2016. Том 57, № 2

Февраль – март

C. 359 – 367

УДК 541.136:548.73:548.75:543.429.23

Посвящается 80-летию профессора С.П. Габуды

СРАВНИТЕЛЬНЫЙ СТРУКТУРНЫЙ АНАЛИЗ LiMPO₄ И Li₂MPO₄F (M = Mn, Fe, Co, Ni) ПО ДАННЫМ РФА, ИК И ЯМР СПЕКТРОСКОПИИ

Н.В. Косова¹, А.Б. Слободюк², О.А. Подгорнова¹

¹Институт химии твердого тела и механохимии СО РАН, Новосибирск, Россия E-mail: kosova@solid.nsc.ru ²Институт химии ДВО РАН, Владивосток, Россия

Статья поступила 14 октября 2015 г.

Проведено сравнительное структурное исследование ортофосфатов LiMPO₄ (M = Mn, Fe, Co, Ni) и фторофосфатов Li₂MPO₄F (M = Co, Ni), полученных механохимически стимулированным твердофазным синтезом, с помощью методов РФА, ИК и ЯМР спектроскопии. Показано, что все соединения кристаллизуются в ромбической сингонии (пр. гр. *Pnma*). Параметры элементарной ячейки уменьшаются при переходе от Mn к Ni, что связано с уменьшением ионного радиуса *d*-металла. По данным ИК спектроскопии, в этом ряду наблюдается повышение ковалентности связи Р—О и понижение ковалентности связи M—O. При переходе к фторофосфатам симметрия тетраэдров PO₄ повышается. ЯМР спектры ⁶Li и ³¹P всех соединений характеризуются зависимостью величины контактного сдвига от природы металла M и степени искажения координационного полиэдра MO₆. На ширину линии MAS ЯМР ⁶Li заметное влияние оказывает концентрация структурных дефектов. В отличие от ортофосфатов с эквивалентными ионами лития, фторофосфаты содержат ионы лития в трех различных позициях.

DOI: 10.15372/JSC20160215

Ключевые слова: электродные материалы для литий-ионных аккумуляторов, ортофосфаты и фторофосфаты лития и переходных металлов, структура.

введение

Современные достижения в области создания и исследования свойств наноразмерных материалов послужили мощным толчком к разработке новых катодных материалов для литийионных аккумуляторов (ЛИА) на основе соединений с низкой проводимостью: ортофосфатов и фторофосфатов лития и *d*-металлов [1, 2]. Ортофосфаты со структурой оливина LiMPO₄ (M = = Mn, Fe, Co, Ni) обратили на себя внимание из-за высокого потенциала окислительновосстановительной пары M^{2+}/M^{3+} относительно пары Li⁰/Li⁺, который на 1,5—2 В выше потенциала соответствующих оксидов вследствие индуктивного эффекта М—О—Р, обусловленного высокой ковалентностью связи Р—О в полианионе PO_4^{3-} [3]. На данный момент наиболее привлекательным представителем этого класса считается LiFePO₄ [4]. Понижение размеров частиц LiFePO₄ до наноуровня и создание наноразмерного электронопроводящего углеродного покрытия позволили увеличить электропроводность LiFePO₄ на несколько порядков и существенно улучшить его катодные характеристики. Теоретическая емкость LiMPO₄ составляет ~170 мАч/г и может быть практически полностью реализована для LiFePO₄. Среднее напряжение разряда LiMPO₄ повышается в ряду Fe—Mn—Co—Ni от 3,4 до 5,1 В. Для LiMPO₄ характерен двухфазный механизм интеркаляции/деинтеркаляции ионов лития.

