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INTRODUCTION

Accurate enough data about forest resources is 
a crucial element of decision making for different 
stakeholders involved in forestry. The data gives 
significant benefits for forest policy development 
and management, i.e. area planning, forest growth 
planning, harvesting methods and equipment plan-
ning, final products planning and reforestation strat-
egy. Typically, forests cover large areas and it is 
hard to survey them entirely at least in a reasonable 
time frame. In that respect, forest inventory based 

on remote sensing has been quite well established 
around the globe, which helps solving the problem.

The most recent development of the new gener-
ation of forest inventory tools refers to an airborne 
laser scanning (ALS). ALS has been extensively 
used in Finland for many different purposes includ-
ing forest management, volumetric applications and 
terrain modeling (Maltamo et al., 2014). The major 
advantage of ALS in forestry is a three-dimension-
al (3D) product, which allows accurate estimation 
of 3D forest features as e.g. canopy height above 
ground level (AGL) and terrain estimation. ALS 
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requires an application of heavy-duty conventional 
aerial vehicles/platforms and complex light detec-
tion and ranging (LiDAR) equipment, which also 
makes the technology rather expensive, for exam-
ple, for a property level, small-sized areas or spe-
cific tasks, where application of ALS is impossible 
or not feasible.

There is yet one more tool, which is based on 
aerial imagery and known as photogrammetry. The 
results of the photogrammetric modeling are capa-
ble of deriving almost the same 3D features similar 
to those produced by ALS (Järnstedt et al., 2012; 
Tuominen et al., 2015). However, the photogram-
metry, to be applied at forestry applica tions, re-
quires accurate terrain data as, in general case, it 
does not allow any data below canopy.

Nevertheless, it is believed that photogramme-
try could be less expensive (Tuominen et al., 2015, 
p. 3–4) as it does not require both complex laser 
equipment and manned aerial platforms and deliv-
ers a very high-resolution aerial imagery (VHR) as 
a default product, whereas ALS in general case re-
quires optical imagery (Järnstedt et al., 2012), which 
means, at least, some extra equipment. Finally, over 
time, accurate enough terrain data becomes avail-
able (as, for example, in Finland), which makes us-
ing historical data about ground level possible. In 
that regard, the method of forest inventory based 
on photogrammetry sounds quite promising for 
operational purposes in the future. It is also worth 
mentioning that both methods require equal field 
data (ground truth) acquisition efforts, which makes 
them equal from that point of view.

Previously, the problem of a digital surface 
model (DSM) application for forest variable esti-
mation purposes has been studied e.g. by Järnstedt 
et al. (2012) and Tuominen et al. (2015). They ob-
tained positive results regarding a potential use of 
high-resolution DSM for forest inventory purposes.

The objective of this particular study is to esti-
mate the forest volume based on a high-resolution 
DSM and VHR aerial RGB (red, green and blue) 
imagery derived by application of a small un-
manned aerial vehicle (sUAV) with a regular RGB 
digital camera. The work also includes an unique 
part related to an application of an innovative tool 
for field data acquisition known as Trestima (Mo-
biilisovellukset, 2013; Rouvinen, 2014a), which 
employs smartphones for data collection via regular 
terrestrial photographing of a forest. Data acquired 
using Trestima has been used to compare with the 
results obtained from statistical modeling and the 
existing forest management plan.

RESEARCH AREA AND INITIAL 
MATERIALS

For the purpose of the study the forest area 
Falkgölen (approx. 60°00′50.78″ N, 23°24′35.29″ E) 
was selected (Fig. 1), which is located in the mu-
nicipality of Raseborg of South-Western Finland.

In total, the study area covers approximate-
ly 220 ha and is represented by pine and spruce 
dominated forest of different age classes as well as 
few compartments with dominance of birch and/or 
larch.

The available Forest Management Plan (FMP) 
for the period of 2014–2023 (in Swedish: Skogs-
bruksplan) (updated in 2014) has been used as an 
initial material of the project work as well as a refer-
ence at data comparison. The FMP, in general case, 
corresponds to the state of the forest at the moment 
of field work and data acquisition.

Additionally, the following datasets produced 
by National Land Survey of Finland (NLS) were 
also applied at different stages of the work:

– basic topographic map raster 1:10 000 (NLS 
block K3444R);

– vector database, containing roads, wetlands, 
bedrock and other relevant vector data about natural 
objects (NLS block K3444R); and

– laser scanning data (point cloud) (NLS block 
K3444E4), which was used to derive digital terrain 
model (DTM) of 0.15 m Z value accuracy (Laser 
scanning data, 2015).

TOOLS AND METHODS

Data acquisition using sUAV. Aerial data ac-
quisition was performed using sUAV, model Quest 
UAV Q200. The vehicle is featured by fully au-
tonomous performance. Tested flight endurance 
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Fig. 1. Area of interest (AOI) location (left) and area 
boundaries (incl. forest compartments) (right).
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of the sUAV constitutes approximately 20–25 min 
depending on local weather conditions (Rybakov, 
2015). Wingspan of the sUAV is approximately 
2.3 m. At normal weather conditions the sUAV 
cruises at ground speed of approx. 55 km/h. This 
particular sUAV was tailored to be used along with 
a payload – Panasonic Lumix LX-5 digital RGB 
camera, which was employed as a sensor to collect 
aerial images. The camera had been modified by 
the sUAV producer to be triggered by sUAV auto-
pilot. At this mission, the trigger was programmed 
to produce images with a speed of one shot per 
2.5 second.

All in all, six flights covering the entire area 
were performed (Fig. 2, see p. 6).

The flight altitude varied from approximately 
150 to 180 m above ground level.

Flight operations were carried out during day-
time between 12.00 and 16.00 EET on 21 August, 
2013.

Prior to the flight occasion a network of twelve 
ground control points (GCP) was established, 
which were evenly distributed throughout the AOI 
(Fig. 3, see p. 6).

Coordinates of GCPs were measured with 
GNSS/RTK Topcon equipment with an accuracy of 
1–2 cm XY (plane) and 2–3 cm Z (vertical). The 
GCPs were later used as a georeferenced at photo-
grammetric modelling.

All in all, during flight mission 2539 images 
were captured with an average estimated overlap 
exceeding 60 % along and 80 % across.

Production of remote sensing data – data 
processing: high resolution digital surface model 
and VHR aerial imagery. The aerial images ac-
quired were processed using a photogrammetric 
software Agisoft Photoscan Professional Edition 
version 1.0.0 build 1768 (64 bit), an educational 
license (developer – Agisoft LLC, Russia). As a re-
sult of photogrammetric modeling, two basic prod-
ucts were produced:

– the VHR aerial image-orthophoto with the 
resolution of 0.061 m/pix (Fig. 4, see p. 6);

– dense point cloud with point density of 
9 points per square meter (Fig. 5, see p. 6), con-
taining the following point classes: 1 (unclassi-
fied), 2 (ground), 3 (low vegetation) and 7 (noise) 
(Agisoft, 2014).

For the purpose of further post-processing the 
VHR orthophoto was resampled to 0.25 m/pix us-
ing ESRI™ ArcMap standard tools (see Fig. 4).

Such a resolution of the aerial image raster was 
selected as according to Tuominen et al. (2015, p. 5) 
as it is normally used for forest surveys in Finland.

Next, the dense point cloud dataset was rende-
red into a digital surface model (DSM) also of 
a pixel size of 0.25 m. At this stage, points clas-
sified as noise were filtered out and respectively 
their elevations were not included into the resulting 
DSM. As all elevation values of the DSM by de-
fault are given above sea level (ASL), which makes 
impossible to detect true height of a surface judg-
ing by DSM along, the DSM was transformed into 
DSM above ground level (AGL) (also could be 
referred to as a canopy height model (CHM)) by 
normalization procedure applying mathematical 
extraction of the ground level from DSM via ras-
ter calculation using ESRI™ ArcMap (Equation 1) 
(Fig. 6, see p. 7).

Where DSMAGL is a digital surface model 
above ground level, DSMASL is a digital sur-
face model above sea level based on sUAV point 
cloud and DTM is a digital terrain model based 
on LiDAR point cloud. Prior to the calculations, 
DTM was also resampled into raster resolution of 
0.25 m/pix.
 DSMAGL = DSMASL – DTM. (1)

As the photogrammetric dense point cloud rep-
resents DSM, i.e. does not contain terrain data un-
der the canopy, it was amended by points of class 2 
(ground) from the NLS laser scanning dataset. The 
modified point cloud was further applied at 3D fea-
ture extraction (Fig. 7, see p. 7).

All data were georeferenced to EUREF–TM-
35FIN (EPSG code: 3067) – the projected coordi-
nate system.

Organization of forest inventory (field cam-
paign) and forest data gathering. Two-phase sam-
pling was selected a major field sampling technique. 
This technique also known as double sampling was 
offered in 1938 by Neyman and since then turns to 
stay one of the best choices for forest inventories 
(Tuominen et al., 2006).

