УДК 532.516

ДВИЖЕНИЕ ВОДНОГО РАСТВОРА ПОЛИМЕРА СО СВОБОДНОЙ ГРАНИЦЕЙ

О. А. Фроловская

Институт гидродинамики им. М. А. Лаврентьева СО РАН,

630090 Новосибирск, Россия

Новосибирский государственный национальный исследовательский университет,

630090 Новосибирск, Россия

E-mail: oksana@hydro.nsc.ru

Рассматривается задача о нестационарном течении водного раствора полимера в полосе со свободной границей, в условие на которой входит производная искомой функции по времени. Построено решение этой задачи для слоистого течения в полосе постоянной ширины. Исследована зависимость изменения ширины полосы со временем от параметра, пропорционального релаксационной вязкости.

Ключевые слова: водные растворы полимеров, слоистые течения, течения со свободными границами.

DOI: 10.15372/PMTF20220106

Введение. Для описания течения слабых водных растворов полимеров в работе [1] сформулирована феноменологическая модель, учитывающая релаксационные свойства среды. Искомыми функциями в этой модели являются вектор скорости \boldsymbol{v} и давление жидкости \boldsymbol{p} . Среда полагается несжимаемой с постоянными плотностью $\boldsymbol{\rho}$ и кинематической вязкостью $\boldsymbol{\nu}$. Модель содержит два эмпирических параметра: время релаксации $\boldsymbol{\theta}$ и коэффициент релаксационной вязкости $\tilde{\boldsymbol{\varkappa}}$. Реологическое соотношение в этой модели имеет вид

$$P = -pI + 2\mu D + 2\frac{\tilde{\varkappa}}{\theta} \int_{-\infty}^{t} \exp\left(\frac{s-t}{\theta}\right) \frac{d}{ds} D(s) ds, \tag{1}$$

где P — тензор напряжений; I — единичный тензор; $\mu = \rho \nu$ — динамическая вязкость; D — тензор скоростей деформаций, соответствующий векторному полю \boldsymbol{v} ; d/dt — оператор полного дифференцирования по времени, следовательно, $d\boldsymbol{v}/dt = \partial \boldsymbol{v}/\partial t + \boldsymbol{v} \cdot \nabla \boldsymbol{v}$.

Модификация данной модели для предельного случая малых времен релаксации предложена в работе [2], в которой соотношение (1) упрощено путем сохранения первого члена асимптотического разложения интегрального члена по параметру $\theta \to 0$:

$$P = -pI + 2\mu D + 2\tilde{\varkappa} \frac{dD}{dt}.$$
 (2)

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 19-01-00096).

Закону состояния (2) соответствует следующая математическая модель движения водных растворов полимеров [2]:

$$\frac{d\mathbf{v}}{dt} = -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{v} + \varkappa \frac{d \Delta \mathbf{v}}{dt}, \quad \text{div } \mathbf{v} = 0$$
(3)

(вместо $\tilde{\varkappa}$ введен параметр $\varkappa = \tilde{\varkappa}/\rho$ — нормализованная релаксационная вязкость, имеющая размерность квадрата длины [3]).

Свойства решений для наследственной модели движения водных растворов полимеров изучены в работах [3–5], в которых также приведен обзор работ, посвященных исследованию течений полимерных растворов.

В настоящей работе в рамках упрощенной модели Павловского (3) рассматривается нестационарная задача о течении водного раствора полимера в полосе, ограниченной прямой твердой стенкой и параллельной ей свободной границей. Также рассматриваются решения, когда одна компонента скорости является линейной функцией одной из координат, а вторая компонента скорости и давление не зависят от этой координаты. Особенностью задачи является наличие малого параметра и производной по времени в граничном условии. Исследуется изменение ширины полосы за счет притока жидкости из бесконечности.

Слоистые течения со свободной границей. Пусть x, y — декартовы координаты на плоскости, u, v — соответствующие компоненты вектора скорости v.

