УДК 527.62

ОБРАБОТКА СЕЙСМИЧЕСКИХ СИГНАЛОВ ДЛЯ ОЦЕНКИ ТРАЕКТОРИИ ДВИЖУЩЕГОСЯ ТРАНСПОРТНОГО СРЕДСТВА

Ю. В. Морозов, М. А. Райфельд, А. А. Спектор

Новосибирский государственный технический университет, 630073, г. Новосибирск, просп. К. Маркса, 20 E-mail: spektor@corp.nstu.ru

Рассмотрено применение энергетических параметров сигналов для оценки движения объектов с непрерывным воздействием на грунт в системах пассивной сейсмической локации. Предложены статистики для измеренных значений мощностей сигналов с учётом энергетических свойств среды. Проанализировано влияние перемещения объекта на отношение мощностей сигналов на различных датчиках. Приведены результаты проверки алгоритма оценки параметров траектории прямолинейного движения автомобиля.

Ключевые слова: пассивная сейсмическая локация, оценка траектории, метод максимального правдоподобия, энергетические свойства среды, геофон.

DOI: 10.15372/AUT20180304

Введение. Одной из решаемых в системах пассивной сейсмической локации (ПСЛ) задач является определение траектории движения наблюдаемого сейсмически активного объекта [1, 2]. Ввиду случайности сейсмических помех (основа которых — фон) и сейсмических полезных сигналов (источником служит давление на грунт перемещаемых по нему объектов) определение характеристик движения представляет собой статистическую задачу. Физические принципы её решения близки к методам многопозиционной радиолокации и радионавигации [3, 4]. В качестве первичных измерений используются параметры (называемые радионавигационными), значения которых связаны с координатами положения объекта и которые поддаются оцениванию путём соответствующей обработки принятых сигналов. С их помощью вычисляются необходимые характеристики движения объекта — текущие координаты и иногда значения вектора скорости.

Часто объектом наблюдения для ПСЛ, применяемой в технической системе охраны, является идущий человек. С этим связано использование в качестве навигационных параметров временны́х задержек сейсмических сигналов в одних сейсмических датчиках относительно других. При известной скорости распространения сейсмических волн совокупность таких измерений даёт возможность определить координаты. Минимальное число независимых измерений равное 2 обеспечивает однозначное решение задачи, а увеличение этого числа может быть использовано для снижения ошибок за счёт рациональной статистической обработки. Применение временны́х задержек обусловлено импульсным характером сигналов от человека, делающим возможным оценивание их времён прихода в сейсмические приёмники. В связи с этим появились исследования, направленные на создание методов оценивания времени прихода сейсмического импульсного сигнала [5, 6].

Другим типом навигационного параметра, которому в ПСЛ должного внимания пока не уделялось, является его интенсивность, зависящая от расстояния между объектом наблюдения и сейсмическим датчиком и, таким образом, содержащая в себе информацию о местоположении объекта. Качество этой информации, скорее всего, более низкое, чем в измерениях временны́х задержек, вследствие того что сейсмические помехи оказывают на интенсивность сигналов прямое воздействие, в то время как их воздействие на фиксируемое время прихода является косвенным и, по-видимому, более слабым.

Цель данной работы — развитие метода оценки траектории движения транспортного средства на основе использования зависимости мощностей сейсмических сигналов от расстояний между источником и сейсмическими приёмниками.

Применение энергетических параметров сигналов для статистической оценки движения объектов с непрерывным воздействием на грунт. Использование интенсивности имеет особое значение, если временные параметры не играют такой роли, как в случаях импульсных воздействий объектов. Эти проблемы возникают, когда объектами наблюдения являются транспортные средства, при движении которых образуются непрерывные сигналы. Возбуждаемые сейсмические сигналы представляют при этом непрерывные случайные процессы с гауссовским распределением и изменяющейся корреляционной функцией. Причинами нестационарности являются эффект Доплера, а также изменения характеристик среды распространения сейсмических волн с изменением расстояния: эквивалентный фильтр, описывающий влияние среды, более низкочастотный при бо́льших расстояниях и более широкополосный для объекта на меньших расстояниях.