The AOI has been covered by a first-
phase plots grid (fishnet) of approx. 299.98 m2 

(17.32 m × 17.32 m) cell. This solution bases on the 
decision to employ fixed radius of 9.77 m plots as 
second-phase sampling, which corresponds the area 
of approx. 299.87 m2.

Stratification (Tuominen et al., 2006) was con-
ducted based on the following auxiliary data. First 
of all, existing forest management plan (FMP) in-
formation, including forest compartment borders 
and dominant species over compartments, as well 
as data about stages of the forest development at 
each compartment. Secondly, soil types were in-

Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model...
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Fig. 4. Orthophoto (0.25 m/pix) and two patches of 
original resolution 0.06 m/pix.

Fig. 5. Photogrammetric dense point cloud (from left to right: view from above, 
view from ground level) (visualization at Agisoft Photoscan screen).

Fig. 2. Flights realized (flightlogs N. 1–6) over AOI and launch/landing point.

Fig. 3. AOI boarders and GCPs arrangement.

G. K. Rybakov
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cluded into stratification based on available NLS 
data, i. e. based on basic map raster and topograph-
ic database. The resulting number of strata turned 
to be 43 (Fig. 8).

Next, second-phase sample plots were as signed. 
Due to the relatively large size of the area and lim-
ited resources, it was decided to assign one sample 
plot per stratum. All in all, 44 plots were allocated 
(Fig. 9).

This approach of allocating the field measure-
ments resembles the grouping method (Tuomin-
en et al., 2006). The number of field plots em-
ployed at this study was small and thus, the sUAV 
based estimation of forest variables was not car-
ried out stratum-wise. Instead, the forest variables 
were estimated by regression modeling using all 
44 field plots.

Fig. 6. Normalized DSM–DSMAGL. Fig. 7. Dense point cloud (merge of photogrammetric and 
LiDAR data), profile section (top) and 3D view (bottom) 
(canopy – green, ground – blue).

Fig. 8. Stratification of the AOI (from left to right: species, development stages and soils).

Fig. 9. Sample plots and strata.

Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model...
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At each second-phase sample plot a standard 
number of attributes were measured: a diameter 
breast height (DBH) of each tally tree > 5 cm DBH 
and a height (H) for a basal median tree per species. 
All in all, at 44 field sample plots individual met-
rics of 944 trees of different species were measured, 
including DBH of each tally tree as well as H for 
109basal median trees.

At the next stage, forest variables were calcu-
lated: the tree height (H) was estimated based on 
the model of Eerikäinen (2009) as well as volume 
per each tree (and volume for field plot, respec-
tively) was calculated based on model of Laasa-
senaho (1982) using the tree heights measured. The 
resulting statistics of the field plots is presented in 
Table 1.

Statistical analysis and forest volumes wall-
to-wall mapping. Theoretical background for 
sUAV based estimation of forest variables. Auxilia-
ry data/features derived from such auxiliary sources 
as DSM or an aerial imagery may well correlate to 
different forest variables (Tuominen et al., 2006), 
e. g. mean volume, basal area (BA), average height 
or DBH.

There are several techniques for estimation of 
the variables based on the remote sensing data. In 
case of this study, a linear regression was chosen for 
sUAV-based estimation of forest variables, which 
has been justified by the lack of field measurements 
over strata.

Regression is based on the idea that a variable 
Y (dependent variable) could be explained by vari-
able (s) X (independent variable(s)) (Sykes, 1992) 
assuming that their relationship is linear. In case 
of just one independent variable X the regression 
is called simple linear regression. When Y can be 
explained by more than one independent variable 
the regression is called multiple linear regression 
(Sykes, 1992).

Linear regression can be expressed by the fol-
lowing equation (Equation 2).

 Y = βX + ε, (2)

where, Y is a dependent variable y1, y2 … yn 
(n = 1,  ...), which in our case refers to a forest 
variable (either basal area (BA) or height (H));

X is an independent variable matrix, which in 
our case refers to a number of selected features 
extracted from remote sensing data such as VHR 
aerial imagery, high-resolution DSM normalized to 
the ground level as well as the dense point cloud;

β – regression coefficients β1, β2 … βm (m = 1, …);
ε – a constant for regression line.
As estimations cannot be 100 % accurate there 

are several means to study their accuracy (Equa-
tions 3, 4 and 5).
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RMSE (root mean square error) is the major 
measure of the estimation accuracy, which shows 
the probability of an estimate to deviate from its 
true value, and

 % 100 RMSERMSE
y

= , (5)

RMSE% – the same as RMSE but expressed in 
percent, where y  is an average of observed values.