Наиболее простой является задача о неустановившемся слоистом течении в полосе, ограниченной снизу твердой стенкой y=0, а сверху — параллельной ей свободной границей y=h, причем h= const. Решение системы (3) находим в виде

$$u = u(y, t),$$
 $v = 0,$ $p = p(y, t).$

При формулировке задачи в безразмерных переменных для нормирования выбраны следующие величины: ширина полосы h — для расстояния, h^2/ν — для времени. Тогда функция u удовлетворяет уравнению

$$\frac{\partial u}{\partial t} = \gamma \frac{\partial^3 u}{\partial u^2 \partial t} + \frac{\partial^2 u}{\partial u^2} \tag{4}$$

 $(\gamma = \varkappa/h^2$ — безразмерный параметр). На твердой стенке y=0 выполняется условие прилипания

$$u = 0. (5)$$

На свободной границе y=1 кинематическое условие выполняется тождественно, а динамическое условие записывается в виде

$$\frac{\partial u}{\partial y} + \gamma \frac{\partial^2 u}{\partial y \, \partial t} = 0. \tag{6}$$

В начальный момент времени t = 0 имеем

$$u = u_0(y). (7)$$

Численное решение задачи (4)–(7) при различных значениях начальной функции $u_0(y)$ получено в работе [5], где также отмечалось, что при $\gamma=0$ уравнение (4) преобразуется в уравнение теплопроводности, решение которого записывается в виде $u(y,t)=c\exp{(-\pi^2t/4)}\sin{(\pi y/2)}$. Результаты вычислений показали, что при малых значениях γ решение задачи (4)–(7) близко к этому решению.

Следует отметить, что задачу (4)–(7) можно решить методом разделения переменных. Частными решениями уравнения (4), удовлетворяющими граничным условиям (5), (6), являются функции

$$u_n(y,t) = C_n \sin\left(\frac{(2n-1)\pi y}{2}\right) \exp\left(-\frac{(2n-1)^2 \pi^2 t}{4 + (2n-1)^2 \pi^2 \gamma}\right), \qquad n = 1, 2, 3, \dots,$$

представимые в виде произведения двух функций, одна из которых зависит только от y, а другая — от t. Коэффициенты C_n находятся из начального условия (7) путем разложения функции $u_0(y)$ в ряд по синусам на интервале (0;1):

$$u_0(y) = \sum_{n=1}^{\infty} u_{0n} \sin\left(\frac{(2n-1)\pi y}{2}\right), \qquad C_n = u_{0n} = 2\int_0^1 u_0(\xi) \sin\left(\frac{(2n-1)\pi \xi}{2}\right) d\xi.$$

В силу линейности и однородности уравнения (4) решение задачи (4)–(7) можно представить в виде суммы частных решений:

$$u(y,t) = \sum_{n=1}^{\infty} u_{0n} \sin\left(\frac{(2n-1)\pi y}{2}\right) \exp\left(-\frac{(2n-1)^2 \pi^2 t}{4 + (2n-1)^2 \pi^2 \gamma}\right).$$

Деформация полосы со свободной границей. Рассмотрим нестационарное течение водного раствора полимера в полосе, ограниченной снизу твердой стенкой y=0, а сверху — параллельной ей плоской свободной поверхностью y = h(t), зависящей от времени. Для описания движения используется модель (3). Пусть продольная компонента скорости u является линейной функцией x, поперечная компонента v и давление p не зависят от x:

$$u = -xw(y,t),$$
 $v = \int_{0}^{y} w(z,t) dz,$ $p = p(y,t).$

Тогда функции w, p удовлетворяют системе уравнений

$$\frac{\partial w}{\partial t} + \frac{\partial w}{\partial y} \int_{0}^{y} w(z,t) dz - w^{2} = \nu \frac{\partial^{2} w}{\partial y^{2}} + \varkappa \left(\frac{\partial^{3} w}{\partial y^{2} \partial t} + \frac{\partial^{3} w}{\partial y^{3}} \int_{0}^{y} w(z,t) dz - w \frac{\partial^{2} w}{\partial y^{2}} \right),$$

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \frac{\partial^{2} v}{\partial y^{2}} + \varkappa \left(\frac{\partial^{3} v}{\partial y^{2} \partial t} + v \frac{\partial^{3} v}{\partial y^{3}} \right).$$

Обозначим через $h_0 = h(0)$ начальную ширину полосы. Для формулировки задачи в безразмерном виде выберем для нормирования следующие величины: ширина полосы h_0 для расстояния, h_0^2/ν — для времени, ν/h_0 — для скорости, $\rho\nu^2/h_0^2$ — для давления. Проведя несложные преобразования, получаем, что в безразмерных переменных функ-

ция w удовлетворяет уравнению

$$\frac{\partial w}{\partial t} + \frac{\partial w}{\partial y} \int_{0}^{y} w(z, t) dz - w^{2} = \frac{\partial^{2} w}{\partial y^{2}} + \gamma \left(\frac{\partial^{3} w}{\partial y^{2} \partial t} + \frac{\partial^{3} w}{\partial y^{3}} \int_{0}^{y} w(z, t) dz - w \frac{\partial^{2} w}{\partial y^{2}} \right), \tag{8}$$

где безразмерный параметр $\gamma = \varkappa/h_0^2$ пропорционален коэффициенту релаксационной вязкости.

