УДК 539.3

АНАЛИЗ ВЫПУЧИВАНИЯ ГИБКОГО СТЕРЖНЯ МЕТОДОМ БУБНОВА — ГАЛЕРКИНА

Н. С. Астапов

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск Новосибирский государственный университет, 630090 Новосибирск E-mail: nika@hydro.nsc.ru

При тестировании метода Бубнова — Галеркина на задаче о продольном изгибе однослойного упругого стержня выявлены причины ошибок, часто встречающихся в работах по устойчивости упругих систем. Получены уточненные формулы для максимального прогиба продольно сжатого шарнирно опертого трехслойного стержня.

Ключевые слова: метод Бубнова — Галеркина, гибкий стержень, продольный изгиб, формы выпучивания, максимальный прогиб.

Введение. Точная зависимость между нагрузкой *P*, продольно сжимающей гибкий упругий шарнирно опертый стержень длиной *l*, и прогибом *f* получена Эйлером в виде полного эллиптического интеграла первого рода [1. С. 441]

$$l = 2\sqrt{\frac{EI}{P}} \int_{0}^{\pi/2} \frac{d\psi}{\sqrt{1 - (f^2 P/(4EI))\sin^2\psi}}$$

и в виде ряда

$$l = \pi \sqrt{\frac{EI}{P}} \Big\{ 1 + \Big(\frac{1}{2}\Big)^2 \frac{f^2 P}{4EI} + \Big(\frac{1 \cdot 3}{2 \cdot 4}\Big)^2 \Big(\frac{f^2 P}{4EI}\Big)^2 + \Big(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\Big)^2 \Big(\frac{f^2 P}{4EI}\Big)^3 + \dots \Big\},\tag{1}$$

где *EI* — изгибная жесткость стержня. Равновесные закритические формы сжатых стержней впервые исследованы Лагранжем, а с применением таблиц эллиптических интегралов изучены в [2, 3]. Однако для практического использования приведенные в [2, 3] способы оказываются трудоемкими из-за необходимости вычисления величин, выраженных через эллиптические интегралы первого и второго рода. Этот факт является одной из причин поиска методов (решение линеаризованных дифференциальных уравнений, соответствующих исходным нелинейным уравнениям; аппроксимация эллиптических интегралов, выражающих точное решение, и др.) получения приближенных формул для прогибов и формы выпучивания стержня. Еще одной причиной обращения к задаче определения формы упругой линии является ее использование вследствие наличия точного решения в качестве тестовой задачи при построении эффективных приближенных решений.

Способ Мизеса линеаризации дифференциального уравнения упругой линии. В работе [4] предложен следующий способ вывода приближенных формул для прогибов стержня в зависимости от нагрузки. Представим дифференциальное уравнение упругой линии стержня в виде

$$\frac{d^2y}{ds^2} + \frac{P}{EI}y\cos\theta = 0,$$
(2)

149

где θ — угол между касательной и осью Ox (первоначально прямолинейной осью стержня); s — длина дуги упругой кривой. Принимая в первом приближении кривую прогиба в виде синусоиды

$$y = c\sin\left(\pi s/l\right) \tag{3}$$

и учитывая равенства $\sin \theta = dy/ds = c\pi \cos (\pi s/l)/l$ и малость величины c относительно l, имеем

$$\cos\theta = \sqrt{1 - \left(\frac{c\pi}{l}\cos\frac{\pi s}{l}\right)^2} \approx 1 - \frac{\pi^2 c^2}{2l^2}\cos^2\frac{\pi s}{l}.$$
(4)

Подставляя выражения (3), (4) в уравнение (2), находим

$$\frac{d^2y}{ds^2} + \frac{P}{EI}y = \frac{\pi^2 c^3}{2l^2} \frac{P}{EI} \cos^2 \frac{\pi s}{l} \sin \frac{\pi s}{l}.$$
 (5)

Заменяя в правой части (5) величину P/EI близкой к ней величиной π^2/l^2 и проводя тригонометрические преобразования, получим

$$\frac{d^2y}{ds^2} + \frac{P}{EI}y = \frac{\pi^4 c^3}{8l^4} \left(\sin\frac{\pi s}{l} + \sin\frac{3\pi s}{l}\right).$$
 (6)

