УДК 541.11:547.235.5:547.416

ТЕРМОХИМИЧЕСКИЕ И ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ N-(2,2-БИС(МЕТОКСИ-NNO-АЗОКСИ)ЭТИЛ)НИТРАМИНОВ

И. Н. Зюзин, Д. Б. Лемперт, А. В. Набатова, А. И. Казаков

Институт проблем химической физики РАН, 142432 Черноголовка, lempert@icp.ac.ru

Экспериментально определены стандартные энтальпии образования 1,1-бис(метокси-NNO-азокси)-3-нитро-3-азабутана и 1,1,8,8-тетракис(метокси-NNO-азокси)-3,6-динитро-3,6-диазаоктана: соответственно 87.7 ± 3.9 и 283.8 ± 6.2 кДж/моль. Расчетным путем установлено, что смесевые твердые ракетные топлива, содержащие эти два соединения в качестве газифицирующих компонентов в композициях без металла на базе активного связующего и перхлората аммония, по максимально достижимому значению эффективного импульса на третьей ступени ракетной системы $I_{ef}(3)$ уступают композициям с октогеном, но при создании специальных композиций, где должно быть ограничено содержание органического взрывчатого вещества (не выше $30 \div 35$ %), эти два соединения позволяют достигнуть более высоких (на $5 \div 10$ с) значений $I_{ef}(3)$, чем при применении октогена.

Ключевые слова: 1,1-бис(метокси-NNO-азокси)-3-нитро-3-азабутан, 1,1,8,8-тетракис(метокси-NNO-азокси)-3,6-динитро-3,6-диазаоктан, алкокси-NNO-азоксисоединения, нитрамины, энтальпия сгорания, энтальпия образования, смесевые твердые ракетные топлива, удельный импульс.

DOI 10.15372/FGV20200410

ВВЕДЕНИЕ

Алкокси-NNO-азоксисоединения предперспективные ложены как компоненты энергетических материалов [1–5], поскольку имеют одинаковый с нитраминами элементный состав, но превосходят их по энтальпии образования [6]. Особый интерес представляют энергоемкие соединения, в молекулах которых есть обе эти группы. В литературе известны три таких соединения: 1,1-бис(метокси-NNO-азокси)-3-нитро-3-азабутан |7|.1,1,8,8-тетракис(метокси-NNO-азокси)-3,6-динитро-3,6-диазаоктан [7] и 2,3,6,8,10,13,14-гептааза-6,8,10-тринитро-4,12-диоксапентадека-2,13-диен-2,14-диоксид [8] (соответственно соединения 1–3 на рис. 1). Кроме того, недавно синтезировано бимолекулярное соединение, в кристалле которого на одну молекулу каркасного нитрамина гексанитрогексаазаизовюрцитана (CL-20) приходится две молекулы метокси-NNO-азоксиметана [9] (соединение 4 на рис. 1).

В данной работе впервые экспериментально измерены стандартные энтальпии образования N-(2,2-бис(метокси-NNO-азокси)этил)нитраминов 1 и 2. На основании этих данных термодинамическим анализом оценена перспектива применения соединений 1 и 2 в качестве компонентов смесевых твердых ракетных топлив (СТРТ).

1. ЭКСПЕРИМЕНТ

1.1. Синтез исходных компонентов и их основные свойства

Соединения 1 и 2 синтезировали по известным методикам [5]. Соединение 1 очищали двукратной перекристаллизацией из этанола с горячим фильтрованием. Соединение 2 очищали горячим фильтрованием раствора в диметилформамиде и перекристаллизацией из смеси диметилформамид — этанол. Далее суспензию соединения 2 в этаноле кипятили с обратным холодильником 5 ч, охлаждали, осадок отфильтровывали. Образцы соединений 1 и 2 сушили

Работа выполнена на средства ИПХФ РАН (тема 0089-2014-0019 «Создание высокоэнергетических материалов...») при финансовой поддержке Президиума РАН (программа 56 «Фундаментальные основы прорывных технологий....», тема «Разработка твердых топлив и горючих для газогенераторов...») с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН.