Remote sensing feature extraction, selection of 
features, regression modeling and accuracy test-
ing. The two basic types of the features, which are 
Haralick textural features (Haralick et al., 1973) and 
3D features (Nasset, 1997a, b, 2002, 2004), were 
extracted from the remote sensing datasets, which 
were the VHR aerial imagery, the high-resolution 

Table 1. Field plots statistics

Forest attribute / values Average Min Max Standard deviation

Volume, m3/ha 177.2 10.2 472.2 112.2
Volume of pine, m3/ha 80.1 0.0 248.8 71.4
Volume of spruce, m3/ha 61.2 0.0 307.9 83.2
Volume of broad-leaved trees, m3/ha 35.9 0.0 215.1 43.2
Weighted mean diameter, cm 24.3 8.9 37.2 6.1
Weighted mean height, m 17.2 7.9 26.0 4.0
BA, m2/ha 21.0 1.6 49.5 10.9

G. K. Rybakov



СИБИРСКИЙ ЛЕСНОЙ ЖУРНАЛ. № 3. 2017 9

DSM and the dense point cloud. The features were 
extracted by execution of programming scripts at 
GRASS 7.0svn – the free GIS software and at R – 
the free statistical software package. The Haralick 
features were extracted from the respective rasters 
of R, G, B channels of RGB orthophoto and a ras-
ter of high-resolution DSM raster (for the purpose 
of shortening also later referred to as «h»). The 3D 
features were extracted from the dense point cloud. 
The list of the features is given in Table 2.

In order to select a proper set of features, which 
is the best way to explain each forest variable, 
A Sequential Forward Feature Selection (SFFS) 
procedure was applied (Senin, 2015), employing 
Microsoft Excel, which possesses an embedded 
functionality for multiple linear regression analysis. 
Briefly, the SFFS works in the following way. First, 
the best correlating feature should be found and 
its significance (with the selected level of signifi-
cance of 0.05) is tested based on F-test explained 

by Senin (2015). In case the significance is proved, 
a new feature is added to the model and tested the 
same way. The procedure continues until at the next 
stage the best calculated F-criteria for a feature be-
comes lower than F-criteria derived from a table 
(Table of critical values for the F distribution (for 
use with ANOVA), 2015).

Wall-to-wall mapping. Based on the solution 
found for multiple linear regression the sUAV based 
estimation of the variables was performed for the 
entire area of interest. Consequently, a wall-to-wall 
mapping was performed per respective forest com-
partment. Wall-to-wall mapping of BA and V was 
executed by averaging their estimates obtained per 
each first-phase sample plot within a particular com-
partment over its area. H mapping was performed 
by weighing H of each first-phase sample plot by 
BA, which is independent of H as well as represents 
the size of the trees within the sample plot, with fur-
ther averaging over the area of a compartment.

Table 2. Haralick and 3D features

Haralick features
First-order statistics in the spatial domain

SA Sum Average
ENT Entropy
DE Difference Entropy
SE Sum Entropy
VAR Variance
DV Difference Variance
SV Sum Variance

Second-order statistics in the spatial domain
ASM Angular Second Moment
IDM Inverse Difference Moment
Contr Contrast
Corr Correlation
MOC Information Measures of Correlation

3D features
havg Average value of H above ground level of vegetation pulses, first returns, meters
hstd Standard deviation of H above ground level of vegetation pulses, first returns
h0, h5, h10, h20, h30, h40, 
h50, h60, h70, h80, h85, h90, 
h95, h100

H above ground level, where percentages of vegetation pulses, %: 0, 5, 10, 20…95, 100 
were accumulated, m

hcv Coefficient of variation of H above ground level of vegetation pulses, first returns, %
veg Proportion of vegetation pulses, first returns, %
d0, d1, d2, d3, d4, d5, d6, d7, 
d8, d9

Proportion of vegetation pulses having H above ground level above fraction 0, 1 … 9 from 
all points, first returns, %

p20, p40, p60, p80, p95 Proportion of vegetation pulses having H above ground level greater or equal to 
corresponding percentile of H, first returns, %

pcg Ratio of number of vegetation pulses to the number of ground points, first returns, %
pgh Proportion of ground pulses, first returns, %

Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model...
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Fig. 10. Compartments, where Trestima was applied.