Найдем интеграл уравнения (6), удовлетворяющий граничным условиям y(0) = y(l) = 0:

$$y = c\sin\left(\pi s/l\right) + c_1\sin\left(3\pi s/l\right)$$

 $(c^2 = 8l^2(P/P_* - 1)/\pi^2; P_* = EI(\pi/l)^2$ — критическая нагрузка Эйлера). С учетом приближенного равенства $P/EI \approx (\pi/l)^2$ при $P \approx P_* \quad c_1 \approx -(\pi/l)^2 c^3/64$. Отметим, что в [5] такое же соотношение между коэффициентами с и c_1 получено методом возмущений. Кроме того, в [4] Мизес указывает, что в точке s = l/2 стержень имеет наибольший прогиб $y_m = c - c_1$, который с учетом малости коэффициента c_1 по сравнению с коэффициентом с приближенно равен

$$y_m = c = \frac{\sqrt{8}l}{\pi} \sqrt{\frac{P}{P_*} - 1}.$$
 (7)

Об ошибках в работах по теории гибких стержней. В работе [6. С. 561] коэффициент c_1 приведен с неверным знаком: $c_1 = c(P/P_* - 1)/8$. В результате этой неточности в работах [7. С. 174; 8. С. 17; 9. С. 74; 10. С. 86; 11. С. 129] для наибольшего прогиба в зависимости от нагрузки получена ошибочная формула

$$f = \frac{2\sqrt{2}l}{\pi} \sqrt{\frac{P}{P_*} - 1} \left(1 - \frac{1}{8} \left(\frac{P}{P_*} - 1 \right) \right), \tag{8}$$

однако из соотношений $y_m = c - c_1, cc_1 < 0$ и выражений для c и c_1 следует

$$f = \frac{2\sqrt{2}l}{\pi} \sqrt{\frac{P}{P_*} - 1} \left(1 + \frac{1}{8} \left(\frac{P}{P_*} - 1 \right) \right).$$
(9)

Следует отметить, что формула (9) является менее точной, чем формула (7), а необоснованная формула (8) точнее формулы (7).

В работе [12. С. 25] для коэффициента c_1 ошибочно дано выражение $c_1 = c\sqrt{P/P_* - 1}/8$, хотя в [13. С. 66; 14. С. 636] приведено выражение $c_1 = -c(P/P_* - 1)/8$ и утверждается, что формула (9) дает "хорошие результаты".

Автор работы [1] показывает, что формула Мизеса (7) "уже содержится в более общем результате Эйлера", в случае если в правой части (1) учитываются только первые два члена. Сохраняя в правой части (1) первые три члена, во втором приближении получим

$$\frac{f}{l} = \frac{2\sqrt{2}}{\pi} \sqrt{\frac{P}{P_*} - 1} \left(1 - \frac{19}{16} \left(\frac{P}{P_*} - 1 \right) \right). \tag{10}$$

Далее, ссылаясь на работу [8] и критикуя формулу (8), автор работы [1. С. 443] приходит к заключению, что "приближенный вывод Мизеса, приводящий к правильной формуле первого приближения (7), оказывается недостаточным для получения формулы второго приближения" (10).

Сравнительный анализ аналогичных формул дан в [15], где для $P/P_* \approx 1$ приводится менее точная, чем (10), формула

$$\frac{f}{l} = \frac{2\sqrt{2}}{\pi} \sqrt{\frac{P}{P_*} - 1} \left(1 - \frac{41}{64} \left(\frac{P}{P_*} - 1\right)\right),$$

полученная с помощью рядов в [2. С. 501]. "Устойчивость" формулы (7) проявилась и в работе [16. С. 245], где с использованием теории катастроф получено аналогичное, но неверное соотношение

$$P \approx P_*(1 + (3/8)(\pi f/l_1)^2),$$

предписывающее неустойчивое закритическое поведение стержня $(l_1 - paccтояние меж$ ду концами стержня). При выводе этого соотношения допущены следующие ошибки: 1) ввыражении для полной потенциальной энергии стержня вместо <math>l используется l_1 ; 2) полагается, что величина l_1 не зависит от прогиба стержня; 3) необоснованно отброшена часть членов одного порядка малости.

В учебнике [17. С. 356] для исследования малоизогнутых равновесных состояний стержня предложено следующее приближенное решение. В дифференциальном уравнении упругой линии стержня

$$\frac{d^2y}{ds^2} / \sqrt{1 - \left(\frac{dy}{ds}\right)^2} + \frac{P}{EI}y = 0 \tag{11}$$

выполним замену $1/\sqrt{1-(dy/ds)^2} = 1 + (dy/ds)^2/2 + 3(dy/ds)^4/8 + \ldots \approx 1 + (dy/ds)^2/2.$ В результате получим

$$\frac{d^2y}{ds^2}\left(1+\frac{1}{2}\left(\frac{dy}{ds}\right)^2\right) + \frac{P}{EI}y = 0.$$

Полагая, что при малых отклонениях форма оси стержня описывается одной полуволной синусоиды (3), и заменяя величину $(dy/ds)^2/2$ ее средним значением на отрезке [0, l], имеем

$$\frac{d^2y}{ds^2}\left(1 + \left(\frac{c\pi}{2l}\right)^2\right) + \frac{P}{EI}y = 0.$$

Отсюда с учетом равенства (3) находим $P/P_* \approx 1 + c^2 \pi^2/(4l^2)$, следовательно, $c/l \approx 2\sqrt{P/P_* - 1}/\pi$. В результате получаем зависимость наибольшего прогиба стержня от нагрузки более грубую, чем формула (7).

С использованием способа Мизеса можно уточнить формулу (7), если, выполнив замену корня, от уравнения (11) перейти к приближенному уравнению

$$\frac{d^2y}{ds^2} \left(1 + \frac{1}{2} \left(\frac{dy}{ds} \right)^2 + \frac{3}{8} \left(\frac{dy}{ds} \right)^4 \right) + \frac{P}{EI} y = 0.$$
(12)

Подставляя в (12) выражение (3) и проводя тригонометрические преобразования, получим

$$-\left(\frac{\pi}{l}\right)^{2} \left[\left(1 + \frac{1}{8} \left(\frac{c\pi}{l}\right)^{2} + \frac{3}{64} \left(\frac{c\pi}{l}\right)^{4} \right) c \sin \frac{\pi s}{l} + \left(\frac{1}{8} \left(\frac{c\pi}{l}\right)^{2} + \frac{9}{128} \left(\frac{c\pi}{l}\right)^{4} \right) c \sin \frac{3\pi s}{l} + \frac{3}{128} \left(\frac{c\pi}{l}\right)^{4} c \sin \frac{5\pi s}{l} \right] + \frac{P}{EI} c \sin \frac{\pi s}{l} = 0.$$

Формула	f/l							
прогиба	$\lambda = 1,002$	$\lambda = 1,020$	$\lambda = 1,100$	$\lambda = 1,200$	$\lambda = 1,300$	$\lambda = 1,400$	$\lambda = 1,500$	$\lambda = 2,000$
(7)	$0,\!040263$	$0,\!12732$	0,2847	0,403	0,493			
(8)	0,040253	0,12701	0,2811	0,393	0,475			
(10)	$0,\!040168$	$0,\!12430$	0,2509	0,307	0,317	0,299	0,259	
(13)	$0,\!040144$	$0,\!12386$	0,2555	0,338	0,393	0,436	0,472	
(16)	$0,\!040183$	$0,\!12483$	0,2588	0,336	0,379	0,407	0,424	0,450
(20)	$0,\!040168$	$0,\!12437$	$0,\!2545$	0,325	0,364	0,387	$0,\!401$	0,418
Точное решение	0,040 168	$0,\!12437$	0,2543	0,324	0,361	0,382	0,394	0,398

Далее, приравнивая к нулю коэффициент при $\sin(\pi s/l)$, имеем

$$\frac{3}{64} \left(\frac{c\pi}{l}\right)^4 + \frac{1}{8} \left(\frac{c\pi}{l}\right)^2 - (\lambda - 1) = 0,$$

где $\lambda = P/P_*$. Отсюда находим более точную, чем (7) и (8), формулу

$$\frac{f}{l} = \frac{c}{l} = \frac{2}{\pi\sqrt{3}}\sqrt{\sqrt{1+12(\lambda-1)}-1},$$
(13)

которая, как показано в таблице, при $\lambda \ge 1,1$ является и более точной, чем формула (10).

В таблице для нагрузки $\lambda = P/P_*$, 1,002 $\leq \lambda \leq 2,000$ приведены значения максимального прогиба стержня f, отнесенного к его длине l, вычисленные по формулам, номера которых указаны в левом столбце. В нижней строке таблицы приведены значения относительного прогиба стержня f/l, вычисленные с указанной точностью с помощью полного эллиптического интеграла первого рода. Прочерки в таблице соответствуют значениям f/l, не имеющим физического смысла, например f/l < 0 или f/l > 0,5.

Используя разложение корней, из (13) можно вывести ряд более грубых (как показывают расчеты) формул:

$$\frac{2}{\pi\sqrt{3}}\sqrt{\sqrt{1+12(\lambda-1)}-1} \approx \frac{2\sqrt{2}}{\pi}\sqrt{\frac{6(\lambda-1)-(12(\lambda-1))^2/8}{6}} = \frac{2\sqrt{2}}{\pi}\sqrt{\lambda-1}\sqrt{4-3\lambda} \approx \frac{2\sqrt{2}}{\pi}\sqrt{\lambda-1}\left(1-\frac{24}{16}(\lambda-1)\right).$$

Применение метода Бубнова — Галеркина. Для вывода формулы (7) Мизес использовал, по сути, метод Бубнова — Галеркина. Однако, уточняя с помощью выражения $y_m = c - c_1$ формулу (7), необходимо вычислить коэффициент c_1 и, удерживая в ряду члены такого же порядка малости, уточнить коэффициент c. Действительно, в дифференциальном уравнении (2) упругой линии стержня

$$\frac{d^2y}{ds^2} + \frac{P}{EI}y\sqrt{1 - \left(\frac{dy}{ds}\right)^2} = 0$$

заменим корень разложением в ряд

$$\sqrt{1 - \left(\frac{dy}{ds}\right)^2} = 1 - \frac{1}{2}\left(\frac{dy}{ds}\right)^2 - \frac{1}{8}\left(\frac{dy}{ds}\right)^4 - \dots$$

и перенесем нелинейные члены в его правую часть. Получаем

$$\frac{d^2y}{ds^2} + \frac{P}{EI}y = \frac{P}{EI}y\left(\frac{1}{2}\left(\frac{dy}{ds}\right)^2 + \frac{1}{8}\left(\frac{dy}{ds}\right)^4 + \dots\right).$$
(14)

Подставляя в (14) выражение (3) и учитывая в правой части лишь первые два нелинейных члена, имеем

$$\left(-\left(\frac{\pi}{l}\right)^{2} + \frac{P}{EI}\right)c\sin\frac{\pi s}{l} = \frac{P}{EI}c\left[\left(\frac{1}{8}\left(\frac{c\pi}{l}\right)^{2} + \frac{1}{64}\left(\frac{c\pi}{l}\right)^{4}\right)\sin\frac{\pi s}{l} + \left(\frac{1}{8}\left(\frac{c\pi}{l}\right)^{2} + \frac{3}{128}\left(\frac{c\pi}{l}\right)^{4}\right)\sin\frac{3\pi s}{l} + \frac{1}{128}\left(\frac{c\pi}{l}\right)^{4}\sin\frac{5\pi s}{l}\right].$$
 (15)

Приравнивая в (15) коэффициенты при $\sin(\pi s/l)$, для определения зависимости прогиба от нагрузки получаем

$$-\left(\frac{\pi}{l}\right)^2 + \frac{P}{EI} = \frac{P}{EI}\left(\frac{1}{8}\left(\frac{c\pi}{l}\right)^2 + \frac{1}{64}\left(\frac{c\pi}{l}\right)^4\right),$$