[©] Зюзин И. Н., Лемперт Д. Б., Набатова А. В., Казаков А. И., 2020.

Рис. 1. Структурные формулы соединений 1-4

на воздухе на горячей платформе (100 °C) в течение суток. Предварительный контроль чистоты проводили методом тонкослойной хроматографии на пластинах Merck Kieselgel 60 F_{254} . В обоих соединениях примеси не найдены даже при 20-кратном избытке нанесенного вещества. Окончательно чистоту соединений 1 и 2 проверяли с помощью элементного анализа (прибор PerkinElmer Series II 2400) и спектроскопии ЯМР 1 Н (500 МГц, Bruker Avance III 500). Соединение 1 — спектр ЯМР ¹Н, δ , м. д. (18%-й раствор в CD₃CN): 3.35 с (3H, CH₃N), 4.12 с (6Н, СН₃О), 4.64 уш. д. (2Н, СН₂, *J* 6.5 Гц), 6.42 т (1H, CHCH₂, *J* 6.5 Гц). Соединение 2 спектр ЯМР ¹Н, δ , м. д. (5%-й раствор в ДМСО-d₆): 4.04 с (4H, CH₂NNO₂), 4.10 с (12H, СН₃О), 4.72 д (4H, CH₂), 6.74 т (2H, CHCH₂, J 6.5 Гц). Массовая доля примесей в конечном образце соединения 1 не превышала 0.1 %, а образец соединения 2 содержал примесь диметилформамида (0.37 %). Дополнительным критерием высокой чистоты соединения 1 может служить узкий диапазон температуры плавления (103.6 \div 104.0 °C, литературное значение — 98 °C [5]), определенной в открытом капилляре при скорости нагрева 0.5 °C/мин. Этот критерий оценки чистоты для соединения 2 не годится, поскольку оно плавится с разложением, а температура плавления зависит от скорости нагрева (204 \div 205 °C при 1 °C/мин и 210 °C при 5 °C/мин, литературное значение — 201 °C [5]). Плотность соединения 2 (1.51 г/см³ при 18 °C) измеряли методом флотации в смеси четыреххлористого углерода и дихлорэтана с использованием центрифуги (3 200 об/мин).

1.2. Определение стандартной энтальпии образования

Калориметрическое измерение теплоты сгорания соединений 1 и 2 выполняли на прецизионном автоматическом калориметре сжигания АБК-1В конструкции Института химической физики РАН [10]. Условия проведения экспериментов и обработка полученных результатов описаны в работе [11]. Энергия сгорания соединения в условиях бомбы при постоянном объеме рассчитывалась согласно уравнению

$$-\Delta U_b = (Q - q_{\rm HNO_3} - q_t - q_{ba} - q_{ign})/m_s,$$

где m_s — масса вещества, приведенная к массе в вакууме, $Q = W\Delta T$ — общее количество тепла, выделившегося в эксперименте, W тепловое значение калориметра, ΔT — подъем температуры с учетом поправки на теплообмен, $q_{\rm HNO_3}$ — теплота образования азотной кислоты в продуктах реакции сгорания, qt — теплота сгорания хлопчатобумажной нити, q_{iqn} — энергия поджига, q_{ba} — теплота сгорания бензойной кислоты (ведут сжигание смеси исследуемого вещества с бензойной кислотой). Соответствующие результаты представлены в табл. 1. Энергия сгорания соединений 1 и 2 в стандартных условиях $(-\Delta U_c^0)$, рассчитанная с учетом поправки Уошберна [12], составила 3777.6 ± 3.9 и 7379.1 ± 6.2 кДж/моль соответственно. Погрешность полученных результатов вычисляли по формуле $\sigma = k [(\sum x^2)/N(N-1)]^{0.5}$ для 95%-го доверительного интервала, где x — отклонение каждого результата от среднеарифметического, N — число опытов, k — соответствующий коэффициент Стьюдента.