Fig. 11. Trestima measurements (examples for BA, DBH and H).

Fig. 12.Variables and compartment geometry visualization at Trestima web-interface (reports 
by Trestima).

G. K. Rybakov
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Estimation of local variables based on ap-
plication of Trestima, comparison to FMP. As 
the final step of the forest variables estimation yet 
another technique called Trestima was used. Tres-
tima is a system, which bases on an application of 
smartphones for estimation of local forest variables 
via simple terrestrial photographing of a forest and 
exploits a principle of the relascope as it has been in 
detail explained by Rouvinen (2014a, b).

In the framework of the project Trestima was 
applied at three forest compartments/figures of the 
study area totaling to 65 samples (images/measure-
ments) of BA, H and DBH (Fig. 10).

The measurements were performed in less than 
one hour of net time at the area of approx. 13.9 ha. 
The weather and forest conditions are shown/vis-
ible in the images (Fig. 11).

The same standard set of forest variables was 
delivered after application of Trestima at each se-
lected compartment i. e. mean V, BA, DBH, H as 
well a variable responsible for a number of stems 
per hectare, per tree species (Fig. 11, 12).

Later, data by Trestima were compared to an 
information stated in the forest management plan 
(FMP) and sUAV based estimations.

RESULTS AND DISCUSSION

sUAV based estimation of forest variables 
over area of interest. At the first stage of sUAV 
based estimation single best correlating remote 
sensing features were found for variables basal area 
(BA), height (H) and mean volume (V) (Fig. 13).

These features were later used at the sequential 
forward feature selection (SFFS) procedure as a 
starting point of further iterations.

Fig. 13 shows that H has the best correlations 
with one of the 3D features (h_80) extracted from 
high-resolution DSM, whereas BA’s and V’s best 
correlation is at quite a low level and bases on a 
Haralick feature (h_SA) extracted from high-reso-
lution DSM raster.

At the next stage, SFFS procedure was applied 
and as a result of multiple linear regression mode-
ling appropriate sets of the features, which the best 
way explain BA, H and V, were selected (Table 3).

Where, for example, for a Haralick feature h_SA 
first letter «h» relates to the respective raster (red (r), 
green (g), blue (b) or DSM (h)) and «SA» relates to 
the name of a Haralick feature; the 3D features pos-
sess their own unique names. Consequently, a solu-

Fig. 13. a – BA (axis Y) vsh_SA (axis X); 
b – H (axis Y) vs h_80 (axis X); c – V 
(axis Y) vs h_SA (axis X).

Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model...
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tion for regression coefficients (β) and a constant (ε) 
was found applying the SFFS procedure (Table 4).

As it has been shown in Table 4 the resulting 
correlation, explained by coefficient of determina-
tion R2, equals 0.81 for BA, 0.92 for H and 0.82 
for V, whereas R2 for the single best correlating fea-
tures found for the very same variables (see Fig. 13) 
equals 0.64, 0.88 and 0.66, respectively. This result 
shows significant improvement of the estimation 
accuracy at transition from a simple linear regres-
sion to a multiple linear regression. The improve-
ment is especially considerable for the BA and V 
estimation. Both sets of the features equally include 
Haralick and 3D features. However, it is remark-
able that most of the features for the all the variables 
(BA, H and V) are related to the 3D model of the 
forest and only one feature in the set concerned with 
BA is related to the VHR aerial imagery.

Next, RMSE was calculated for each variable – 
BA, H and V, respectively. The sUAV based esti-
mation accuracy assessment results are presented in 
Table 5.

From Table 5 it is visible that the best estima-
tion concerns H, which may be explained by high 
initial correlation with the remote sensing data 
(see Fig. 13, b) and its further improvement (see 
Table 4). Accuracy of BA and V estimation is lower 
due to the similar reason explained above for H.

Wall-to-wall mapping. Wall-to-wall mapping 
results are presented as relevant rasters in Fig. 14, 
as well as a classified raster of sUAV based volume 
estimation per compartment is given in Fig. 15.

Comparison of sUAV based estimates, FMP 
and Trestima. At the final step, all the estimates ob-
tained within the framework of the remote sensing 
statistical analysis and Trestima survey were direct-
ly compared over the data available from the exist-
ing Forest management plan (FMP). The following 
comparisons were performed:

– sUAV based estimation of BA and H were com-
pared over respective FMP variables for all relevant 
compartments of the AOI (Fig. 16, 17, see p. 14).