или $z^2+z=p=(\lambda-1)/\lambda,$ где $z=(c\pi/l)^2/8;$
 $\lambda=P/P_*\geqslant 1.$ Отсюда находим $z=(-1+\sqrt{1+4p}\,)/2\approx(-1+1+4p/2-(4p)^2/8)/2=p(1-p).$ Следовательно,

$$\frac{f}{l} = \frac{c}{l} = \frac{\sqrt{8p(1-p)}}{\pi} = \frac{2\sqrt{2}}{\pi\lambda}\sqrt{\lambda-1}.$$
(16)

Заметим, что в [18] формула (16) получена иным путем (с помощью квадратичной падеаппроксимации точного решения) и отличается от (7) лишь множителем λ в знаменателе.

Итак, считая, что стержень принимает форму одной полуволны синусоиды (3), и пренебрегая коэффициентом c_1 , получаем более точную, чем (7), (8), формулу (16), которая при $\lambda \ge 1,2$ (см. таблицу) также точнее формул (10), (13). Причем формула (16) оказалась более точной, чем формула (13), несмотря на то что в представлении корня в исходном дифференциальном уравнении и в представлении обратной величины корня в уравнении (11) использовалось одинаковое количество членов ряда. Главная причина такого различия заключается в следующем. Так как при $z \ne 0$

$$(1 + z^2/2 + 3z^4/8)(1 - z^2/2 - z^4/8) = 1 - z^6/4 - 3z^8/64 < 1,$$

то при 0 < |z| < 1 имеем $(1 + z^2/2 + 3z^4/8) < 1/(1 - z^2/2 - z^4/8)$. Следовательно,

$$0 < \frac{1}{\sqrt{1-z^2}} - \frac{1}{1-z^2/2 - z^4/8} < \frac{1}{\sqrt{1-z^2}} - (1+z^2/2 + 3z^4/8),$$

$$\sqrt{1-z^2} - \frac{1}{1+z^2/2 + 3z^4/8} < \sqrt{1-z^2} - (1-z^2/2 - z^4/8) < 0.$$

Поэтому и в числителе, и в знаменателе корень $\sqrt{1-z^2}$ целесообразно заменять выражением $1-z^2/2-z^4/8$, а не выражением $1/(1+z^2/2+3z^4/8)$. В рассматриваемом случае можно предположить, что соотношение

$$\frac{d^2y}{ds^2} + \frac{P}{EI}y = \frac{P}{EI}y\left(\frac{1}{2}\left(\frac{dy}{ds}\right)^2 + \frac{1}{8}\left(\frac{dy}{ds}\right)^4\right) \tag{17}$$

более точно, чем уравнение (12), приближает исходное уравнение (11).

Для того чтобы уточнить формулу (16), будем полагать, что стержень принимает форму, описываемую линейной комбинацией двух синусоид с последовательными нечетными числами полуволн:

$$y = c\sin(\pi s/l) + d\sin(3\pi s/l).$$
 (18)

Дифференциальный оператор $(\cdot)((\cdot)'^2/2 + (\cdot)'^4/8)$ преобразует (18) в выражение

$$\begin{split} y\Big(\frac{y'^2}{2} + \frac{y'^4}{8}\Big) &= \Big(\frac{\pi^2}{8l^2}\left(c^2 - 5cd + 18d^2\right) + \frac{\pi^4}{128l^4}\left(2c^4 - 9c^3d + 108c^2d^2 - 270cd^3 + 486d^4\right)\Big)c\sin\frac{\pi s}{l} + \\ &+ \Big(\frac{\pi^2}{8l^2}\left(c^3 + 2c^2d + 9d^3\right) + \frac{3\pi^4}{128l^4}\left(2c^5 + 2c^4d + 22c^3d^2 + 36c^2d^3 + 54d^5\right)\Big)\sin\frac{3\pi s}{l}, \end{split}$$