Реакции сгорания соединений 1 и 2 имеют следующий вид:

Таблица 1

№ п/п	m_s, Γ	Q	q_t	$q_{\rm HNO_3}$	q_{ba}	$-\Delta U_b,$ Дж/г	$-\Delta U_c^0,$ кДж/моль		
			,	Цж					
Соединение 1, $W = 5465.1 \pm 0.8 \text{Дж/K}$									
1	0.25039	26775.6	32.4	49.6	22923.0	14994.8	3777.3		
2	0.25039	27357.8	36.3	48.1	23496.0	15022.4	3784.3		
3	0.25137	26812.8	33.4	50.5	22944.3	14991.5	3776.5		
4	0.24985	26884.2	33.8	49.4	23036.9	15001.2	3778.9		
5	0.25189	26937.5	34.1	58.8	23054.9	14981.5	3774.0		
6	0.25018	26858.3	36.2	55.7	23001.5	14984.6	3774.7		
Соединение 2, $W = 5436.6 \pm 0.6 \mathrm{Дж/K}$									
1	0.24691	26522.0	34.8	43.7	22770.2	14712.7	7382.5		
2	0.24422	26472.7	31.8	44.8	22765.1	14703.1	7376.0		
3	0.24667	26512.5	35.3	54.4	22750.2	14724.3	7386.7		
4	0.24829	26388.6	29.8	51.6	22619.6	14687.6	7368.3		
5	0.24786	26439.5	32.4	49.9	22666.7	14725.3	7 387.2		
6	0.24809	26 494.0	40.9	47.1	22717.0	14 705.9	7 377.5		
7	0.24858	26484.3	38.1	49.1	22701.9	14701.6	7 375.3		

Энергия сгорания соединений 1 и 2 (см. рис. 1)

Примечание. W — тепловое значение калориметра при использовании двух разных калориметрических бомб.

 $C_5H_{12}N_6O_6(\kappa p) + 5O_2(r) =$

$$= 5CO_2(r) + 6H_2O(x) + 3N_2(r), \qquad (1)$$

 $C_{10}H_{22}N_{12}O_{12}(\kappa p) + 9.5O_2(r) =$

$$= 10 \text{CO}_2(\mathbf{r}) + 11 \text{H}_2 \text{O}(\mathbf{x}) + 6 \text{N}_2(\mathbf{r}).$$
(2)

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1. Экспериментальная стандартная энтальпия образования

Стандартные энтальпии сгорания ΔH_c^0 и образования ΔH_f^0 соединений 1 и 2 были вычислены по уравнениям сгорания на основании средних значений ΔU^0 в соответствии с реакциями (1), (2) с учетом поправок на работу расширения газов в бомбе ΔnRT (7.4 и 16.1 кДж/моль для соединений 1 и 2 соответственно). При расчете ΔH_c^0 и ΔH_f^0 соединения 2 учтена также поправка (-22.2 кДж/моль) на найденное количество примеси диметилформамида (ДМФА). Использовали известные значения энтальпии:

$$\Delta H_f^0((\text{CO}_2)(\mathbf{r})) = -393.514$$
 кДж/моль [13];
 $\Delta H_f^0((\text{H}_2\text{O})(\mathbf{x})) = -285.830$ кДж/моль [13];
 $\Delta H_c^0((\text{ДМФА})(\mathbf{x})) = -1941.6$ кДж/моль [14].
Найдено:
для соединения 1:
 $\Delta H_c^0 = -3770.2 \pm 3.9$ кДж/моль,
 $\Delta H_f^0 = 87.7 \pm 3.9$ кДж/моль,
для соединения 2:
 $\Delta H_c^0 = -7363.0 \pm 6.2$ кДж/моль,

$$\Delta H_f^0 = 283.8 \pm 6.2$$
 кДж/моль.