На твердой стенке y=0 выполняется условие прилипания

$$w = 0. (9)$$

На свободной границе y = h(t) кинематическое и динамическое условия записываются в виде

$$\frac{\partial h}{\partial t} = \int_{0}^{h} w(y, t) \, dy; \tag{10}$$

$$\frac{\partial w}{\partial y} + \gamma \left(\frac{\partial^2 w}{\partial y \, \partial t} - w \, \frac{\partial w}{\partial y} + \frac{\partial^2 w}{\partial y^2} \int_0^h w(y, t) \, dy \right) = 0; \tag{11}$$

$$p_a - p + 2\frac{\partial v}{\partial y} + 2\gamma \left(\frac{\partial^2 v}{\partial y \partial t} + v \frac{\partial^2 v}{\partial y^2}\right) = 0, \tag{12}$$

где p_a — атмосферное давление, полагаемое постоянным. Согласно условию (10) значение скорости перемещения линии y = h(t) в направлении оси y совпадает со значением скорости v. Условие (11) означает отсутствие касательных напряжений на линии y = h(t).

В начальный момент времени t=0 имеем

$$h(0) = 1, w(y,0) = w_0(y),$$
 (13)

где $w_0(y)$ — заданная гладкая функция.

Таким образом, требуется найти функции w(y,t) и h(t) в области $\Omega_T = \{y,t: 0 < y < h(t), 0 < t < T\}$, удовлетворяющие соотношениям (8)–(11), (13). Решение данной задачи описывает деформацию полосы $x \in \mathbb{R}, 0 < y < h(t)$, занятой водным раствором полимера. В случае если решение задачи (8)–(11), (13) известно, давление p восстанавливается квадратурой из соотношения

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + \frac{\partial^2 v}{\partial y^2} + \gamma \left(\frac{\partial^3 v}{\partial y^2 \partial t} + v \frac{\partial^3 v}{\partial y^3} \right).$$

Возникающая при этом произвольная функция времени позволяет удовлетворить условию равенства нормального напряжения на линии y = h(t) атмосферному давлению p_a (12).

Задачу (8)–(11), (13) можно упростить, введя новую искомую функцию

$$f = w_t + w_y \int_0^y w(z, t) dz - w^2.$$
 (14)

Тогда уравнение (8) можно представить в виде системы

$$-g_{yy} + \gamma^{-1}g = r, \qquad g = w + \gamma f, \qquad r = \gamma^{-1}w - \gamma w w_{yy} + \gamma w_y^2.$$
 (15)

В соответствии с (9), (11) функция g удовлетворяет краевым условиям

$$g = 0, \quad y = 0, \quad g_y = 0, \quad y = h.$$
 (16)

Решение задачи (15), (16) задается формулой

$$g = \int_{0}^{h(t)} G(y, \eta; t) r(\eta; t) d\eta, \tag{17}$$

где $G(y,\eta;t)$ — функция Грина обыкновенного дифференциального оператора $L=-d^2/dy^2+\gamma^{-1}$ с краевыми условиями (16):

$$G(y, \eta; t) = \frac{\sqrt{\gamma}}{\operatorname{ch}(h/\sqrt{\gamma})} \operatorname{ch}\left(\frac{\eta - h}{\sqrt{\gamma}}\right) \operatorname{sh}\left(\frac{y}{\sqrt{\gamma}}\right), \qquad 0 \leqslant y \leqslant \eta,$$

$$G(y, \eta; t) = \frac{\sqrt{\gamma}}{\operatorname{ch}(h/\sqrt{\gamma})} \operatorname{sh}\left(\frac{\eta}{\sqrt{\gamma}}\right) \operatorname{ch}\left(\frac{y-h}{\sqrt{\gamma}}\right), \quad \eta \leqslant y \leqslant h,$$

а переменная t, от которой зависит функция r, является параметром. Отсюда и из определения g находим

$$f = -\gamma^{-1}w + \gamma^{-1} \int_{0}^{h(t)} G(y, \eta; t) r(\eta; t) d\eta.$$
 (18)

Функции f и w зависят от переменных y и t, однако в представлении (18) переменная t является параметром. Обозначим через $C^k[0,h]$ ($k=2,3,\ldots$) пространство функций, имеющих непрерывные производные до порядка k на отрезке [0,h], а через $C^k_0[0,h]$ — его подпространство, порожденное функциями, удовлетворяющими условиям (16). В случае если при фиксированном значении $t\in[0,T]$ функция w(y,t) принадлежит классу $C^k[0,h]$, справедливо включение $g\in C^k_0[0,h]$.