в котором отброшена линейная комбинация синусоид с числом полуволн более трех. Таким образом, подставляя в (17) выражение (18) и приравнивая коэффициенты при $\sin(\pi s/l)$ и $\sin(3\pi s/l)$, для определения коэффициентов c и d по данной нагрузке P получим систему нелинейных алгебраических уравнений. Обозначая $a = \pi c/l$, $b = \pi d/l$ и $\lambda = P/P_*$, для определения a и b через λ имеем следующую систему уравнений:

$$\frac{\lambda - 1}{\lambda} = \frac{a^2 - 5ab + 18b^2}{8} + \frac{2a^4 - 9a^3b + 108a^2b^2 - 270ab^3 + 486b^4}{128},$$
$$\frac{\lambda - 9}{\lambda}b = \frac{a^3 + 2a^2b + 9b^3}{8} + 3\frac{a^5 + 2a^4b + 22a^3b^2 + 36a^2b^3 + 54b^5}{128}.$$

Исключая из второго уравнения λ и отбрасывая члены более высокого порядка малости, получим

$$a^{4}/8 + 18b^{2} - 5ab + a^{2} - 8p = 0,$$

$$a^{3} - 7a^{2}b + 45ab^{2} - 153b^{3} + 64b = 0,$$
(19)

где $p = (\lambda - 1)/\lambda$. Подставляя в первое уравнение системы (19) приближенное выражение $b \approx -a^3/64$, следующее из второго уравнения, получим соотношение $a^4/8 + 18(a^3/64)^2 + 5a^4/64 + a^2 - 8p = 0$, из которого в свою очередь следует приближенное уравнение $13a^4 + 64(a^2 - 8p) = 0$. Отсюда имеем $a^2 = (-32 + 32\sqrt{1 + 13p/2})/13 \approx 8p - 13p^2$, $a \approx 2\sqrt{2p}(1 - 13p/16)$ и, следовательно,

$$a - b \approx a(1 + a^2/64) \approx 2\sqrt{2p} (1 - 13p/16)(1 + p/8) \approx 2\sqrt{2p} (1 - 11p/16),$$

т. е. наибольший относительный прогиб стержня приближенно равен

$$\frac{f}{l} = \frac{c-d}{l} = \frac{2\sqrt{2}}{\pi} \sqrt{\frac{\lambda-1}{\lambda}} \left(1 - \frac{11}{16} \frac{\lambda-1}{\lambda}\right). \tag{20}$$

Расчеты показывают (см. таблицу), что в диапазоне $1 \leq \lambda \leq 2$ формула (20) оказывается наиболее точной среди приведенных приближенных формул. Наибольшая относительная погрешность формулы (20) имеет место при $\lambda = 2$ и не превышает 5 %, что вполне допустимо с инженерной точки зрения. При нагрузке $\lambda \approx 1,75$ прогиб стержня достигает максимума $f_{\text{max}} \approx 0,403$, при $\lambda \approx 2,18$ стержень образует петлю. Однако следует отметить, что в отличие от формулы (20) формула (16) качественно лучше описывает зависимость нагрузки от прогиба. Действительно, вычисляя прогиб по формуле (16), получим $f/l \to 0$ при $\lambda \to \infty$, что в отличие от зависимости $f/l \to 5\sqrt{2}/(8\pi) \neq 0$ при $\lambda \to \infty$ для формулы (20) соответствует механическому содержанию задачи.

На рисунке показаны точная зависимость относительного прогиба середины стержня f/l от нагрузки λ (кривая 1) и зависимости, построенные по приближенным формулам.

Выпучивание трехслойного стержня. Нелинейное дифференциальное уравнение равновесия упругой линии продольно сжатого шарнирно опертого трехслойного стержня запишем в виде [19. С. 47]

$$\left(1 - ht \frac{d^2}{ds^2}\right) \frac{d^2}{ds^2} \left(\frac{d^2y}{ds^2} / \sqrt{1 - \left(\frac{dy}{ds}\right)^2}\right) + \frac{N}{D} \left(1 - h \frac{d^2}{ds^2}\right) \frac{d^2y}{ds^2} = 0,$$
(21)

Зависимость относительного прогиба стержня f/l от нагрузки λ : 1 — точное решение; 2–7 — решения, полученные по приближенным формулам (2 — формула (7); 3 — формула (8); 4 — формула (10); 5 — формула (13); 6 — формула (16); 7 — формула (20))

