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С использованием сеточно-характеристического численного метода на сетках из тет-
раэдров проводится моделирование волновых процессов в композитном материале при
действии импульсной ударной нагрузки. Предложен подход к повышению порядка ап-
проксимации метода на неструктурированной сетке в трехмерном случае. Приведены
результаты расчетов распространения импульса нагрузки в трехслойном композите.

Ключевые слова: сеточно-характеристический метод, неструктурированная сетка,
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Введение. В данной работе проводится моделирование волновых процессов в ком-
позитном материале при воздействии короткого импульса динамической нагрузки. Такая
постановка характерна для задач неразрушающего контроля композитного образца.

Для численного решения используется сеточно-характеристический метод, позво-
ляющий с высокой точностью описать волновые фронты в твердом теле. Сеточно-
характеристический численный метод ранее применялся для решения задач динамиче-
ской прочности инженерных объектов [1], объектов железнодорожной инфраструктуры [2],
биомедицинских задач [3].

В данной работе используется неструктурированная расчетная сетка из тетраэдров, с
помощью которой описывается область интегрирования для практически значимых поста-
новок задач для иженерных объектов сложной формы. Применяется подход, позволяющий
повысить порядок аппроксимации сеточно-характеристического метода на неструктуриро-
ванной расчетной сетке за счет расширения шаблона, без использования вспомогательных
точек на ребрах и гранях ячеек сетки, что позволяет упростить топологию ячеек сетки.

1. Математическая модель. В данной работе для описания слоя композита ис-
пользуется система уравнений линейной анизотропной упругости. Данное приближение
корректно для случая малых деформаций, в том числе при моделировании процессов нераз-
рушающего контроля композитных изделий. Следует отметить, что для решения многих
других задач требуются более сложные модели материала. Так, при описании сильного
деформирования образцов необходимо учитывать различие модулей при нагружении рас-
тяжением и сжатием [4]. Для моделирования интенсивной ударной нагрузки требуются
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нелинейные модели [5]. Сложные структуры, включающие твердые и тканевые компози-
ты [6], могут описываться разными системами уравнений для отдельных элементов.

Поскольку результаты, получаемые в данной работе, могут быть применены при ре-
шении задач неразрушающего контроля, используется линейная модель анизотропного те-
ла. Для решения большинства практических задач обычно достаточно орторомбической
анизотропии свойств материала. Тем не менее при использовании модели и построении
численного метода данное ограничение не накладывается и эти задачи формулируются

для произвольной анизотропии.
Для трехмерного случая система уравнений, описывающая деформирование композит-

ной пластины, имеет следующий вид:
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Коэффициенты в последних шести уравнениях являются составляющими тензора

упругих постоянных четвертого ранга, выражение для которого в данном случае может
быть записано в виде

cik =


c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

 .

Вводя вектор u = {vx, vy, vz, σxx, σxy, σxz, σyy, σyz, σzz}т, уравнения (1) можно записать
в матричной форме, удобной для численного решения [7]:
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Здесь матрицы Ax, Ay, Az имеют следующий вид:

Ax = −



0 0 0 1/ρ 0 0 0 0 0
0 0 0 0 1/ρ 0 0 0 0
0 0 0 0 0 1/ρ 0 0 0

c11 c16 c15 0 0 0 0 0 0
c16 c66 c56 0 0 0 0 0 0
c15 c56 c55 0 0 0 0 0 0
c12 c26 c25 0 0 0 0 0 0
c14 c46 c45 0 0 0 0 0 0
c13 c36 c35 0 0 0 0 0 0


,

Ay = −



0 0 0 0 1/ρ 0 0 0 0
0 0 0 0 0 0 1/ρ 0 0
0 0 0 0 0 0 0 1/ρ 0

c16 c12 c14 0 0 0 0 0 0
c66 c26 c46 0 0 0 0 0 0
c56 c25 c45 0 0 0 0 0 0
c26 c22 c24 0 0 0 0 0 0
c46 c24 c44 0 0 0 0 0 0
c36 c23 c34 0 0 0 0 0 0


, (3)