Подставляя выражение (18) в соотношение (14), получаем уравнение, связывающее две искомые функции w и h задачи (8)–(11), (13):

$$w_t + w_y \int_0^y w(z,t) dz - w^2 + \gamma^{-1} w - \gamma^{-1} \int_0^{h(t)} G(y,\eta;t) r(\eta;t) d\eta = 0,$$
 (19)

где функция r определена последним равенством (15). Еще одна связь между ними задается соотношением (10).

Переход к лагранжевым координатам. Для решения задачи (10), (19) перейдем к лагранжевым координатам ξ , t. Связь между переменными y и ξ получаем в результате решения задачи Коши:

$$\frac{dy}{dt} = v \equiv \int_{0}^{y} w(z, t) dz, \quad t > 0, \quad y = \xi, \quad t = 0.$$

При этом свободная граница y = h(t) преобразуется в прямую $\xi = h(0) = 1$ на плоскости (ξ, t) .

Введем обозначение $w[y(\xi,t),t]=W(\xi,t)$ и деформацию $y_{\xi}=\lambda$. Функция $\lambda(\xi,t)$ является решением задачи

$$\frac{\partial \lambda}{\partial t} = W\lambda, \quad t > 0, \qquad \lambda = 1, \quad t = 0.$$
 (20)

Из соотношений (10), (18), (19) получаем выражение для функции h(t):

$$h = y(1,t) = \int_{0}^{1} \lambda(\xi,t) \, d\xi, \tag{21}$$

а из определения деформации λ — выражение для функции $y(\xi,t)$:

$$y = \int_{0}^{\xi} \lambda(\eta, t) \, d\eta. \tag{22}$$

После перехода в уравнении (17) к лагранжевой координате и подстановки вместо функции h выражения (21) получаем уравнение

$$\frac{\partial W}{\partial t} - W^2 + \gamma^{-1}W - \gamma^{-1} \int_0^1 G[y(\xi, t), \eta(\zeta, t); t] r[\eta(\zeta, t); t] \lambda(\zeta, t) d\zeta = 0, \tag{23}$$

где ζ — переменная, двойственная по отношению к переменной ξ . Следует отметить, что функция h(t) входит в определение функции Грина G, однако в соответствии с (21) выражена через функцию $\lambda(\xi,t)$. В свою очередь, согласно соотношениям (20) функция λ выражается через функцию W:

$$\lambda = \exp\left(\int_{0}^{t} W(\xi, \tau) d\tau\right). \tag{24}$$

Следовательно, согласно формуле (22) функция $y(\xi,t)$ также выражается через функцию W. Это позволяет трактовать соотношение (23) как интегродифференциальное уравнение для функции $W(\xi,t)$, удовлетворяющей начальному условию

$$W = w_0(\xi), \qquad 0 \leqslant \xi \leqslant 1, \quad t = 0. \tag{25}$$

Таким образом, исходная задача (8)–(11), (13) сведена к относительно простой задаче (23), (25). Можно предположить, что при выполнении естественных условий гладкости и согласования, наложенных на начальную функцию w_0 , для этой задачи верна теорема существования и единственности решения при достаточно малом T>0 в классах $C^k(\bar{\Omega}_T)$, $k=2,3,\ldots$ Однако данный вопрос в настоящей работе не рассматривается.

Результаты численного решения. Задача (21)–(25) решалась численно с использованием метода конечных разностей. В качестве начальной выбиралась функция $w_0(\xi) = c \sin{(\pi \xi/2)}$, в которой знак параметра c соответствует оттоку (c < 0) или притоку (c > 0) жидкости с бесконечности. При c < 0 с увеличением γ ширина полосы уменьшается и выходит на постоянное значение, как показано на рис. 1 при c = -0.1; -0.2. При этом чем меньше c, тем меньше ширина полосы при одном и том же значении γ . В случае c > 0, как и предполагалось, ширина полосы увеличивается. На рис. 2 приведены кривые зависимости h(t) для c = 0.1; 0.2 и различных значений γ . Например, при c = 0.2 и значениях γ , меньших некоторого критического γ_* , ширина полосы в некоторый момент времени начинает неограниченно возрастать и происходит разрушение решения за конечное время. Релаксационная вязкость, пропорциональная параметру γ , не оказывает стабилизирующего влияния. При $\gamma > \gamma_*$ ширина полосы стабилизируется (см. рис. 2.6). Возможно, между кривыми 2 и 3 существует линия, соответствующая автомодельному решению.