где N — параметр нагрузки; y(s) — прогиб стержня; параметры D (минимальная изгибная жесткость стержня), h и t полностью характеризуют структуру трехслойного стержня при сопротивлении изгибу [19. С. 21]. Заметим, что в случае если толщина слоя с наполнителем равна нулю (для однослойного стержня), h = 0 и уравнение (21) совпадает с дважды продифференцированным уравнением (11). Разлагая в (21) обратную величину корня в ряд и учитывая первые три члена этого ряда, получим

$$\left(1 - ht \frac{d^2}{ds^2}\right) \frac{d^2}{ds^2} \left\{ \frac{d^2y}{ds^2} \left[1 + \frac{1}{2} \left(\frac{dy}{ds}\right)^2 + \frac{3}{8} \left(\frac{dy}{ds}\right)^4 \right] \right\} + \frac{N}{D} \left(1 - h \frac{d^2}{ds^2} \right) \frac{d^2y}{ds^2} = 0.$$
(22)

Подставляя в (22) выражение (3), проводя тригонометрические преобразования и приравнивая к нулю коэффициент при $\sin(\pi s/l)$, имеем

$$3k^{3}(1+kht)c^{4} + 8k^{2}(1+kht)c^{2} + 64k(1+kht) - 64(1+kh)N/D = 0$$

или

$$3k^2c^4 + 8kc^2 - 64(\lambda - 1) = 0,$$

где $k = (\pi/l)^2$; $\lambda = N/N_*$; $N_* = Dk(1 + kht)/(1 + kh)$ — эйлерова критическая сила [19]. Окончательно для максимального относительного прогиба f/l получаем, по сути, формулу для однородных стержней (13)

$$\frac{f}{l} = \frac{c}{l} = \frac{2}{\pi\sqrt{3}}\sqrt{\sqrt{1 + 12(\lambda - 1)} - 1},$$

уточняющую формулу (1.219) из работы [19. С. 48]. Однако в данной формуле эйлерова нагрузка N_* зависит от параметров, характеризующих сдвиг наполнителя и структуру стержня.

В предположении, что форма оси стержня описывается линейной комбинацией двух синусоид (18) с последовательными нечетными числами полуволн, для определения ко-

эффициентов c и d по данной нагрузке N имеем следующую систему двух нелинейных алгебраических уравнений:

$$3a^{4} + 8a^{2} + 24ab - 64(\lambda - 1) = 0,$$

$$9a^{5} + 16a^{3} + 288a^{2}b + 1152b - 128b\lambda \frac{(1 + kht)(1 + 9kht)}{(1 + kh)(1 + 9kht)} = 0.$$
(23)

Здесь $a = \pi c/l$; $b = \pi d/l$; $\lambda = N/N_*$; $N_* = Dk(1 + kht)/(1 + kh)$; $k = (\pi/l)^2$. Полагая, что во втором уравнении системы (23) дробь приближенно равна 1, $\lambda \approx 1$, и отбрасывая члены более высокого по сравнению с a^3 порядка малости, имеем приближенное уравнение $16a^3 + 1152b - 128b = 0$. Отсюда находим выражение $b \approx -a^3/64$, подставляя которое в первое уравнение системы (23), получаем $21a^4 + 64a^2 - 512(\lambda - 1) = 0$. Таким образом,

$$a^{2} = \frac{16\sqrt{2}}{21} \left(\sqrt{21\lambda - 19} - \sqrt{2}\right) \approx \\ \approx \frac{16\sqrt{2}}{21} \sqrt{2} \left(\frac{21}{4} \left(\lambda - 1\right) - \frac{21^{2}}{32} \left(\lambda - 1\right)^{2}\right) = 8(\lambda - 1) - 21(\lambda - 1)^{2}.$$

В этом случае для максимального относительного прогиба стержня имеем

$$\frac{f}{l} = \frac{c-d}{l} = \frac{a-b}{\pi} \approx \frac{a(1+a^2/64)}{\pi} \approx \frac{2\sqrt{2}\sqrt{\lambda-1}}{\pi} \sqrt{1-\frac{21}{8}(\lambda-1)} \left(1+\frac{1}{8}(\lambda-1)\right) \approx \frac{2\sqrt{2}\sqrt{\lambda-1}}{\pi} \left(1-\frac{19}{16}(\lambda-1)\right).$$

Итак, учитывая все члены одного порядка малости, в случае максимального прогиба трехслойного стержня можно получить формулу для однородных стержней (10). Заметим, что для однослойного стержня (h = 0) все предыдущие расчеты существенно упрощаются, в частности, во втором уравнении системы (23) дробь точно равна единице.