Энтальпия образования соединения 2 оказалась аномально высокой. Это особенно наглядно видно из энтальпии гипотетической изодесмической реакции дегидроконденсации (сдваивания) по группам CH₃ (3) ($\Delta H_p =$ 108.4 кДж/моль) при сравнении с аналогичными реакциями первичных (4) и вторичных (5) нитраминов ($\Delta H_p =$ 42.6 и 56.0 кДж/моль соответственно):

$$2(1) \to (2) + H_2,$$
 (3)

$$2 \text{CH}_3 \text{NHNO}_2 \rightarrow$$

$$\rightarrow \text{O}_2 \text{NNHCH}_2 \text{CH}_2 \text{NHNO}_2 + \text{H}_2, \qquad (4)$$

 $2CH_3N(NO_2)CH_3 \rightarrow$

$$\rightarrow$$
 CH₃N(NO₂)CH₂CH₂N(NO₂)CH₃ + H₂. (5)

При расчете ΔH_p^0 изодесмических реакций (4) и (5) использовали известные значения ΔH_f^0 нитраминов [15].

Расчет ΔH_f^0 проведен методом изодесмических реакций в предположении равенства вкладов при замене атомов Н у атомов N в пиразолах и первичных нитраминах на группу $CH_2CH(N_2O_2CH_3)_2$ (разность между экспериментальным и рассчитанным значениями $\Delta \Delta H_{f}^{0} = 151.8$ кДж/моль [1]), другими словами — в предположении нулевой энтальпии изодесмической реакции

$$RNHNO_{2} + PyrCH_{2}CH[N(O) = NOCH_{3}]_{2} \rightarrow$$
$$\rightarrow PyrH +$$
$$+ RN(NO_{2})CH_{2}CH[N(O) = NOCH_{3}]_{2}, (6)$$

где $Pyr = пиразол-1-ил, 3-NO_2- и 4-NO_2-пира$ зол-1-ил.

(6)

Расчет по изодесмической реакции (6) дает незначительное занижение $\Delta H^0_f({
m TB})$ для соединения 1 (на 9 кДж/моль) и довольно сильное — для соединения 2 (на 84 кДж/моль). Столь большое различие требует объяснения. Прежде всего, аддитивные методы расчетов (в частности, методы изодесмических реакций и групповых вкладов) хорошо работают для соединений в газовой фазе, а также для малополярных веществ в жидкой и твердой фазах. Например, в недавнем исследовании [16] экспериментальное значение ΔH_f^0 1,4-диэтинилбензола совпало в пределах статистической ошибки с рассчитанным по методу изодесмических реакций. Другая возможная причина связана с относительно низким значением ΔH_f^0 N,N'динитроэтилендинитрамина [15], обусловленным цепочкой прочных водородных связей между первичными нитраминными группами. Это, кстати, находит отражение в относительно низкой энтальпии гипотетической изодесмической реакции (4) ($\Delta H_p = 42.6$ кДж/моль). В

любом случае для соединений с такими полярными группами, как нитраминная и метокси-NNO-азоксильная, энтальпия образования ΔH_f^0 может сильно зависеть от упаковки молекул в кристалле и от числа укороченных диполь-дипольных контактов между этими группами. На примере бимолекулярного соединения 4 показано, что нитраминные группы могут образовывать такие контакты не только между собой, но и с метокси-NNO-азоксигруппами [9]. Из всего вышесказанного можно сделать практический вывод: расчетные значения ΔH_f^0 годятся только для предварительной оценки энергетической эффективности новых соединений, а для наиболее перспективных из них необходимо определять ΔH_f^0 экспериментально.

2.2. Энергетические возможности соединений 1-3, 5, 6 в качестве компонентов СТРТ

Изучение возможностей N-(2,2-бис(метокси-NNO-азокси)этил)нитраминов 1 и 2 как компонентов ракетных топлив проводили вместе с изучением ранее описанного в [8] соединения 3, тоже имеющего в своем составе алкокси-NNO-азоксильные и нитраминные группы (см. рис. 1). Проведено также сравнение с энергетическими характеристиками (2,2-бис(метокси-NNO-азокси)этильных производных энергетических гетероциклов 3,4-динитропиразола (5) [2] и 4*H*,8*H*-бис(фуразано)[3,4-b:3',4'-e]пиразина (6) [4] (рис. 2).