Az = −



0 0 0 0 0 1/ρ 0 0 0
0 0 0 0 0 0 0 1/ρ 0
0 0 0 0 0 0 0 0 1/ρ

c15 c14 c13 0 0 0 0 0 0
c56 c46 c36 0 0 0 0 0 0
c55 c45 c35 0 0 0 0 0 0
c25 c24 c23 0 0 0 0 0 0
c45 c44 c34 0 0 0 0 0 0
c35 c34 c33 0 0 0 0 0 0


.
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2. Численный метод. Для численного решения многомерной системы уравнений

используется расщепление по направлениям. Задача расщепляется по пространственным
переменным на три независимых уравнения, которые решаются последовательно на каж-
дой временной итерации. К функциям на текущем временном слое применяется оператор,
соответствующий пространственной производной вдоль оси OX, после чего к полученно-
му результату применяется оператор, соответствующий пространственной производной
вдоль оси OY , а затем оператор, соответствующий пространственной производной вдоль
оси OZ. В результате применения последнего оператора получаем значения функций на
новом временном слое [8].

При решении задачи вдоль каждого пространственного направления осуществляется

переход к инвариантам Римана. Для этого каждую из матриц Ax, Ay, Az необходимо

представить в виде Ai = Ω−1
i ΛiΩi [9]. Ввиду их блочной структуры можно сделать это

аналитически.
Введем обозначение λ2 = t, где λ — собственные значения матрицы Ax; параметр t

определяется из кубического уравнения
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Решения данного уравнения могут быть вычислены аналитически с помощью тригономет-
рической формулы. В результате получаем следующие собственные значения Ax:
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где t11, t12, t13 — действительные положительные корни уравнения (4).
Аналогично для Ay находим
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Собственные значения Ay можно записать в виде
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где t21, t22, t23 — действительные положительные корни уравнения (5).
Аналогично для Az имеем
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Собственные значения Az можно представить в виде
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√
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где t31, t32, t33 — действительные положительные корни уравнения (6).
После вычисления собственных значений Ax, Ay, Az собственные векторы матриц (3)

находятся из решения системы линейных уравнений.
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Выполнив разложение матриц для пространственной производной по любому направ-
лению, получаем соотношение
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После введения обозначения w = Ωu исходная система распадается на независимые

уравнения вида

∂wi

∂t
+ λix

∂wi

∂x
= 0.

В результате выполнения данной операции дифференциальное уравнение первого по-
рядка в частных производных сводится к обыкновенному дифференциальному уравнению

вдоль характеристики

dx

dt
= λx,

т. е. вдоль характеристики dx/dt = λx можно выполнить перенос значения:

w(x, y, z, t)
∣∣
dx/dt=λx

= w(x, y, z).

Таким образом, для нахождения значения функции в момент времени tn+1 из заданной

точки проводится характеристика (прямая, задаваемая уравнением x = λxt) на предыду-
щий слой по времени tn. В точке пересечения (x0, y0, z0, tn) этой прямой с плоскостью
t = tn = τn = const аппроксимируется значение функции с использованием известных
значений в точках на данном слое по времени. Далее это значение переносится в точку
(x0 + λxτ, y0, z0, tn+1).

Для обеспечения высокого порядка аппроксимации численного метода требуется вы-
сокий порядок аппроксимации значения инварианта Римана на предыдущем слое по вре-
мени в некоторой произвольной точке расчетной области. В данной работе интерполяци-
онный полином строится по k ближайшим точкам без учета топологии ячеек расчетной
сетки [10]. Этот подход аналогичен классическому расширению шаблона на структуриро-
ванной сетке.

Для получения схемы второго порядка необходимо определить 10 коэффициентов ин-
терполяционного полинома общего вида:

P (x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j.

Для этого выбираются 10 точек, ближайших к требуемой, по ним вычисляются коэффици-
енты полинома. Также в данной работе используется простейший ограничитель минимакс.