Заключение. Использование метода Бубнова — Галеркина при решении нелинейных дифференциальных уравнений приводит к значительным затруднениям, так как возникает необходимость решения системы нелинейных алгебраических уравнений. Однако на примере описания закритического поведения сжатого гибкого стержня показано, что при удачном выборе координатных функций для представления решения и корректном упрощении нелинейной алгебраической системы уравнений с учетом всех величин одного порядка малости использование метода Бубнова — Галеркина позволяет получить формулы более точные, чем формулы, получаемые с помощью других методов. Таким образом выведены уточненные выражения для максимального прогиба трехслойного стержня.

ЛИТЕРАТУРА

- 1. **Николаи Е. Л.** О работах Эйлера по теории продольного изгиба // Труды по механике. М.: Гостехтеоретиздат, 1955.
- 2. Крылов А. Н. О формах равновесия сжатых стоек при продольном изгибе // Избр. тр. М.: Изд-во АН СССР, 1958.
- 3. Попов Е. П. Теория и расчет гибких упругих стержней. М.: Наука, 1986.
- Mises R. Ausbiegung eines auf Knicken beanspruchten Stabes // Z. angew Math. Mech. 1924. Bd 4. S. 435–436.
- 5. Астапов Н. С. Закритическое поведение стержня // Динамика сплошной среды: Сб. науч. тр. / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1989. Вып. 92. С. 14–21.

- 6. **Тимошенко С. П.** Проблемы упругой устойчивости // Устойчивость стержней, пластин и оболочек: Избр. тр. / Под ред. Э. И. Григолюка. М.: Наука, 1971.
- 7. Тимошенко С. П. Сопротивление материалов. Л.; М.: Гостехтеоретиздат, 1932. Ч. 2.
- 8. Тимошенко С. П. Вопросы устойчивости упругих систем. Л.: Кубуч, 1935.
- 9. Тимошенко С. П. Устойчивость упругих систем. М.; Л.: ОГИЗ, 1946.
- 10. Тимошенко С. П. Устойчивость упругих систем. 2-е изд. М.: Гостехтеоретиздат, 1955.
- 11. Тимошенко С. П. Сопротивление материалов. М.: Наука, 1965. Т. 2.
- 12. Динник А. Н. Избранные труды. Киев: Изд-во АН УССР, 1956. Т. 3.
- 13. Динник А. Н. Продольный изгиб. М.; Л.: ГОНТИ, 1939.
- 14. Справочник по технической механике / Под ред. А. Н. Динника. М.: ОГИЗ: Гостехтеоретиздат, 1949.
- 15. Астапов Н. С. Приближенные формулы для прогибов сжатых гибких стержней // ПМТФ. 1996. Т. 37, № 4. С. 135–138.
- 16. Гилмор Р. Прикладная теория катастроф. М.: Мир, 1984. Кн. 1.
- 17. **Терегулов И.** Г. Сопротивление материалов и основы теории упругости и пластичности: Учеб. для студентов вузов. М.: Высш. шк., 1984.
- Астапов И. С., Астапов Н. С., Васильева Е. Л. Квадратичная аппроксимация больших перемещений гибкого сжатого стержня // Изв. РАН. Механика твердого тела. 2003. № 1. С. 164–171.
- 19. **Григолюк Э. И.** Устойчивость и колебания трехслойных оболочек / Э. И. Григолюк, П. П. Чулков. М.: Машиностроение, 1973.

Поступила в редакцию 14/XII 2005 г., в окончательном варианте — 29/I 2007 г.