В ранее проведенных работах [30, 31] на примере нефтяных остатков тяжелых нефтей было показано, что введение гематита в нефтяные остатки в количестве менее 1.00 мас. % не приводит к заметному изменению состава продуктов термолиза. Поэтому в нашей работе для сравнения взята эта концентрация (1.00 мас. %) НДЧ гематита.

После введения НЧ в мазут смесь гомогенизировали при 70 °C в течение 15 мин механическим перемешиванием и затем выдерживали при той же температуре 15 мин в ультразвуковой ванне при мощности 55 Вт.

Для оценки влияния олеата натрия, олеиновой кислоты и добавок индустриального масла на процесс крекинга мазута в одном из экспериментов вводили смесь — олеат натрия в олеиновой кислоте/индустриальное масло в соотношении 2.2 : 16.8 в количестве 5.70 мас. %. На рисунках данный образец обозначается "без гематита".

После приготовления реакционной смеси образцы загружали в автоклав вместимостью 10 см³ в количестве 7.0 г, после сборки автоклава через газоотводящий кран его продували азотом для создания инертной среды.

Термический крекинг образцов проводили при 435 °C в течение 90 мин. Далее автоклав охлаждали до комнатной температуры и отбирали газообразные продукты, затем выгружали жидкие и твердые продукты крекинга. Выбор условий и методики проведения термолиза основан на результатах наших предыдущих исследований [30-32].

Исследование исходного нефтяного остатка и продуктов термического крекинга

Газообразные продукты анализировали с помощью хроматографа "Кристалл-5000" (Хроматэк, Россия) в соответствии с ГОСТ 31371.3-2008.

Углеводородный состав бензиновых фракций определяли методом газовой хроматографии в соответствии с ГОСТ Р 52714-2018 на хроматографе "Кристалл-5000" (капиллярная колонка DB-1 (Agilent, США) с внутренним диаметром 0.25 мм и длиной 100 м, неполярная, 100 % диметилполисилоксан).

Из-за небольшого количества получаемых продуктов термолиза содержание легких фракций в них оценивалось по данным термогравиметрического анализа аналогично работе [33]. Термогравиметрический анализ проводили с помощью дериватографа Q-1000 (МОМ, Венгрия). Регистрацию потери массы образца пробы выполняли в интервале температур от 50 до 360 °С при скорости нагрева 10 °С/мин.

Содержание смол и асфальтенов в нефтяном остатке и продуктах крекинга анализировали по стандартной методике как и в наших предыдущих работах [30-32]. Асфальтены выделяли разбавлением образца *н*-гексаном в объемном соотношении 1 : 40. После разбавления полученный раствор выдерживали в течение 1 сут в темноте, выпавший осадок отфильтровывали. Полученный осадок помещали в бумажный патрон и в аппарате Сокслета промывали *н*-гексаном для удаления масел и смол (мальтенов), затем асфальтены из бумажного патрона вымывали хлороформом, отгоняли растворитель и сушили асфальтены до постоянной массы. После отгонки растворителя из объединенного гексанового раствора (после осаждения и промывки асфальтенов) получали мальтены, которые наносили на слой активированного силикагеля АСК (соотношение 1 : 15), загружали полученную смесь силикагеля с адсорбированным материалом в аппарат Сокслета и последовательно вымывали масла *н*-гексаном, а затем смолы – смесью этанола и бензола (1 : 1) при температурах кипения данных растворителей. После удаления растворителей устанавливали содержание масел и смол в образце.

Анализ содержания углерода, водорода, азота и кислорода проводили с помощью элементного анализатора Vario EL Cube (Elementar, Германия). Количество серы определяли методом сожжения с последующим поглощением образовавшихся оксидов серы раствором углекислого натрия и титрованием соляной кислотой [34].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Характеристика наночастиц

Фазовый состав исследуемых НЧ включал преимущественно фазу гематита (α -Fe₂O₃), удельная поверхность составила 19.2 м²/г [29].

Согласно ПЭМ-анализу, распределение частиц по размерам составило 22-150 нм (рис. 1). Данные расчета среднего размера частиц по методу БЭТ (59.6 нм) согласуются с данными электронной микроскопии (67 нм). Частицы составляют агрегаты с распределением от 125 до 447 нм (см. рис. 1), форма частиц – равноосная. Анализ ПЭМ-снимков позволил увидеть, что частицы в агломератах связаны межчастичным (коагуляционным, нефазовым) взаимодействием, следовательно, химические процессы могут протекать на всей поверхности используемых НЧ. При попадании в углеводородную среду НЧ образуют суспензии, характеризующиеся мономодальным распределением с размерами 220-712 нм и средним размером агрегатов 414 нм.