Следует отметить, что существуют альтернативные подходы. Возможно повышение
порядка за счет добавления дополнительных точек на ребрах и гранях ячеек расчетной сет-
ки [11] или за счет использования продолженной системы уравнений [12]. Однако в данной
работе используется подход к получению высокого порядка численного метода с помощью

сетки из тетраэдров с простой топологией ячеек.
3. Расчет динамического деформирования трехслойного образца. Для про-

верки описанной выше численной схемы проведем расчет распространения короткого им-
пульса нагрузки в трехслойном образце. Расчетная область показана на рис. 1. Образец
состоит из трех плоских слоев, размеры каждого из которых равны 50,0× 50,0× 2,5 мм.
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Рис. 1. Расчетная область (ОПН — область приложения нагрузки на поверх-
ности верхнего слоя)

Все слои состоят из одного и того же однонаправленно армированного волокнистого

композита, но имеют разную ориентацию в укладке. Все армирующие волокна лежат в
плоскости слоев. Таким образом, каждый слой является трансверсально-изотропным. Для
трансверсально-изотропного тела тензор упругих постоянных упрощается и принимает
следующий вид:

cik =


c11 c13 c13 0 0 0
c13 c33 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

 .

Расчеты проводились при следующих значениях постоянных: c11 = 25 ГПа, c33 =
8,5 ГПа, c13 = 0,35 ГПа, c23 = 0,25 ГПа, c44 = c66 = 7 ГПа. Плотность материала слоев
равна 1500 кг/м3.

Ориентация слоев в укладке −45/0/45, угол между направлениями волокон в двух
соседних слоях составляет 45◦. В центральном слое укладки выделенное направление ори-
ентировано вдоль оси OY , в верхнем и нижнем слоях — под углами 45◦ к нему, отсчиты-
ваемыми в противоположных направлениях.

Импульс нагрузки задан в центре верхней поверхности в круглой области радиусом

1 мм. Длительность импульса равна 0,1 мкс. В расчете импульс описывается как заданная
скорость границы с вектором скорости, направленным по нормали к поверхности образца.

Картина волн, распространяющихся в образце, приведена на рис. 2 в виде срезов на
разной глубине в различные моменты времени. Волны в изометрической проекции пока-
заны на рис. 3.

На рис. 2, 3 видно, что на начальном этапе распространения импульса в верхнем слое
формируется область возмущения в виде эллипса, вытянутого в направлении укладки
волокон в этом слое. На данном этапе структура волн достаточно простая, характерная
для короткого импульса в упругой среде, в которой присутствуют продольные и сдвиговые
волны, а также поверхностные волны вблизи свободной границы.

После прохождения второго слоя, в котором волокна ориентированы в другом направ-
лении, картина волн становится более сложной. Область возмущения сохраняет форму
эллипса, но он поворачивается, а внутри него формируется “закрученная” структура из
отдельных волн. Данные эффекты обусловлены изменением направления укладки волокон,
вдоль которых возмущение распространяется с большей скоростью.
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Рис. 2. Картина волн в образце (модуль скорости):
а — верхняя поверхность первого слоя, б — верхняя поверхность второго слоя, в —
верхняя поверхность третьего слоя, г — нижняя поверхность третьего слоя; 1 — tn =
10, 2 — tn = 30, 3 — tn = 50, 4 — tn = 70, 5 — tn = 90, 6 — tn = 110
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Рис. 3. Изометрическая проекция волн в образце (модуль скорости):
а — tn = 10, б — tn = 30, в — tn = 50, г — tn = 70, д — tn = 90, е — tn = 110

Аналогичный эффект наблюдается при переходе возмущения из второго слоя в тре-
тий. Также на рис. 2 видно, что на нижней поверхности образца область возмущения
имеет форму круга, а не эллипса. Это вызвано тем, что упругие продольные волны, фор-
мирующие внешнюю границу возмущенной области, проходят одинаковое расстояние в
плоскости образца вдоль всех основных материальных осей укладки.

Заключение. В работе показано, что сеточно-характеристический численный метод
на сетках из тетраэдров может быть использован для расчета волновых процессов, про-
исходящих в композитном материале, с учетом направления укладки анизотропных слоев
образца. Приведены результаты расчетов процесса распространения импульса нагрузки
в трехслойной укладке композита.

Использованный в работе численный метод имеет второй порядок аппроксимации. Од-
нако предложенный подход позволяет получать также схемы более высокого порядка. Для
этого требуется построить интерполяционный полином более высокого порядка с использо-
ванием большего количества соседних точек, а также применить иную схему расщепления
по пространству. Следует отметить, что при использовании описанной в данной работе
численной схемы такой переход к более высокому порядку возможен при сохранении про-
стой структуры расчетной сетки.
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