Для описания положения объекта на поверхности земли применим декартовы координаты (x, y). Соответствующая система координат создаётся в устройстве ПСЛ при его размещении на рабочей территории. В данном случае все датчики, входящие в состав сейсмических антенн, получают свои координаты (x_n, y_n) , $n = \overline{1, N}$, где N — общее число датчиков. На основе энергетических характеристик сигналов этих датчиков система может решать свои задачи обнаружения, классификации, трассировки [7–10].

В соответствии с [11] распространение сейсмических колебаний на границе сред происходит в виде поверхностных поперечных волн Рэлея и Лява. Если волна регистрируется одномерным геофоном с вертикальным расположением чувствительного датчика, то основное влияние на выходной сигнал оказывает волна Рэлея. Её амплитудное затухание в почве зависит от многих факторов [11]. При отсутствии многолучевого распространения амплитуду сигнала u(f, r) при гармоническом воздействии на сейсмическом датчике можно определить выражением

$$u(f,r) = r^{-0.5} \exp(-\rho \pi f r).$$
(1)

Здесь r — расстояние от источника возмущения до датчика; f — частота возбуждаемого в грунте сигнала; ρ — коэффициент потерь, зависящий от типа грунта и не зависящий от частоты. Постоянная $\alpha = \rho \pi f$ представляет собой коэффициент диффузии. Поскольку реальное воздействие на грунт является достаточно широкополосным и близко (в полосе системы) к белому шуму, его спектральную плотность мощности можно считать равномерной и равной $N_0/2$. Тогда мощность сигнала на выходе датчика запишем в виде

$$P = \frac{N_0}{2r^2} \int_0^\infty |H(j2\pi f)|^2 \exp(-2\rho\pi f r) df,$$
(2)

где $H(j2\pi f)$ — комплексная частотная характеристика датчика. Типовой сейсмический датчик (геофон) имеет частотную характеристику, близкую к характеристике колебательного звена:

$$H(j2\pi f) = 1/(1 + j4\pi f\xi - (2\pi fT)^2), \tag{3}$$

где $T = 1/f_0$ — период резонансной частоты f_0 ; $\xi > 0$ — затухание. Вычисление интеграла в (2) с учётом (3) даёт величину, пропорциональную $r^{-0.5}$. Поэтому общий вид зависимос-

ти интенсивности сигнала (его мощности) на выходе датчика от расстояния представим как

$$P = \mu/r^{1,5} \tag{4}$$

(µ — энергетический параметр, определяемый интенсивностью сейсмического воздействия). При стационарном размещении системы в ряде случаев значение данного параметра измеряется при подготовке к эксплуатации. В более общей постановке энергетический параметр может быть включён в число оцениваемых при увеличении размерности статистической задачи.

Использование в качестве первичных данных отношения мощностей (или среднеквадратичных значений) сигналов в различных парах датчиков. Образуемые при этом данные $s_{n,l}$ на основе датчиков с номерами n и l с учётом (4) имеют вид

$$s_{n,l} = P_n / P_l = (r_l / r_n)^{1,5}$$
(5)

и не зависят от энергетического параметра. В (5) r_n и r_l — расстояния от точки сейсмического воздействия до этих датчиков.

Статистика, используемая в качестве измеренного значения мощности сигнала на n-м датчике в j-м цикле работы системы, определяется выражением

$$U_{nj} = \sum_{m=1}^{M} u_{njm}^2 / M.$$
(6)

Здесь $u_{njm}, m = \overline{1, M}, -$ оцифрованный выходной сигнал длиной M отсчётов (равной длительности цикла). Случайные величины U_{nj} в силу большого значения числа слагаемых Nподчиняются гауссовским распределениям с математическими ожиданиями, обратно пропорциональными расстояниям от источника возбуждения сейсмических волн до приёмников: $\overline{U}_{nj} = \mu/r_{nj}^{1,5}$. Эксперименты показывают, что среднеквадратические отклонения величин U_{nj} можно оценить значениями $\sigma_{nj} = \overline{U}_{nj}/3$. С учётом этого функцию правдоподобия для получения однократных (предварительных, найденных в пределах одного j-го цикла) оценок координат представим в виде

$$P(U_{1j}, U_{2j}, \dots, U_{Nj} | x_j, y_j) = \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi}\mu/3r_{nj}^{1,5}} \exp\Big\{-\frac{(U_{n,j} - \mu/r_{nj}^{1,5})^2}{2(\mu/3r_{nj}^{1,5})^2}\Big\},\tag{7}$$

где учтена независимость статистик U_{nj} для разных датчиков системы, а также зависимость расстояний $r_{n,j}$ от номера рабочего цикла из-за движения объекта. Отыскание текущей оценки $\mathbf{z}_j^* = (x_j, y_j)^t$ в *j*-м цикле можно выполнить путём дискретизации рабочей области с шагами $\Delta x, \Delta y$ по соответствующим координатам, вычисления значения функции (7) в узлах полученной решётки и определения точки её максимального значения.

Сглаживание первичных оценок. Далее осуществляется сглаживание первичных оценок $\mathbf{Z}_{i}^{*} = \{\mathbf{z}_{j}^{*}, j = \overline{1, i}\}$, полученных в отдельных циклах, опирающееся на математическую модель движения объекта. Используя модель прямолинейного и равномерного движения, имеем

$$\mathbf{z}_j = \mathbf{z}_{j-1} + \mathbf{V}\Delta t = \mathbf{z}_0 + j\mathbf{V}\Delta t,\tag{8}$$

где \mathbf{z}_j — координаты объекта на *j*-м шаге; \mathbf{V} — вектор скорости; Δt — интервал дискретизации. При этой модели оценивание траектории состоит в получении измеренных значений начальных координат \mathbf{z}_0^* и вектора скорости \mathbf{V}^* . Задача такого вида рассматривалась в [9], её решение для наблюдений на протяжении *i* циклов имеет вид

$$\mathbf{V}^{*} = \frac{1}{\Delta t} \Big(12 \sum_{j=1}^{i} \mathbf{z}_{j}^{*} / i(i+1)(i+2) - 6 \sum_{j=1}^{i} j \mathbf{z}_{j}^{*} / (i+1)(i+2) \Big);$$

$$\mathbf{z}_{0}^{*} = \frac{1}{\Delta t} \Big(2(2i+1) \sum_{j=1}^{i} \mathbf{z}_{j}^{*} / (i+1)(i+2) - 6 \sum_{j=1}^{i} j \mathbf{z}_{j}^{*} / (i+1)(i+2) \Big).$$
(9)

Влияние перемещения объекта на статистику отношения мощностей. Существенным фактором, приводящим к разрушению корреляционных связей между сигналами датчиков, является многолучевой характер распространения сейсмических колебаний в грунте [7]. Сигнал, регистрируемый геофоном, представляет собой суперпозицию сигналов, имеющих различные амплитуды и взаимные задержки.

Необходимо отметить, что в каждый момент времени происходит изменение многолучевой картины при перемещении источника возбуждения. Влияние указанного фактора очень похоже на последствия фединга, хорошо изученного в связи и радиолокации. Фединг приводит к глубоким замираниям — уменьшению огибающей (амплитуды) сигнала, причём этот процесс носит статистический характер. Если сигнал представляет собой узкополосный гауссовский процесс, то при близких по величине амплитудах лучей огибающая подчиняется рэлеевскому распределению, а её квадрат (мгновенная мощность) имеет экспоненциальное распределение. Принимая в качестве рабочей статистики отношение мощностей p_n и p_l сигналов на n-м и l-м датчиках: $s = p_n/p_l$, имеем для случайных величин s распределение вида

$$P(s) = \theta/(1+\theta s)^2, \tag{10}$$

где параметр $\theta = (r_l/r_n)^{1,5}$ представляет собой функцию отношения расстояний от источника возмущения до датчиков. Таким образом, информацию об отношении расстояний двух датчиков до объекта несёт параметр θ и именно его необходимо оценивать на основе выборки, состоящей из K отношений мгновенных мощностей на этих датчиках. Считая отношения мощностей в разные моменты времени независимыми, можно с использованием (10) записать их совместное распределение:

$$P(s_1, s_2, \dots, s_K / \theta) = \prod_{k=1}^K \theta / (1 + \theta s_k)^2.$$
(11)

Оценку максимального правдоподобия параметра θ на основе выражения (11) представим в виде

$$\hat{\theta} = \underset{\theta}{\arg\max} P(s_1, s_2, \dots, s_K/\theta) = \underset{\theta}{\arg\max} \prod_{k=1}^K \theta / (1 + \theta s_k)^2.$$
(12)

Нахождение максимума в (12) предполагает выполнение дифференцирования функции правдоподобия $P(s_1, s_2, \ldots, s_K/\theta)$ по θ и решение уравнения

$$dP(s_1, s_2, \dots, s_K/\theta)/d\theta = d \sum_{k=1}^K \log(\theta/(1+\theta s_k)^2) / d\theta = 0.$$
 (13)

Выполняя дифференцирование левой части уравнения (13), получаем

$$\sum_{k=1}^{K} \theta s_k / (1 + \theta s_k)^2 = K/2.$$
(14)

Решение уравнения (14) относительно θ является искомой максимально правдоподобной (МП) оценкой отношения расстояний r_k/r_n от источника возбуждения до датчиков и возможно только численно. Исследования показали, что численное решение (14) очень близко к величине, обратной медиане выборки отношений мгновенных мощностей на датчиках s_1, s_2, \ldots, s_K :

$$\hat{\theta} \approx 1/S_K^{(K/2)},\tag{15}$$

где $S_K^{(K/2)}$ — медиана выборки s_1, s_2, \ldots, s_K . Рис. 1 поясняет это утверждение. Он также демонстрирует низкую точность оценки параметра $\theta = 1 / \frac{1}{K} \sum_{k=1}^{K} s_k$ при использовании среднего выборочного значения вместо медианы.

Заметим, что оценка параметров θ , получаемая описанным методом, формируется на основе выборки объёма K элементов, которая образуется из всех отсчётов сигналов соответствующей пары датчиков рабочей группы на интервале оценивания. При цикловой организации функционирования системы таким временны́м интервалом может служить рабочий цикл.

С учётом модели затухания мощности сигнала (3) координаты объекта (при рабочей группе из трёх датчиков) могут быть определены в результате решения системы нелинейных уравнений следующего вида:

$$\frac{(x-x_1)^2 + (y-y_1)^2}{(x-x_0)^2 + (y-y_0)^2} = s_{01}^{1/1,5}; \qquad \frac{(x-x_2)^2 + (y-y_2)^2}{(x-x_0)^2 + (y-y_0)^2} = s_{02}^{1/1,5}, \tag{16}$$

где $(x_i, y_i), i = \{0, 1, 2\},$ — декартовы координаты датчиков; (x, y) — координаты объекта, которые необходимо найти. Очевидно, что вследствие шумов система уравнений (9)

Рис. 1. Оценки отношения расстояний от источника сигнала до датчиков r_k/r_n , полученные с использованием разных алгоритмов (выборка 1000 отсчётов): $\arg\max_{\theta} \prod_{k=1}^{K} \theta / (1+\theta s_k)^2$ (кривая 1); $1/S_K^{(K/2)}$ (кривая 2); $1 / \frac{1}{K} \sum_{k=1}^{K} s_k$ (кривая 3)

не может иметь решения. Нахождение координат нарушителя в этом случае рассматривается как статистическая задача их оценки в рамках какого-либо критерия (например, максимального правдоподобия). Данный подход позволяет уточнять оценку координат в результате привлечения измерений отношений мощностей на большом числе датчиков. Процедура, реализующая МП-оценку координаты автомобиля в соответствии с (9), может быть построена с использованием табличного метода. Область возможного нахождения автомобиля представляется в виде дискретного множества точек, взятых с некоторым шагом, например 1 или 0,5 м. Для каждой точки области предварительно рассчитываются отношения расстояний до некоторого числа датчиков (группы датчиков заданного размера), т. е. $\{r_1/r_0, r_2/r_0, r_3/r_0, \dots, r_n/r_0\}$. Числа заносятся в таблицу в привязке к заданной точке. Вместо абсолютного значения отношения расстояний можно использовать его логарифм. Далее по реализациям квадратов огибающих сейсмических сигналов находятся оценки отношений r_i/r_i , т. е. $\hat{\theta}_{i,j}$ либо $\log(\hat{\theta}_{i,j})$. Эти оценки вычисляются для соответствующих пар датчиков группы. Далее в таблице находится точка, в которой отношения расстояний наиболее близки к измеренным по реализациям сигналов в смысле заданного критерия. Наибольшую эффективность показала корреляционная метрика близости измеренных статистик $\hat{\theta}_{i,j}$ к табличным значениям:

$$\lambda_1 = \frac{(r_1/r_0)\hat{\theta}_{1,0} + (r_2/r_0)\hat{\theta}_{2,0} + \dots + (r_n/r_0)\hat{\theta}_{n,0}}{\sqrt{(r_1/r_0)^2 + (r_2/r_0)^2 + \dots + (r_n/r_0)^2}\sqrt{(\hat{\theta}_{1,0})^2 + (\hat{\theta}_{2,0})^2 + \dots + (\hat{\theta}_{n,0})^2}}.$$
(17)