Состав продуктов термического крекинга

Состав продуктов термического крекинга представлен на рис. 2 и 3. Доли твердых и газообразных компонентов в продуктах термолиза, полученных без частиц гематита, составляют 1.8 и 2.7 мас. % соответственно. При введении 1.00 мас. % НДЧ гематита (в виде сухого порошка) выход газообразных продуктов составляет 3.9 мас. %, а твердых – 4.2 мас. %. Введение НЧ <u>200 нм</u> Рис. 1. ПЭМ-изображение наночастиц гематита (α-Fe_aO_a).

гематита в виде предварительно приготовленной суспензии приводит к заметному увеличению доли твердых и газообразных продуктов (см. рис. 2). По сравнению с продуктами крекинга, полученными без добавок частиц гематита, доля газообразных и твердых компонентов увеличивается в присутствии ДЧ гематита в 2.2 и 3.4 раза соответственно, что объясняется более интенсивным протеканием процесса термической деструкции в их присутствии.

Предварительное диспергирование НЧ позволяет увеличить поверхность контакта гематита с компонентами сырья и повысить его доступность. Так же мелкодисперсные частицы могут способствовать диспергированию фазы предшественника кокса и тем самым изменять скорость образования твердых продуктов (кокса), как показано в работе [35]. Возможно, именно устойчивостью дисперсной системы объясняется нелинейный характер выхода твердых продуктов в зависимости от концентрации гематита, внесенного в сырье в виде частиц.

Также роль гематита заключается в его избирательной сорбции смол и асфальтенов на своей поверхности. В работах [36-38] показано, что асфальтены легко адсорбируются на оксидах переходных металлов, включая оксиды железа. Вероятно, избирательной сорбцией и последующей деструкцией смолисто-асфальтеновых компонентов на поверхности частицах гематита объясняется снижение их концентрации в получаемых продуктах термолиза. Вещественный состав продуктов термолиза представлен на рис. 3.

Введение предварительно диспергированных НЧ гематита позволяет получить продукты с меньшим содержание смол (см. рис. 3).

При увеличении концентрации ДЧ гематита от 0.02 до 0.30 мас. % происходит постепенное

увеличение доли асфальтенов от 1.7 до 2.5 мас. %, выход смол составляет от 3.2 до 3.8 мас. %, а содержание масел постепенно снижается с 85.8 до 82.4 мас. %. Уменьшение содержания масел вместе со снижением доли смол объясняется их вовлечением в процесс деструкции, что приводит к увеличению выхода низкокипящих фракций н. к.-200 °С (н. к. – температура начала кипения, рис. 4) и к росту количества твердых и газообразных продуктов (см. рис. 2).

По данным фракционного состава, введение ДЧ гематита приводит к увеличению выхода бензиновых фракций (н. к.-200 °C) на 9.0-16.4 %, при этом выход дизельных фракций снижается на 6.7-10.9 мас. % (см. рис. 4). Соотношение выхода дизельных фракций к бензиновым изменя-

Рис. 2. Выход твердых и газообразных продуктов крекинга с добавкой наночастиц гематита в нефтяной остаток и без него. Здесь и на рис. 3, 4: НДЧ, ДЧ – недиспергированные и диспергированные частицы гематита соответственно; в скобках указано содержание гематита, мас. %.

Рис. 3. Вещественный состав жидких продуктов крекинга нефтяного остатка. Обозн. см. рис. 2.

Рис. 4. Фракционный состав продуктов крекинга нефтяного остатка. Обоз
н. см. рис. 2; н. к. – температура начала кипения, °С.

ТАБЛИЦА 2

Состав фракции н. к.
–200 °C и газообразных продуктов крекинга нефтяного остатка, мас
.%