[©] Косова Н.В., Слободюк А.Б., Подгорнова О.А., 2016

Таблица 1

Соелицение	Ппгп	Па	раметры	решетки	ı, Å	ΠB	О мАн/г	Ссылка
Соединение	11p. 1p.	а	b	С	V	U _{cp} , D	Q _{reop} , MA4/1	CEBIJIKa
LiMnPO ₄ (т/ф синтез)	Pnma	6,105	10,450	4,748	302,91	4,1	171	[Наст. работа]
LiFePO₄ (т/ф синтез)	Pnma	6,106 6,003	10,454 10,315	4,749 4,687	290,22	3,4	170	ICDD 00-033-0804 [Наст. работа]
		6,010	10,332	4,692	,	,		ICDD 04-010-3115
LiCoPO ₄ (т/ф синтез)	Pnma	5,914	10,174	4,692	282,31	4,8	167	[Наст. работа]
		5,922	10,206	4,701				ICDD 00-032-0552
LiNiPO ₄ (т/ф синтез)	Pnma	5,851	10,013	4,672	273,69	5,1	167	[Наст. работа]
		5,855	10,068	4,682				ICDD 00-032-0578
Li ₂ MnPO ₄ F (из Na ₂ MnPO ₄ F)	$P2_{1}/n$	13,21	5,10	13,37	900,75	3,6	287	Kim et al., 2012 [13]
Li ₂ FePO ₄ F (из Na ₂ FePO ₄ F)	Pbcn	5,055	13,561	11,052	757,62	3,2	292	Ellis et al., 2007 [14]
Li ₂ CoPO ₄ F (т/ф синтез)	Pnma	10,446	6,385	10,879	725,60	4,7	287	[Наст. работа]
		10,454	6,386	10,877				ICDD 00-056-1493
Li ₂ NiPO ₄ F (т/ф синтез)	Pnma	10,447	6,269	10,821	708,73	4,8	287	[Наст. работа]
		10,47	6,289	10,85				ICDD 04-009-2748

Пространственная группа, уточненные параметры решетки и электрохимические характеристики (среднее рабочее напряжение U_{cp} и теоретическая удельная емкость Q_{Teop}) для LiMPO₄ и Li₂MPO₄F (M = Mn, Fe, Co, Ni)

Известно, что введение фтора в структуру металлофосфатов, как правило, увеличивает рабочее напряжение материала, тем самым повышая его удельную энергию. Фторофосфаты лития и *d*-металлов, описываемые общей формулой Li₂MPO₄F (M = Fe, Mn, Co, Ni), являются перспективными высоковольтовыми катодными материалами для ЛИА. Теоретическая разрядная емкость Li₂MPO₄F составляет ~290 мАч/г вследствие наличия двух ионов лития в формульной единице и возможности реализации двухэлектронного процесса окисления—восстановления *d*-металла M^{2+}/M^{4+} вместо одноэлектронного у соответствующих ортофосфатов. Среднее напряжение разряда для Li₂MPO₄F повышается в ряду Fe—Mn—Co—Ni от 3,2 до 4,8 B, что несколько ниже, чем у ортофосфатов (табл. 1).

Целью данной работы явилось сравнительное структурное исследование наноструктурированных ортофосфатов LiMPO₄ и фторофосфатов Li₂MPO₄F (M = Mn, Fe, Co, Ni), синтезированных с использованием механической активации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Ортофосфаты LiMPO₄ (M = Fe, Mn, Co, Ni) получали твердофазным синтезом с использованием предварительной механической активации (MA) реакционных смесей, состоящих из Li₂CO₃, M_xO и (NH₄)₂HPO₄, в высоконапряженной планетарной мельнице AГO-2. При этом исходные оксиды MnO₂, Fe₂O₃ и Co₃O₄ подвергались селективному карботермическому восстановлению [5] в ходе последующего отжига в инертной атмосфере при температуре 750 °C [6—8]. LiNiPO₄ получали из NiO на воздухе. Использование карботермического восстановления является привлекательным для одновременного осуществления процессов синтеза и поверхностного модифицирования LiMPO₄ наноразмерным высокопроводящим углеродом.

Фторофосфаты Li₂MPO₄F (M = Fe, Mn, Co, Ni) получали двухступенчатым синтезом. Первая стадия заключалась в получении соответствующих ортофосфатов LiMPO₄ (см. выше), а вторая — в их взаимодействии с LiF с использованием стадии MA [9]. Данный синтетический подход, описанный в литературе как "dimensional reduction", заключается в разрушении связей между ионами ковалентного металла и анионным каркасом в предшественнике (LiMPO₄) в результате реакции с ионным реагентом (LiF), что приводит к менее прочному каркасу; при этом координационная геометрия и связь полиэдров предшественника сохраняется [10].

Фазовый состав и кристаллическую структуру полученных соединений исследовали методом рентгенофазового анализа (РФА) с использованием дифрактометра D8 Advance Bruker, CuK_{α} -излучение. Локальную структуру изучали методами инфракрасной спектроскопии (ИК) с использованием FTIR спектрометра Tensor 27 в интервале 200—4000 см⁻¹ и ядерного магнитного резонанса (ЯМР) на ядрах ