2009. Том 50, № 5

Сентябрь – октябрь

C. 963 – 966

КРАТКИЕ СООБЩЕНИЯ

УДК 543.442.3:547.592.15

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 2,4-ДИЭТОКСИКАРБОНИЛ-5-ГИДРОКСИ-5-МЕТИЛ-3-ФЕНИЛ-N-(3-ХЛОРФЕНИЛ)-1-ЦИКЛОГЕКСЕНИЛАМИНА

© 2009 А.П. Кривенько¹, Э.А. Григорьева¹, А.В. Григорьев², В.В. Сорокин¹*, С.Ф. Солодовников³

¹Саратовский государственный университет им. Н.Г. Чернышевского ²ЗАО Нита-фарм, Саратов ³Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

Статья поступила 13 августа 2008 г.

При ариламинировании 2,4-диэтоксикарбонил-5-гидрокси-5-метил-3-фенилциклогексанона получен 2,4-диэтоксикарбонил-5-гидрокси-5-метил-3-фенил-N-(3-хлорфенил)-1циклогексениламин. На основе спектральных данных и РСА установлена конформация циклогексенового кольца в форме искаженного *полукресла*, псевдоэкваториальная ориентация всех заместителей, кроме псевдоаксиально расположенной ОН-группы. Отмечено наличие внутримолекулярной водородной связи типа N—H...O=C.

Ключевые слова: рентгеноструктурный анализ, енаминоэфиры, циклогексены.

Ранее нами получен ряд 3-Аг-2,4-диэтоксикарбонил-5-гидрокси-5-метилциклогексенил-N-R-аминов посредством взаимодействия арил-, циклогексил-, бензиламинов с диэтоксикарбонилзамещенными циклогексанолонами [1]. В настоящей работе представлены данные по синтезу и изучению структуры нового представителя соединений указанного типа — 2,4-диэтоксикарбонил-5-гидрокси-5-метил-3-фенил-N-(3-хлорфенил)-1-циклогексениламина (1).

Экспериментальная часть. Соединение 1 получено посредством аминирования 2,4диэтоксикарбонил-5-гидрокси-5-метил-3-фенилциклогексанона под действием *м*-хлоранилина в кипящем растворе бензола при соотношении кетол: амин 1:2 в присутствии каталитических количеств уксусной кислоты:

К раствору 0,01 моль 2,4-диэтоксикарбонил-5-гидрокси-5-метил-3-фенилциклогексанона, 0,013 моль *м*-хлоранилина в 50 мл бензола добавили 1 мл ледяной уксусной кислоты. Реакционную смесь кипятили 18 ч, при охлаждении выпадали светло-серые кристаллы 1. $T_{пл}$ 161—162 °C (из этанола). Выход 2,32 г (68 %). Найдено, %: С 66,15, Н 6,32, N 3,27, Cl 8,05. $C_{25}H_{28}N_1O_5Cl_1$. Вычислено, %: С 65,57, Н 6,12, N 3,06, Cl 7,76.

ИК спектры соединений записаны на Фурье-спектрометре ФСМ-1201 (в тонком слое: вазелиновое масло, гексахлорбутадиен). Спектры ЯМР ¹Н записаны на спектрометре Brucker AC-300 (300 МГц для ¹Н) в DMSO- d_6 (внутренний стандарт ТМС). Контроль за ходом реакции

^{*} E-mail: sorokinvv@info.sgu.ru

Таблица 1

Атом	x/a	y/b	z/c	<i>U</i> (экв)*	Атом	x/a	y/b	z/c	<i>U</i> (экв)*
Cl	5000	2819(2)	5000	89(1)	C(10)	5619(5)	1302(7)	4025(13)	59(3)
O(1)	2494(3)	526(4)	1217(9)	58(2)	C(11)	5619(5)	468(8)	3305(14)	64(3)
O(2)	1690(4)	-494(4)	1772(9)	55(2)	C(12)	5022(6)	45(7)	2745(13)	54(3)
O(3)	2334(4)	-3554(4)	4291(9)	64(2)	C(13)	2344(6)	-265(7)	1668(13)	49(3)
O(4)	3079(4)	-4224(4)	2770(9)	67(2)	C(14)	1179(5)	170(7)	1269(15)	82(4)
O(5)	3324(4)	-1983(4)	5530(9)	51(2)	C(15)	503(5)	-307(8)	1216(16)	120(6)
Ν	3753(4)	101(5)	2340(11)	43(2)	C(16)	2103(5)	-2266(6)	893(11)	40(3)
C(1)	3501(5)	-765(6)	2575(11)	39(2)	C(17)	2343(5)	-2186(6)	-658(12)	55(3)
C(2)	2818(5)	-956(6)	2139(11)	37(3)	C(18)	1956(6)	-2573(7)	-1979(14)	71(4)
C(3)	2544(5)	-1914(7)	2387(12)	41(3)	C(19)	1356(6)	-2994(7)	-1800(13)	73(4)
C(4)	3101(5)	-2634(6)	2852(12)	42(3)	C(20)	1113(6)	-3075(8)	-273(15)	83(4)
C(5)	3630(5)	-2240(6)	4108(13)	42(3)	C(21)	1492(5)	-2679(7)	1026(13)	63(3)
C(6)	3997(4)	-1440(6)	3369(11)	44(3)	C(22)	2774(5)	-3500(7)	3362(13)	48(3)
C(7)	4396(5)	475(6)	2904(13)	44(3)	C(23)	2848(6)	-5131(6)	3238(14)	80(4)
C(8)	4388(5)	1342(6)	3612(12)	49(3)	C(24)	3472(6)	-5696(7)	3516(15)	106(5)
C(9)	5013(6)	1720(6)	4193(14)	60(3)	C(25)	4175(5)	-2980(6)	4623(11)	53(3)

Координаты (× 10^4) и эквивалентные изотропные тепловые параметры (Å² × 10^3) неводородных атомов в структуре **1**

* U(экв) определен как треть следа ортогонализированного тензора U_{ii}.

и чистотой продуктов осуществлялся с помощью TCX на пластинках Silufol UV-254, элюент: гексан—этилацетат—хлороформ 2:2:1, проявитель — пары иода, УФ излучение.

Рентгенодифракционные данные для уточнения параметров решетки и определения структуры соединения 1 сняты при комнатной температуре по стандартной методике на автодифрактометре CAD-4 "Enraf-Nonius" (λ Mo K_{α} , графитовый монохроматор, $\omega/2\theta$ -сканирование с переменной скоростью, $2\theta \le 55^{\circ}$) с призматического кристалла размерами 0,10×0,15×0,52 мм. Соединение кристаллизуется в моноклинной сингонии, брутто-формула C₂₅H₂₈NOCl, M = 457,93; пр. гр. Cc; a = 19,606(2), b = 14,646(2), c = 8,304(2)Å; $\beta = 94,55(1)^{\circ}$, V = 2377,0(7)Å³, Z = 4, $d_{выч} = 1,280$ г/см³. Поправку на поглощение не вводили ввиду малости линейного коэффициента поглощения ($\mu = 0,196$ мм⁻¹).

Структура расшифрована прямым методом и уточнена полноматричным МНК с помощью комплекса программ SHELXTL-97 [2] в анизотропном приближении для неводородных атомов. Практически все атомы водорода были локализованы из разностного синтеза Фурье и уточнялись с изотропными тепловыми параметрами. Финальные факторы недостоверности при уточнении 300 варьируемых параметров и 4 ограничениях на вариацию расстояний С—H, N—H, O—H составили: R(F) = 0,0405, $wR(F^2) = 0,0526$ для 782 наблюдаемых рефлексов $[I > 2\sigma(I)]$; R(F) = 0,1169, $wR(F^2) = 0,0790$ для всех 1953 рефлексов; добротность подгонки S = 0,742.

Уточненные координаты базисных атомов и их эквивалентные изотропные тепловые параметры приведены в табл. 1, внутримолекулярные расстояния и валентные углы — в табл. 2. Полученная кристаллографическая информация депонирована в Кембриджскую базу структурных данных под номером CCDC 719586 по адресу deposit@ccdc.cam.ac.uk.

Результаты и их обсуждение. В ИК спектре енамина 1 имеются полосы валентных колебаний вторичной аминогруппы (3310 см⁻¹), гидроксильной (3568 см⁻¹), несопряженной карбонильной групп (1710 см⁻¹). Батохромный сдвиг карбонильной функции в области 1639 см⁻¹ обу-