– sUAV based estimation of BA and V (m3/ha) 
were compared for three reference compartments 
(number 412, 454 and 456 according to their or-
dinal numeration given in the FMP) over respec-
tive variables of Trestima survey and of the FMP 
(Fig. 18, 19, see p. 15);

– sUAV based estimation of mean weighted H 
was compared versus respective H given inthe FMP 
for the three reference compartments (number 412, 
454 and 456 according to their ordinal numeration 
given in the FMP) (Fig. 20, see p. 15);

– comparison of stem quantity given provided 
by the FMP and Trestima (Fig. 21, see p. 15).

The comparison presented on Fig. 16 shows that 
the difference between BA stated in the FMP and 
sUAV based estimation of BA is inconsiderable at 
a limited number of compartments only, whereas at 
the most compartments BA deviates significantly – 
exceeding (+/–) 1 m2.

The comparison of H stated in the FMP and 
sUAV based estimation of H (see Fig. 17) shows 
that the difference ranges in the corridor of ±5 me-
ters at the most compartments with a trend of H by 
the FMP to surpass the H estimated.

The performed comparisons, which are illus-
trated in Fig. 18, 19 and 20, show that Trestima 
demonstrates the best fit with the FMP data at all 
the compared variables with an average difference 
ranging from ±1–16 %.

Table 3. Selected features

Variable Selected features

BA, m2/ha (1) h_SA (Haralick), (2) h0 (3D), (3) pcg (3D), (4) r_MOC-1 (Haralick), (5) d9 (3D)
H, m (1) h80 (3D), (2) h_Contr (Haralick), (3) h95 (3D)
V, m3/ha (1) h_SA (Haralick), (2) h0 (3D), (3) d1 (3D), (4) h_DV (Haralick), (5) pcg (3D)

Table 4. Correlation analysis statistics

Variable ε β1 β2 β3 β4 β5 R2

BA, m2/ha 18.61760 1.64636 1.09478 0.00412 130.2300 –0.5411 0.81
H, m 4.311 1.274 0.106 –0.487 – – 0.92
V, m3/ha 71.7576 20.8621 18.8554 –1.4868 10 982.72 0.0387 0.82

Table 5. sUAV based estimation accuracy assessment

Variable RMSE RMSE, % Average

BA, m2/ha 4.74 22.60 20.97
H, m 1.14 6.60 17.19
V, m3/ha 47.24 26.75 177.19

G. K. Rybakov
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Fig. 15. Volume (V) classification of compartments.

Fig. 14. sUAV based estimation rasters (from 
left to right: basal area (BA, m2/ha), height 
(H, m), volume (V, m3/ha).

Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model...
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The sUAV based estimation results however 
show slightly lower values of variables BA and 
H (Fig. 18 and 20) versus FMP data, which leads 
to the respective underestimation of the volume 
(V, m3/ha) (Fig. 19).

Since Trestima does not represent the H variable 
comparable with the sUAV based estimation and the 
FMP, it was decided to exclude the data given by 
Trestima at the comparison illustrated in Fig. 20. 
It is due to the fact that at this study Trestima ren-
dered the height of a tree per species, which was 
subjectively chosen in the field to be a basal medi-
an, whereas the FMP operates weighted mean H per 
tree species for entire compartment. sUAV based 
estimates operate weighted mean H irrespective of 
the tree species.

The final comparison was concerned stem quan-
tity estimation (Fig. 21).

It shows some difference between the FMP and 
Trestima data. This comparison is given as it is as 
at this part further analysis was impossible without 
clear understanding of estimation approach used at 
both FMP and Trestima.

Notably, the speed of sampling using Trestima, 
which constituted 13.9 ha in less than one hour net 
time, was equal to a normal speed of walk in the 
forest.

In some part, this project work is a repetition 
of what had been done so far (Järnstedt et al., 2012 
or Tuominen et al., 2015). On the other hand, some 
new ideas were realized among which, for example, 
was the application of the sUAV with the RGB digi-

Fig. 16. Difference between BA by FMP and BA estimated per compartment.

Fig. 17. Difference between H by FMP and H estimated per compartment.

G. K. Rybakov
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tal camera for forest inventory and application of 
the Trestima system as a tool for field measurements 
(although, at the project the mean forest volume of a 
limited number of compartments was measured by 
Trestima).

The study showed that remote sensing data i. e. 
RGB aerial imagery and digital surface model ob-
tained with sUAV with respective ground truth data 
were able to deliver features suitable for mean for-
est volume estimation.

When it comes to the sUAV based estimation 
of H, the achieved RMSE of 6–7 % turned out to 
be better compared to the results of the study by 
Tuominen et al. (2015), where RMSE of 8–9 % was 
obtained using airborne laser scanning (ALS) data-
set, which (the ALS data) is considered the most 
accurate, and little worse or almost similar, respec-
tively, compared to the results of the study by Yu et 
al. (2015), where RMSE for H was 4.61–5.30 % for 
ALS and 6.90 % for a 3D model extracted from an 
aerial imagery.

sUAV based estimation of BA (RMSE of 22–
23 %) also turned to be slightly better at this study 
versus, for example, the recent studies by Tuomin-
en, Haapanen (2011), where results indicate RMSE 
of 25–26 % for ALS based estimation, and by Järn-
stedt (2012) where results indicate RMSE of 27–
28 % for ALS based estimation and 36–37 % for 
photo based estimation, respectively. However, BA 

estimation of this study is worse compared to the 
results by Yu et al. (2015), which showed RMSE 
of 14.75–15.91 % for ALS and 18.24 % for the 3D 
model extracted from the aerial imagery.

Respective sUAV based estimation of V result-
ed in RMSE of 26–27 %. This result is almost the 
same as the one reported by Tuominen et al. (2015), 
where more advanced estimation techniques were 
applied, and, respectively, worse compared to Yu et 
al. (2015) with RMSE of 15.91–16.72 % for ALS 
and 19.37 % for the aerial imagery based 3D model.

However, despite promising RMSEs, a direct 
comparison of variables on the local (compartment) 
level versus available reference data of the FMP 
introduces some questions to the sUAV based esti-
mation results that show quite some deviation (see 
Fig. 16 and 17). For example, the sUAV based esti-
mation of H (see Fig. 17) at more than 50 % of the 
forest compartments shows a systematic difference 
at the level of approx. 5 meters (see Fig. 20). This 
requires special attention. A possible answer may 
be the lack of clear knowledge about forest man-
agement activities that may have been performed in 
some forest compartments since the date of remote 
sensing and field data acquisition and might have 
an effect on the local relevance of the FMP data. 
Simultaneously, quality of the high-resolution DSM 
and/or the niceties of the 3D/Haralick features ex-
traction algorithms could be studied more in detail.

Fig. 18. Comparison of BA. Fig. 19. Comparison of volume.

Fig. 20. Comparison of height, m. Fig. 21. Comparison of number of stems (units).

Estimation of mean tree stand volume using high-resolution aerial RGB imagery and digital surface model...
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An application of more advanced estimation 
techniques such as the k-nn method (Tuominen et 
al., 2006) might also have given results that are 
more accurate. However, that requires more field 
data. The combination of the k-nn estimation and 
more extensive field measurements, for example, 
with several sample plots per stratum, could have 
played a positive role for the accuracy.

Here it should be however noted that the inac-
curacies revealed at comparison of the sUAV based 
estimations versus FMP (see Fig. 16, 17 and 18–
20), could also be explained by inaccuracy of the 
FMP estimations themselves. The study by Haara, 
Korhonen (2004) showed that forest variables es-
timation techniques that used to be employed at 
forest management planning have the following ac-
curacy constraints: mean forest compartment vol-
ume RMSE ranges from 10.6 to 33.9 %, basal area 
RMSE from 6.6 to 24.5 % and basal area weighted 
average height from 10.9 to 19.2 %. In that regard, 
factually FMP data cannot be used as a solid refer-
ence as, in general case, may possess rather high 
level of inaccuracy.

When it comes to Trestima as a sampling tool, 
if compared to, for example, the relascope or the 
fixed radius sample plot method, which require 
more complex arrangements such as marking of a 
sample plot center, making written notes for each 
single measurement etc., it, along with the accuracy 
indication achieved at this study, demonstrates good 
prospects to be either a forest inventory tool and/or 
as a forest data validation tool, which could be used 
by forest engineers or forest owners at their regular 
measurements. As this study at Trestima applica-
tion has been limited to just three forest compart-
ments, the results concerned with Trestima can be 
considered just as a preliminarily assessment of the 
technology in comparison to sUAV based and FMP 
estimations. Meanwhile, Siipilehto et. al (2016) at 
their study, where several inventory methods (ALS, 
Trestima and EMO (Uusitalo and Kivinen, 2000)) 
were compared over data of a harvester’s measure-
ment system, have shown that Trestima gives the 
following accuracy (RMSE) at predicting forest 
variables: 14.6–16.5 % for H, 30.9–31.3 % for BA, 
38.0–43.2 % for V and 34.2–43 % for a number 
of stems. However, that is the only study exists at 
the moment, where Trestima has been scrutinized. 
There is no other relevant studies on the matter. In 
that regard, there is a need to continue further re-
search on Trestima method.