Проведённые на практике исследования продемонстрировали, что предложенный алгоритм трассировки автомобиля, использующий для оценки его координат статистики отношений мощностей, измеряемых на различных датчиках, является достаточно эффективным в вычислительном плане вследствие применения табличных методов нахождения МП-оценки координат.

На рис. 2 приведён результат экспериментальной проверки работы алгоритма оценки параметров \mathbf{z}_0 и V траектории при прямолинейном движении автомобиля, основу которого составляют предварительные локальные оценки на базе максимизации (7) и траекторные оценки параметров на базе (8), (9). Эксперимент проводился на сейсмическом полигоне Новосибирского государственного технического университета, на котором установлено устройство ПСЛ «Азимут 1» [10]. Точками, соединёнными сплошными линиями, показаны фрагменты двух сейсмических антенн. Крестики обозначают локальные оценки в

Puc. 2. Иллюстрация экспериментальной проверки алгоритма

каждом из четырёх рабочих циклов, штриховая линия отображает финальную измеренную трассу автомобиля, выполнявшего поперечный проезд, пересекающий линии обеих антенн. Точность, с которой фиксировалась истинная линия проезда, соизмерима с точностью оценок, и её положение находится в области обеих полученных оценок. Ошибки определения траектории в эксперименте не превышали 1 м.

Заключение. Предложенный метод обработки сейсмических сигналов на основе статистики их энергетических параметров позволяет с приемлемой точностью оценить траекторию движения объекта с непрерывным воздействием на грунт. Применение отношений мощностей сигналов с разных датчиков даёт возможность оценивать траекторию без учёта энергетического параметра среды. Получена оценка отношения расстояний от датчиков до объекта через отношение мощностей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сытенький В. Д. Определение координат источника сейсмических волн амплитудным методом пассивной локации // Геодинамика и тектонофизика. 2012. **3**, № 4. С. 409–416.
- Бронников А. А., Котов В. В., Никитенков Д. С. Периметровая пассивная сейсмическая система охраны объекта // Изв. ТулГУ. Технические науки. 2009. Вып. 2, ч. П. С. 222– 226.
- Справочник по радиолокации. Т. 4. Радиолокационные станции и системы /Под ред. М. М. Вейсбейна. М.: Сов. радио, 1978. 376 с.
- 4. Ярлыков М. С. Статистическая теория радионавигации. М.: Радио и связь, 1985. 344 с.
- 5. Чебров Д. В., Гусев А. А. Автоматическое определение параметров цунамигенных землетрясений на Дальнем Востоке России в режиме реального времени: алгоритмы и программное обеспечение // Сейсмические приборы. 2010. 46, № 3. С. 35–37.
- Спектор А. А., Филатова С. Г. Оценка временного положения импульсов в сейсмических системах наблюдения на основе марковской фильтрации // Автометрия. 2008. 44, № 4. С. 68– 74.
- Коробов В. В., Райфельд М. А. Оценка координат в сейсмической системе наблюдения при неточном знании скорости распространения сигнала в грунте // ДАН ВШ РФ. 2012. 19, № 2. С. 87–94.
- 8. Спектор А. А., Морозов Ю. В. Оценка параметров движения автомобиля в пассивной сейсмической локации // Вопросы радиоэлектроники. 2017. № 4. С. 99–101.
- 9. Мархакшинов А. Л., Спектор А. А. Оценивание локальных характеристик движения объекта в сейсмической системе охраны // Автометрия. 2009. 45, № 5. С. 48–53.
- 10. Морозов Ю. В., Спектор А. А. Классификация объектов на основе анализа спектральных характеристик огибающих сейсмических сигналов // Автометрия. 2017. **53**, № 6. С. 49–56.
- Cautes G., Nastac S. Mathematical model for frequency-dependent soil propagation analysis // The Annals of "Dunarea de Jos" University of Galati. 2002. XIV. P. 23–26.

Поступила в редакцию 5 февраля 2018 г.