Таблица 2

Расстояние	d	Расст	Расстояние		Расстояние		d	Расстояние	d
C(1)—C(2)	1,39(1) C(5)—	-C(6)	1,53(1)	C(11)—C(12)	1,37(1)	C(18)—C(19)	1,38(1)
C(1)—N	1,38(1) C(5)—	-O(5)	1,42(1)	C(12)—C(7)	1,39(1)	C(19)—C(20)	1,39(1)
C(1)—C(6)	1,50(1) C(5)—	-C(25)	1,56(1)	C(13)—O(1)	1,26(1)	C(20)—C(21)	1,39(1)
C(2)—C(3)	1,52(1) N—C((7)	1,42(1)	C(13)—O(2)	1,34(1)	C(21)—C(16)	1,35(1)
C(2)—C(13)	1,41(1) C(7)—	-C(8)	1,40(1)	O(2)	—C(14)	1,43(1)	C(22)—O(3)	1,20(1)
C(3)—C(4)	1,54(1) C(8)—	-C(9)	1,39(1)	C(14)—C(15)	1,50(1)	C(22)—O(4)	1,33(1)
C(3)—C(16)	1,54(1) C(9)—	-C(10)	1,35(1)	C(16)—C(17)	1,41(1)	O(4)—C(23)	1,47(1)
C(4)—C(5)	1,53(1) C(9)—	-Cl	1,74(1)	C(17	C(17)—C(18) 1,40		C(23)—C(24)	1,48(1)
C(4)—C(22)	1,50(1) C(10)-	-C(11)	1,36(1)					
Угол		φ	Угол			φ		Угол	
C(2) = C(1) = C(6)		124(1)	C(4) - C(5) - C(25)			110(1)	O(2) - C(13) - C(2)		115(1)
N-C(1)-C(2)		120(1)	C(6)—C(5)—C(25)			108(1)	C(13)-	C(13)—O(2)—C(14)	
N-C(1)-C(6)		116(1)	C(1)-C(6)-C(5)		5)	112(1)	O(2)—C(14)—C(15)		107(1)
C(1) - C(2) - C(13)		122(1)	C(1)—N—C(7)		,	129(1)	C(21)-	C(21)—C(16)—C(17)	
C(1) - C(2) - C(3)		120(1)	C(12)—C(7)—C(8)		(8)	119(1)	C(21)—C(16)—C(3)		122(1)
C(13)—C(2)—C(3)		118(1)	C(12)—C(7)—N			124(1)	C(17)—C(16)—C(3)		120(1)
C(2)—C(3)—C(16)		112(1)	C(8)—C(7)—N			117(1)	C(18)-	-C(17)—C(16)	119(1)
C(2)—C(3)—C(4)		114(1)	C(9)—C(8)—C(7)			118(1)	C(19)-	-C(18)—C(17)	121(1)
C(16)—C(3)—C(4)		108(1)	C(10)—C(9)—C(8)			123(1)	C(18)-	-C(19)—C(20)	120(1)
C(22) - C(4) - C(5)		114(1)	C(10)—C(9)—Cl			120(1)	C(21)—	-C(20)—C(19)	118(1)
C(22) - C(4) - C(3)		110(1)	C(8)—C(9)—Cl			117(1)	C(16)—C(21)—C(20)		123(1)
C(5) - C(4) - C(3)		110(1)	C(9)—C(10)—C(11)		119(1)	O(3)—	C(22)—O(4)	123(1)	
O(5)—C(5)—C(4)		111(1)	C(10)—C(11)—C(12)		122(1)	O(3)—	C(22) - C(4)	126(1)	
O(5)—C(5)—C(6)		112(1)	C(11)—C(12)—C(7)		120(1)	O(4)—C(22)—C(4)		111(1)	
C(4)—C(5)—C(6)		109(1)	O(1)—C(13)—O(2)		120(1)	C(22)—	C(22)—O(4)—C(23)		
O(5)—C(5)—C(25)		106(1)	O(1)—C(13)—C(2)		(2)	125(1)	O(4)—	C(23) - C(24)	106(1)

Межатомные расстояния d, Å и валентные углы ф, град. в молекуле 1

словлен сопряжением и наличием внутримолекулярной водородной связи C=O...H—N, аналогично родственно построенным соединениям [3, 4].

В спектре ЯМР ¹Н имеются сигналы протонов гидроксильной (3,24 м.д.), аминной (11,71 м.д.) функций, геминальных протонов при атоме C⁶ при 2,63 м.д. в виде двойных дублетов по 1Н каждый с КССВ J_{6ea} 17,7 Гц, что свидетельствует об их магнитной неэквивалентности. На основании неэквивалентности геминальных протонов и согласно работе [5] нами принята конформация циклогексенового кольца в форме искаженного полукресла и псевдоаксиальное положение гидроксильной группы.