Рис. 2. Структурные формулы соединений 5 и 6

Соединение	Брутто-формула	$\Delta H_{f}^{0},\kappa$ Дж/кг	$ρ$, $γ/cm^3$	α^{***}	N, %	Н, %
1	$\mathrm{C_5H_{12}N_6O_6}$	348	1.526 [19]	0.38	33.3	4.8
2	$\rm C_{10}H_{22}N_{12}O_{12}$	565	1.51	0.39	33.5	4.4
3[8]	$C_6H_{14}N_{10}O_{10}$	175^{*}	1.628 [8]	0.53	36.3	3.7
5 [1, 19]	$\mathrm{C_7H_{10}N_8O_8}$	842^{*} [1]	1.58^{**}	0.42	33.5	3.0
6 [4]	$\rm C_{12}H_{18}N_{14}O_{10}$	1404^{*}	1.55^{**}	0.30	37.8	3.5
Октоген	$\mathrm{C_4H_8N_8O_8}$	295	1.900	0.67	37.8	2.7

Таблица 2 Параметры соединений 1–3, 5, 6 (см. рис. 1, 2) для термодинамических расчетов СТРТ

*Pacчетное значение ΔH_f^0 .

^{**}Значения плотности при комнатной температуре получены делением ρ (100 K) [4, 19] на 1.035 [19]. ^{***} $\alpha = d/(2a + b/2)$ — коэффициент насыщенности кислородом для соединений с брутто-формулой $C_aH_bN_cO_d$.

Таблица З

Энергетические характеристики композиций СТРТ без металла, оптимизированных по величине $I_{ef}(3)$, содержащих 19 % (об.) активного связующего, газифицирующий компонент (соединения 1-3, 5, 6 или октоген) и перхлорат аммония (остальное)

Соединение		Связующее, % (мас.)		$\rho \Gamma/cM^3$	T _a K	Ian C	$L_{s}(3)$ c	
Номер	% (мас.)	по массе	по объему	<i>p</i> , 1/011	10, 11	rsp, c	1 ej (0), C	
1	33.4	16.6	19	1.704	3140	249.3	249.4	
2	31.4	16.6	19	1.706	3160	249.7	249.9	
3	43.4	16.6	19	1.715	3170	250.0	250.4	
5	38.4	16.6	19	1.709	3200	248.7	248.9	
6	28.7	16.3	19	1.730	3170	247.6	248.5	
Октоген	69.6	15.4	19	1.830	3220	251.8	254.9	
	40	15.2	19	1.844	3145	246.0	249.6	

Соединения 5 и 6 ранее уже рассматривались в качестве газифицирующих компонентов СТРТ [1], но энтальпию образования соединения 6 рассчитали по [1] заново ($\Delta H_f^0 = 728 \text{ кДж/моль}$), поскольку недавно определенная энтальпия образования 4H,8Hбис(фуразано)[3,4-b:3',4'-е]пиразина (424.2 ± 4.0 кДж/моль [17]) оказалась на 33 кДж/моль выше по сравнению с использованным в работе [1] расчетным значением $\Delta H_f^0 =$ 390.8 кДж/моль [18]. Параметры соединений 1–3, 5, 6, принятые для термодинамических расчетов СТРТ, приведены в табл. 2.

В целом все исследуемые компоненты 1–3, 5, 6 не могут претендовать на роль мощных окислителей для ТРТ — коэффициент обеспеченности кислородом α не выше 0.53, ΔH_f^0 не очень высока (только у соединения 6 она выше 1400 кДж/кг, остальные существенно ниже). Плотности соединений 1–3, 5, 6 $(1.51 \div 1.62 \text{ г/см}^3)$ слишком низки для компонентов СТРТ, присутствующих в большом количестве, так как это существенно снижает баллистическую эффективность топлива. Только по одной характеристике (массовая доля водорода) эти соединения привлекают к себе внимание: содержание водорода в них $(3.0 \div 4.6 \%)$ выше, чем у октогена (2.7 %). Таким образом, соединения 1-3, 5, 6 можно рассматривать в качестве газифицирующих компонентов, которые за счет повышенного содержания водорода при введении в композицию с повышенным коэффициентом α , например ПХА + активное связующее, уменьшают среднемолекулярную массу газообразных продуктов сгорания, тем самым увеличивают удельный импульс. В сводной табл. 3 приведена небольшая часть полученных характеристик композиций СТРТ (удельный импульс I_{sp} , температура горения T_c , плотность ρ , эффективный импульс для третьей ступени ракетных систем $I_{ef}(3) = I_{sp} + 25(\rho - 1.7)$ [20]).

В настоящей работе сравнение композиций проводится по величине $I_{ef}(3)$, характеризующей баллистические свойства топлив, предназначенных для третьей ступени ракет. Зависимость I_{ef}(3) от природы газифицирующего компонента и его содержания в рецептурах представлена на рис. 3 (для сравнения приведены данные и с октогеном). Все составы включают в себя примерно одинаковую объемную долю активного связующего (19 %), один из газифицирующих компонентов, доля которого варьируется, и перхлорат аммония (остальное). Равное объемное содержание связующего во всех композициях установлено потому, что при его содержании ниже $18 \div 19$ % очень тяжело изготовить отвержденное изделие с приемлемыми физико-механическими свойствами, равно как и создать неотвержденную топливную массу с приемлемыми реологическими свойствами. Удельный импульс I_{sp} и темпе-

Рис. 3. Зависимость эффективного удельного импульса от природы газифицирующего компонента (октоген и соединения 1-3, 5, 6) и его содержания в составах СТРТ с активным связующим (19 % (об.)) и перхлоратом аммония (остальное)

ратура горения T_c рассчитаны по программе TERRA [21] при давлении в камере сгорания и на срезе сопла 4.0 и 0.1 МПа. Активное связующее (AC) — C_{18.96}H_{34.64}N_{19.16}O_{29.32}, $\Delta H_f^0 =$ -757 кДж/кг, $\rho = 1.49$ г/см³ [22].

На рис. 3 видно, что максимальные значения $I_{ef}(3)$ в составах с октогеном обеспечиваются при очень высоких содержаниях октогена $(60 \div 70 \%)$. Создавать и эксплуатировать такие композиции очень опасно, а снижение доли октогена до относительно безопасных пределов $(25 \div 35 \%)$ существенно снижает $I_{ef}(3)$. В случае применения соединений 1–3, 5, 6 всё наоборот: только при снижении доли газифицирующего компонента до $25 \div 45 \%$ достигается наивысшее значение $I_{ef}(3)$. Причина тому — низкий коэффициент насыщенности кислородом α и высокое содержание водорода в соединениях 1-3, 5, 6. Заметим, что наивысшие значения $I_{ef}(3)$ в составах с компонентами 1–3, 5, 6 достигаются при их содержании $30 \div 40 \%$ и немного уступают оптимизированному составу с 70 % октогена (4.5 \div 6.4 с). При содержании же газифицирующего компонента меньше 40 % удельный импульс $I_{ef}(3)$ составов с любым из соединений 1–3, 5, 6 выше, чем состава с таким же содержанием октогена. При содержании органического взрывчатого вещества не больше 30~% выигрыш компонентов 1–3, 5, 6 по сравнению с октогеном уже превышает $10 \div 12$ с, и это очень большой выигрыш.

Соединение 3 по элементному составу, коэффициенту α и плотности (табл. 2) занимает промежуточное положение между октогеном и производными нитраминов 1 и 2. Это вполне естественно, поскольку середина молекулы 3 (см. рис. 1) представляет собой три четверти разомкнутой молекулы октогена. Соединение 3 по $I_{ef}(3)$ немного, на $1.5 \div 2$ с, превосходит производные энергетических гетероциклов 5 и 6 (см. табл. 3) и на 0.5 с — соединение 2, но оптимум достигается при большем содержании газифицирующего компонента 3 — на $10 \div 12$ %.