Компоненты	Без добавок	Содержание наночастиц гематита, мас. %							
		Без диспергирования	Предварительно диспергированные						
		1.00	0.02	0.05	0.10	0.20	0.30		
Состав фракции н. к.—200 °С									
н-Алканы	5.4	4.0	6.3	6.8	8.0	7.5	5.5		
Изоалканы	4.1	7.5	7.8	7.2	7.7	8.3	11.5		
Арены	2.6	2.4	2.9	2.7	2.7	3.5	4.9		
Нафтены	1.9	3.4	4.3	5.0	4.2	4.7	5.2		
Алкены	1.4	3.3	3.1	3.1	3.3	3.9	4.2		
Не определены	0.4	0.4	0.5	0.6	0.6	0.3	1.0		
Общий выход бензиновых фракций, мас. %	15.9	21.1	24.9	25.4	26.5	28.1	32.3		
Содержание газообразных компонентов									
H_2	0.001	< 0.001	0.009	0.013	0.013	0.012	0.015		
CO	< 0.001	0.025	0.014	0.027	0.028	0.030	0.034		
CO ₂	0.027	0.047	0.023	0.046	0.050	0.080	0.121		
CH_4	0.360	0.371	1.017	1.276	1.297	1.332	1.400		
C_2H_4	0.021	0.019	0.014	0.021	0.023	0.023	0.062		
C_2H_6	0.661	0.742	1.063	1.234	1.181	1.341	1.468		
$C_{3}H_{8}$	0.828	1.216	1.086	1.272	1.099	1.405	1.676		
$C_{3}H_{6}$	0.063	0.099	< 0.001	0.002	0.001	0.009	0.052		
Алканы С ₄	0.483	0.790	0.533	0.612	0.486	0.663	0.694		
Алкены С ₄	0.048	0.121	0.036	0.032	0.031	0.042	0.052		
Алканы С ₅	0.208	0.468	0.205	0.183	0.124	0.213	0.222		
Общий выход газообразных продуктов, мас. %	2.70	3.90	4.00	4.72	4.30	5.15	5.80		

Примечание. Н. к. – температура начала кипения, °С.

ется почти в 3 раза, при этом суммарный выход фракций (н. к.–360 °C) меняется не существенно.

В табл. 2 представлен групповой состав фракции н. к.
=200 °C и газообразных продуктов.

Введение диспергированных и недиспергированных НЧ гематита приводит к увеличению доли изоалканов, нафтенов и алкенов в бензиновых фракциях продуктов термолиза. Содержание *н*-алканов в полученных фракциях меняется нелинейно. Увеличение выхода ароматических углеводородов объясняется деструкцией смолисто-асфальтеновых компонентов.

Выход алкенов при введении гематита увеличивается как в жидких продуктах, так и в газообразных, что указывает на возможное протекание деструкции углеводородных компонентов.

При введении диспергированных и недиспергированных НЧ гематита в газообразных продуктах появляется монооксид углерода (CO) и увеличивается доля диоксида углерода (CO₂), что указывает на протекание окислительновосстановительных процессов. Гематит (α -Fe₂O₃) в данном процессе может восстанавливаться до магнетита (Fe₃O₄), при этом идет частичное окисление компонентов сырья с образованием CO и CO₂ [4, 16].

На рис. 5 представлены рентгенограммы исходного порошка гематита, который использовали для приготовления суспензий (образец 1); коксоподобных продуктов крекинга, полученных в присутствии 1.00 мас. % недиспергированных НЧ гематита (образец 2) и в присутствии 0.30 мас. % диспергированных НЧ гематита (образец 3).

На дифрактограмме образца 1 присутствуют только характеристические рефлексы, свойственные гематиту (см. рис. 5). На дифрактограмме образцов 2 и 3 рефлексы, свойственные гематиту, отсутствуют и появляются пики, которые могут указывать на образование магнетита или маггемита. Интенсивный рефлекс при 26.5° (см. рис. 5) является характерным для углерода. Для образца 3 он более выражен, так как в этом коксоподобном продукте содержание оксидов железа более чем в 3 раза меньше по сравнению с образцом 2.

ЗАКЛЮЧЕНИЕ

Показано, что присутствие наноразмерных частиц гематита в процессе термолиза приводит к изменению направленности термических превращений компонентов тяжелого нефтяного сырья.

Введение диспергированных наноразмерных частиц гематита позволяет увеличить выход бензиновых фракций и снизить выход смол.

В присутствии гематита заметно изменяется и состав газообразных продуктов: появляется монооксид углерода и увеличивается доля диоксида углерода, что указывает на протекание окислительно-восстановительных процессов. Гематит (α -Fe₂O₃) в данном процессе может восстанавливаться до магнетита (Fe₂O₄).