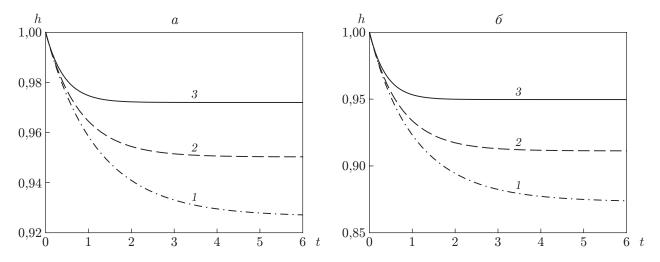


Рис. 1. Зависимость ширины полосы от времени при c=-0,1 (a), c=-0,2 (b) и различных значениях параметра γ :

$$1 - \gamma = 1.0, \ 2 - \gamma = 0.5, \ 3 - \gamma = 0.1$$

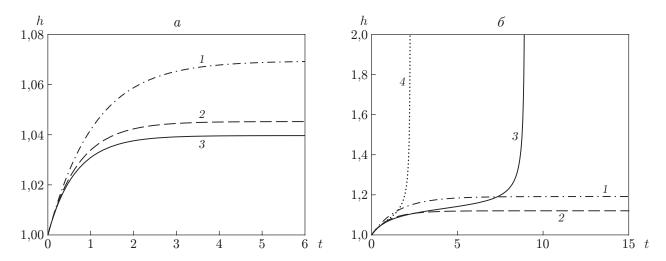


Рис. 2. Зависимость ширины полосы от времени при c=0,1 (a), c=0,2 (δ) и различных значениях параметра γ :

$$1 - \gamma = 0.5, 2 - \gamma = 0.2, 3 - \gamma = 0.1, 4 - \gamma = 0.05$$

Заключение. В работе исследована модель, содержащая дополнительный параметр по сравнению с классической моделью Навье — Стокса, — релаксационную вязкость \varkappa . Вопрос о величине этого параметра является дискуссионным. Экспериментальные данные для этой величины не известны, однако в соответствии с работами [1, 2] можно предположить, что эта величина мала.

При $\varkappa=0$ уравнения исследуемой модели переходят в уравнения Навье — Стокса. Решение системы Навье — Стокса, описывающее деформацию полосы, ограниченной твердой стенкой и параллельной ей свободной границей, представлено в работах [6,7], где, в частности, установлено, что возможны два режима течения: выход на стационарное состояние или неограниченное увеличение ширины полосы жидкости. Промежуточным является режим, соответствующий автомодельному решению.

Численное исследование рассматриваемой задачи показало, что наличие малого безразмерного параметра γ , пропорционального релаксационной вязкости, либо стабилизирует ширину полосы жидкости, либо приводит к разрушению решения за конечное время.

Автор выражает благодарность В. В. Пухначеву за внимание к работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. **Войткунский Я. И., Амфилохиев В. Б., Павловский В. А.** Уравнения движения жидкости с учетом ее релаксационных свойств // Тр. Ленингр. кораблестроит. ин-та. 1970. Т. 69. С. 19–26.
- 2. **Павловский В. А.** К вопросу о теоретическом описании слабых водных растворов полимеров // Докл. АН СССР. 1971. Т. 200, № 4. С. 809–812.
- 3. Frolovskaya O. A., Pukhnachev V. V. Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions // Polymers. 2018. V. 10. 684. DOI: 10.3390/polym10060684.
- 4. **Пухначев В. В., Фроловская О. А.** О модели Войткунского Амфилохиева Павловского движения водных растворов полимеров // Тр. Мат. ин-та. 2018. Т. 300. С. 176–189.
- 5. **Пухначев В. В., Петрова А. Г., Фроловская О. А.** Растворы полимеров и их математические модели // Изв. вузов. Сев.-Кавк. регион. Естеств. науки. 2020. № 2. С. 84–93.

6. **Журавлева Е. Н.** Численное исследование точного решения уравнений Навье — Стокса, описывающего движение жидкости со свободной границей // ПМТФ. 2016. Т. 57, № 3. С. 9–15.

7. **Pukhnachev V. V., Zhuravleva E. N.** Viscous flows with flat free boundaries // Europ. Phys. J. Plus. 2020. V. 135. 554. DOI: 10.1140/epjp/s13360-020-00552-z.

Поступила в редакцию $15/XII\ 2020\ г.,$ после доработки — $25/I\ 2021\ г.$ Принята к публикации $1/III\ 2021\ г.$