Overall, the results of the study confirmed that 
the technologies and the tools applied at this work 

could be reliable and potentially cost-effective 
means of data acquisition for forest inventories with 
high potential of operational usage as well as leave 
a room for further development.

For example, the results indicate good prospects 
for the application of sUAVs (or any other cheap 
aerial platform) for forest inventory, which may 
deliver high quality data (VHR aerial imagery and 
high-resolution elevation model) of a quality close 
or even similar to ALS. The mentioned above data 
of photogrammetric modeling carry some necessary 
features for further estimation of forest variables 
with potential accuracy close to performance of 
ALS data, provided that the terrain is well defined 
from other sources. In that respect, one of the possi-
ble directions for further development may lie in the 
field of improvement of forest variables estimation 
accuracy by application of other more advanced es-
timation techniques.

Yet another interesting field could be to study 
if a photogrammetric high-resolution surface model 
may be used to render an accurate and/or sufficient 
enough terrain model. This particular application 
may be of extreme interest in forestry for the areas 
where terrain data is missing or of low quality. For 
example, this is the case at the entire territory of 
Russia, Africa and Asia, to name a few. The solution 
for the problem of lacking reliable terrain data, if 
found based on photogrammetry, can significantly 
ease further data processing and may also let avoid-
ing complex arrangements at remote sensing data 
georeferencing.

Simultaneously, as most of the features of the se-
lected sets belong to the 3D canopy model, it would 
have been very useful to test Haralick features 
only, similar to the work performed by Tuominen, 
Pekkarinen (2005), to check if the same accuracy 
is achievable. The problem originates from the fact 
that, as it has been stated above, accurate enough 
DTM is not available widely. In practice that means 
that in such circumstances most of the 3D features 
considered at this study would be impossible to 
derive, as the DSM could not be normalized to the 
ground level.

Trestima, however, can already be used as it is. 
This technique looks prospective for ground truth-
ing. However, existing forest inventory practices 
employ conventional methods and tools based on 
the application of relascope or fixed radius based 
sampling, which imply manual or semi-automated 
measurements. In that respect, Trestima will require 
new developments to be integrated into approved 
forest inventory systems.

G. K. Rybakov
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ОЦЕНКА СРЕДНЕГО ОБЪЕМА ДРЕВОСТОЯ С ИСПОЛЬЗОВАНИЕМ 
RGB АЭРОФОТОСНИМКОВ И ЦИФРОВОЙ МОДЕЛИ ПОВЕРХНОСТИ 
ВЫСОКОГО РАЗРЕШЕНИЯ, ПОЛУЧЕННЫХ С БЕСПИЛОТНОГО 
ЛЕТАТЕЛЬНОГО АППАРАТА, И МОБИЛЬНОГО ПРИЛОЖЕНИЯ 
ТРЕСТИМА

Г. К. Рыбаков
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Приводятся результаты изучения способа дистанционного зондирования для оценки среднего объема, ос-
нованного на RGB аэрофотоснимках и цифровой модели поверхности высокого разрешения, полученных 
при помощи беспилотного летательного аппарата (БПЛА), а также инновационной технологии Трестима как 
средства для полевых измерений. Территория исследования составляет 220 га лесных земель в Финляндии. 
Работа затрагивает весь процесс – от дистанционного зондирования и сбора полевых данных до статистиче-
ского анализа и составления карт объемов леса. Исследование показало, что аэрофотоснимки и цифровая мо-
дель поверхности высокого разрешения, полученные путем применения БПЛА, имеют хорошую перспективу 
для инвентаризации лесов. При оценке лесных переменных, таких как высота, площадь поперечных сечений 
стволов и средний объем, среднеквадратическая ошибка составила 6.6, 22.6 и 28.5 % соответственно. При-
менение технологии Трестима для оценки среднего объема древостоя продемонстрировало незначительные 
отличия от Плана освоения лесов на всех выбранных лесотаксационных выделах. Одновременно результаты 
исследования подтвердили, что примененные в данной работе технологии могут быть надежными и потен-
циально экономически эффективными средствами сбора лесных данных с перспективой операционного при-
менения.

Ключевые слова: дистанционное зондирование, БПЛА, Трестима, инвентаризация лесов, цифровая модель 
поверхности, средний объем.
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