Работа выполнена в рамках государственного задания ИХН СО РАН (Томск), финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1 Castañeda L. C., Muñoz J. A. D., Ancheyta J. Current situation of emerging technologies for upgrading of heavy oils // Catal. Today. 2014. Vol. 220-222. P. 248-273.
- 2 Castañeda L. C., Muñoz J. A. D., Ancheyta J. Combined process schemes for upgrading of heavy petroleum // Fuel. 2012. Vol. 100. P. 110-127.
- 3 Muraza O. Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction // J. Anal. Appl. Pyrolysis. 2015. Vol. 114. P. 1–10.
- 4 Wang D., Jin L., Li Y., Hu H. Partial oxidation of vacuum residue over Al and Zr-doped $\alpha\text{-}\text{Fe}_2\text{O}_3$ catalysts // Fuel. 2017. Vol. 210. P. 803–810.
- 5 Iskandar F., Dwinanto E., Abdullah M., Muraza O. Viscosity reduction of heavy oil using nanocatalyst in aquathermolysis reaction // KONA Powder and Particle Journal. 2016. Vol. 33. P. 3–16.
- 6 Eshraghian A., Husein M. M. Catalytic thermal cracking of Athabasca VR in a closed reactor system // Fuel. 2018. Vol. 217. P. 409-419.
- 7 Хаджиев С. Н., Герзелиев И. М., Капустин В. М., Кадиев Х. М., Дементьев К. И., Пахманова О. А. Каталитический крекинг в составе современных комплексов глубокой переработки нефти // Нефтехимия. 2011. Т. 51, № 1. С. 33–39.
- 8 Al-Sabawi M., Chen J., Ng S. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review // Energy & Fuels. 2012. Vol. 26, No. 9. P. 5355-5372.
- 9 Muraza O., Galadima A. Aquathermolysis of heavy oil: A review and perspective on catalyst development // Fuel. 2015. Vol. 157. P. 219-231.
- 10 Kim S. H., Kim K. D., Lee D., Lee Y. K. Structure and activity of dispersed Co, Ni, or Mo sulfides for slurry phase hydrocracking of vacuum residue // J. Catal. 2018. Vol. 364. P. 131–140.
- 11 Al-Marshed A., Hart A., Leeke G., Greaves M., Wood J. Effectiveness of different transition metal dispersed catalysts for *in situ* heavy oil upgrading // Ind. Eng. Chem. Res. 2015. Vol. 54, No. 43. P. 10645-10655.
- 12 Ahn H. K., Park S. H., Sattar S., Woo S. I. Vacuum residue upgrading through hydroprocessing with subcritical water // Catal. Today. 2016. Vol. 265. P. 118–123.
- 13 Hosseinpour M., Akizuki M., Oshima Y., Soltani M. Influence of formic acid and iron oxide nanoparticles on active hydrogenation of PAHs by hot compressed water. Isotope tracing study // Fuel. 2019. Vol. 254. Art. 115675.