При более детальном сравнении соединений с 2,2-бис (метокси-NNO-азокси) этильными группами производные нитраминов 1 и 2 по $I_{ef}(3)$ хотя и ненамного (на $0.5 \div 1.5$ с), но превосходят производные энергетических гетероциклов 5 и 6 (см. табл. 3). Увеличение доли водорода в компоненте в достаточной мере компенсирует снижение ΔH_f^0 (см. табл. 3). Дополнительным преимуществом соединения 2 может оказаться его очень низкая растворимость в большинстве органических растворителей, и, как следствие, можно прогнозировать низкую растворимость газифицирующего компонента 2 в активном связующем.

ЗАКЛЮЧЕНИЕ

Впервые экспериментально измерены стандартные энтальпии образования 1,1бис(метокси-NNO-азокси)-3-нитро-3-азабутана и 1,1,8,8-тетракис(метокси-NNO-азокси)-3,6динитро-3,6-диазаоктана: 87.7 ± 3.9 и 283.8 ± 6.2 кДж/моль соответственно.

Применение этих двух соединений в качестве газифицирующих компонентов вместо октогена в смесевых твердых ракетных топливах с активным связующим и перхлоратом аммония при ограничении доли органического взрывчатого вещества (не выше $30 \div 35 \%$) позволяет достичь существенно более высокого (на $5 \div 10$ с) значения эффективного импульса для третьей ступени ракеты.

ЛИТЕРАТУРА

- 1. Зюзин И. Н., Казаков А. И., Лемперт Д. Б., Вацадзе И. А., Курочкина Л. С., Набатова А. В. Термохимические и энергетические характеристики алкокси-NNO-азоксипроизводных пиразола и нитропиразолов // Физика горения и взрыва. — 2019. — Т. 55, № 3. — С. 92–99.
- Зюзин И. Н., Далингер И. Л., Супоницкий К. Ю. N-[2,2-бис(метокси-NNO-азокси)этил]пиразолы // Химия гетероцикл. соединений. 2017. Т. 53, № 6-7. С. 702–709.
- 3. Зюзин И. Н. Азидопроизводные геминальных бис(алкокси-NNO-азокси)соединений // Журн. орган. химии. 2015. Т. 51, № 2. С. 187–191.
- Zyuzin I. N., Suponitsky K. Yu., Sheremetev A. B. 2,2-bis(methoxy-NNO-azoxy)ethyl derivatives of 4,8-dihydro-bis-furazano[3,4-b:3'4'e]pyrazine: The synthesis and X-ray investigation // J. Heterocycl. Chem. — 2012. — V. 49, N 3. — P. 561–565.
- 5. Зюзин И. Н., Лемперт Д. Б. Реакция 1,1ди(метокси-NNO-азокси)этена с нитроформом с образованием 1,1-ди(метокси-NNO-азокси)-3,3,3-тринитропропана // Изв. АН. Сер. хим. — 2009. — № 10. — С. 2108–2109.
- 6. Кирпичев Е. П., Зюзин И. Н., Авдонин В. В., Рубцов Ю. И., Лемперт Д. Б. Стандартные энтальпии образования алкокси-NNOазоксисоединений // Журн. физ. химии. — 2006. — Т. 80, № 9. — С. 1543–1546.