Общий вид молекулы 1 представлен на рисунке. Циклогексеновое кольцо имеет форму искаженного *полукресла*. Фрагмент кольца в области двойной связи почти выплощен: торсионный угол C(6)—C(1)—C(2)—C(3) равен 3°. Фрагмент "насыщенной" части кольца приближается по конфигурации к циклогексановому — торсионный угол C(3)—C(4)—C(5)—C(6) составляет 64°.

Арильный заместитель при C³ (на рисунке — C(3)) и сложноэфирные заместители располагаются в псевдоэкваториальной позиции. Углы между плоскостью арильного заместителя при C³ и плоскостями, образованными атомами C(3)—C(4)—C(5) и C(1)—C(2)—C(3), составляют 110 и 120° соответственно. Торсионные углы C(4)—C(3)—C(16)—C(21) и C(2)—C(3)—

Геометрия молекулы 1 по данным РСА

С(16)—С(21) равны соответственно 99 и 134°. Таким образом, арильный заместитель располагается почти перпендикулярно к "плоскости" циклогексенового кольца. В молекуле имеется внутримолекулярная водородная связь между атомом водорода аминогруппы и атомом кислорода сложноэфирной функции при C². Расстояние О(1)...Н(1) составляет 1,86(6), O(1)...N 2,64(9), N—H(1) 0,82(4) Å, угол O(1)...H(1)—N(1) равен 159(6)°. Гидроксильная группа расположена псевдоаксиально. Торсионный угол между вицинальными

трансдиэкваториальными сложноэфирной группой и фенильным заместителем (C(16)—C(3)— C(4)—C(22)) равен 54(1)°, что свидетельствует о диаксиальном расположении метиновых атомов водорода при C(3) и C(4). Торсионный угол между вицинальными трансдиэкваториальными сложноэфирной группой и метильным заместителем (C(22)—C(4)—C(5)—C(25)) составляет 54(1)°. N-арильный цикл не лежит в одной плоскости с енаминокарбонильным фрагментом, но и не перпендикуля-

цикл не лежит в одной плоскости с енаминокарбонильным фрагментом, но и не перпендикулярен ей (торсионный угол C(1)—N(1)—C(7)—C(12) составляет 49(2)°), что допускает возможность частичного сопряжения.

Таким образом, молекула соединения **1** аналогична по геометрии родственно построенной молекуле 2,4-диацетил-5-гидрокси-5-метил-3-(2-хлорфенил)-N-(4-метилфенил)-1-циклогексениламина, описанной нами ранее [6]. Различие в заместителях (ацетильные, этоксикарбонильные) не влияет существенно на общую геометрию молекулы — форму циклогексенового кольца, углы поворота арильных групп при атомах азота и углерода. Отличие заключается в отсутствии внутримолекулярной водородной связи между гидроксильной и соседней сложноэфирной группой в енамине **1**, что обусловлено "переключением" атома H(5) гидроксильной группы на межмолекулярную связь с атомом кислорода O(1) сложноэфирной функции. Расстояния O(1)...H(5'), O(1)...O(5') и O(5')—H(5') составляют 2,15(9), 2,77(1) и 0,96(4) Å соответственно, угол O(1)...H(5')—O(5') равен 119(5)°. Наличие такой межмолекулярной водородной связи укрепляет упаковку молекул в структуре в направлении оси *с*.

Работа выполнена при финансовой поддержке гранта Президента Российской Федерации для государственной поддержки молодых российских ученых (МК-9885.2006.3.).

СПИСОК ЛИТЕРАТУРЫ

- 1. Сорокин В.В., Григорьев А.В., Рамазанов А.К., Кривенько А.П. // Журн. орган. химии. 2000. **36**, № 6. С. 815 818.
- 2. Sheldrick G.M. SHELX-97. Release 97-2. University of Goettingen, 1997.
- 3. Григорьева Э.А. Кривенько А.П., Сорокин В.В. и др. // Изв. вузов. Химия и химическая технология. 2004. 47, Вып. 4. С. 108 111.
- Кривенько А.П., Голиков А.Г., Григорьев А.В., Сорокин В.В. // Журн. орган. химии. 2000. 36, № 8. – С. 1152 – 1155.
- 5. Kucklander U., Hilgeroth A. // Arch. Pharm. 1994. 327, N 5. S. 287 294.
- 6. *Кривенько А.П., Сорокин В.В., Супоницкий К.Ю.* // Журн. структур. химии. 2006. **47**, № 3. С. 598 601.