- 14 Hashemi R., Nassar N. N., Pereira-Almao P. Nanoparticle technology for heavy oil *in situ* upgrading and recovery enhancement: Opportunities and challenges // Applied Energy. 2014. Vol. 133. P. 374–387.
- 15 Sun Z. Q., Ma F. Y., Liu X. J., Wu H. H., Niu C. G., Su X. T., Liu J. M. Large-scale synthesis and catalysis of oleic acid-coated $\rm Fe_2O_3$ for co-lique faction of coal and petroleum vacuum residues // Fuel Process. Technol. 2015. Vol. 139. P. 173–177.
- 16 Hosseinpour M., Fatemi S., Ahmadi S. J. Catalytic cracking of petroleum vacuum residue in supercritical water media: Impact of $\alpha-{\rm Fe_2O_3}$ in the form of free nanoparticles and silica-supported granules // Fuel. 2015. Vol. 159. P. 538–549.
- 17 Wang D., Jin L., Li Y., Wei B., Yao D., Hu H. Upgrading of vacuum residue with chemical looping partial oxidation over Fe-Mn mixed metal oxides // Fuel. 2019. Vol. 239. P. 764-773.
- 18 Abu Tarboush B. J., Husein M. M. Dispersed ${\rm Fe_2O_3}$ nanoparticles preparation in heavy oil and their uptake of asphaltenes // Fuel Process. Technol. 2015. Vol. 133. P. 120–127.
- 19 Wang D., Jin L., Li Y., Yao D., Wang J., Hu H. Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe₂O₃ // Energy. 2018. Vol. 162. P. 542–553.
- 20 Lee S. J., Jeong J. R., Shin S. C., Kim J. C., Kim J. D. Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique // J. Magn. Magn. Mater. 2004. Vol. 282. P. 147-150.
- 21 Da Costa G. M., De Grave E., De Bakker P. M. A., Vandenberghe R. E. Synthesis and characterization of some iron oxides by sol-gel method // J. Solid State Chem. 1994. Vol. 113, No. 2. P. 405-412.
- 22 Chin A. B., Yaacob I. I. Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and massart's procedure // J. Mater Process. Technol. 2007. Vol. 191, No. 1–3. P. 235–237.
- 23 Strobel R., Pratsinis S. E. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis //Advanced Powder Technology. 2009. Vol. 20, No. 2. P. 190-194.
- 24 Galukhin A. V., Erokhin A. A., Osin Y. N., Nurgaliev D. K. Catalytic aquathermolysis of heavy oil with iron tris(acetylacetonate): Changes of heavy oil composition and *in situ* formation of magnetic nanoparticles // Energy & Fuels. 2015. Vol. 29, No. 8. P. 4768-4773.
- 25 Marei N. N., Nassar N. N., Vitale G., Hassan A., Zurita M. J. P. Effects of the size of NiO nanoparticles on the catalytic oxidation of Quinolin-65 as an asphaltene model compound // Fuel. 2017. Vol. 207. P. 423-437.
- 26 Marei N. N., Nassar N. N., Vitale G. The effect of the nanosize on surface properties of NiO nanoparticles for the adsorption of Quinolin-65 // Phys. Chem. Chem. Phys. 2016. Vol. 18, No. 9. P. 6839-6849.
- 27 Ma J., Jing Y., Gao L., Chen J., Wang Z., Weng L., Li H., Chen Y., Li Y. Hetero-aggregation of goethite and ferrihydrite nanoparticles controlled by goethite nanoparticles with elongated morphology // Sci. Total Environ. 2020. Vol. 748. Art. 141536.
- 28 Shrestha S., Wang B., Dutta P. Nanoparticle processing: Understanding and controlling aggregation // Adv. Colloid Interface Sci. 2020. Vol. 27, Art. 102162.
- 29 Svetlichnyi V. A., Shabalina A. V., Lapin I. N., Goncharova D. A., Velikanov D. A., Sokolov A. E. Study of iron oxide magnetic nanoparticles obtained *via* pulsed laser ablation of iron in air // Appl. Surf. Sci. 2018. Vol. 462. P. 226-236.
- 30 Головко А. К., Копытов М. А., Шаронова О. М., Кирик Н. П., Аншиц А. Г. Крекинг тяжелого нефтяного

сырья с использованием каталитических добавок на основе ферросфер энергетических зол // Катализ в промышленности. 2015. № 4. С. 65–72.

- 31 Копытов М. А., Головко А. К., Кирик Н. П., Аншиц А. Г. Термические превращения высокомолекулярных компонентов тяжелых нефтяных остатков // Нефтехимия. 2013. Т. 53, № 1. С. 16–21
- 32 Копытов М. А., Бояр С. В., Можайская М. В. Термические превращения компонентов нефтяного остатка в присутствии ферросфер зол ТЭЦ и подсолнечного масла // Нефтехимия. 2020. Т. 60, № 3. С. 384–393.
- 33 Ortiz-Moreno H., Ramírez J., Cuevas R., Marroquín G., Ancheyta J. Heavy oil upgrading at moderate pressure using dispersed catalysts: Effects of temperature, pressure and catalytic precursor // Fuel. 2012. Vol. 100. P. 186-192.
- 34 Климова В. А. Основные микрометоды анализа органических соединений. М.: Химия, 1975. 288 с.

- 35 Tanabe K., Gray M. R. Role of fine solids in the coking of vacuum residues // Energy & Fuels. 1997. Vol. 11, No. 5. P. 1040-1043.
- 36 Nassar N. N., Hassan A., Pereira-Almao P. Comparative oxidation of adsorbed asphaltenes onto transition metal oxide nanoparticles // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2011. Vol. 384, No. 1–3. P. 145–149.
- 37 Hosseinpour N., Mortazavi Y., Bahramian A., Khodatars L., Khodadadi A. A. Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced *in situ* combustion EOR processes by nanotechnology // Appl. Catal. A: General. 2014. Vol. 477. P. 159–171.
- 38 Seto
odeh N., Darvishi P., Lashanizadegan A. A comparative study to evaluate the performance of coated
 ${\rm Fe_3O_4}$ nanoparticles for adsorption of a
sphaltene from crude oil in bench scale // J. Dispers. Sci. Technol. 2018. Vol. 39, No. 5. P. 711–720.