- Марченко Г. А., Мухаметзянов А. С., Целинский И. В., Ермошкин А. С. Производные N-окисей N'-алкоксидиазенов. II. Взаимодействие эфиров бис(N-окси-N'-метоксидиазенил)метилолметана с нуклеофильными реагентами // Журн. орган. химии. — 1985. — Т. 21, № 7. — С. 1429–1431.
- 8. Зюзин И. Н., Головина Н. И., Федоров Б. С., Шилов Г. В., Нечипоренко Г. Н. Синтез и строение 2,3,6,8,10,13,14-гептааза-6,8,10-тринитро-4,12-диоксапентадека-2,13диен-2,14-диоксида // Изв. АН. Сер. хим. — 2003. — № 3. — С. 726-728.
- 9. Зюзин И. Н., Алиев З. Г., Гончаров Т. К., Игнатьева Е. Л., Алдошин С. М. Структура бимолекулярного кристалла 2,4,6,8,10,12гексанитро-2,4,6,8,10,12-гексаазаизовюрцитана и метокси-NNO-азоксиметана // Журн. структур. химии. — 2017. — Т. 58, № 1. — С. 119–124.
- Иноземцев Я. О., Воробьев А. Б., Иноземцев А. В., Матюшин Ю. Н. Калориметрия энергоемких соединений // Горение и взрыв. — 2014. — № 7. — С. 260–270.
- Казаков А. И., Дашко Д. В., Набатова А. В., Степанов А. И., Лемперт Д. Б. Термохимические и энергетические характеристики DNTF и DNFF // Физика горения и взрыва. — 2018. — Т. 54, № 2. — С. 27–38.
- 12. Experimental Thermochemistry. V. 1: Measurement of Heats of Reaction / F. D. Rossini (Ed.). — New York: Interscience Publ. Inc., 1956.
- 13. **Термические** константы веществ / под ред. В. П. Глушко. — М.: Изд-во АН СССР, 1965.
- 14. Васильева Т. Ф., Жильцова Е. Н., Введенский А. А. Энтальпии сгорания N,N-диметилформамида и N,N-диметилацетамида // Журн. физ. химии. — 1972. — Т. 46, № 2. — С. 541–542.
- Kostikova L. M., Miroshnichenko E. A., Matyushin Y. N. The energies of dissociation bonds and efficient energies of interaction in nitroamines // Energetic Materials: Analysis, Diagnostics and Testing: 31st Int. Annu. Conf. of ICT. — Karlsruhe, FRG, 2000. — P. 50.1–11.
- Лемперт Д. Б., Зюзин И. Н., Набатова А. В., Казаков А. И., Яновский Л. С. Термохимические и энергетические характеристики 1,4-диэтинилбензола // Физика горения и взрыва. — 2019. — Т. 55, № 6. — С. 14–18.
- Лемперт Д. Б., Казаков А. И., Шереметев А. Б., Гладышкин А. Г., Набатова А. В., Яновский Л. С. Экспериментальное определение стандартной энтальпии образования 4H,8H-бис(фуразано)[3,4-b:3',4'-е]пиразина и оценка его эффективности как диспергатора твердых топлив // Изв. АН СССР. Сер. хим. 2019. № 10. С. 1856–1859.
- 18. Surikova Y. N., Pivina T. S., Sheremetev A. B., Arnautova E., Yudin I. Ther-

mochemical and quantum chemical characteristics of piperazine, furazanopiperazine and difurazanopiperazine derivatives nitroamines // Energetic Materials: Analysis, Diagnostics and Testing: 33rd Int. Annu. Conf. of ICT. — Karlsruhe, FRG, 2002. — P. 59.

- Чертанова Л. Ф., Яновский А. И., Стручков Ю. Т., Марченко Г. А., Сопин В. Ф. Рентгеноструктурное исследование бис(N-оксид-N'-метоксидиазенил)метана и бис(N-оксид-N'-метоксидиазенил)-(N"-метил-N"-нитраминометил)метана // Изв. АН СССР. Сер. хим. — 1989. — № 5. — С. 1200–1202.
- Павловец Г., Цуцуран В. Физико-химические свойства порохов и ракетных топлив. — М.: Изд-во Министерства обороны, 2009.
- Трусов Б. Г. Программная система TERRA для моделирования фазовых и химических равновесий // XIV Междунар. конф. по химической термодинамике. — СПб., 2002. — С. 483–484.
- Lempert D., Nechiporenko G., Manelis G. Energetic characteristics of solid composite propellants and ways of energy increasing // Centr. Eur. J. Energ. Mater. — 2006. — V. 3, N 4. — P. 73–80.

Поступила в редакцию 19.06.2019. После доработки 02.08.2019. Принята к публикации 28.08.2019.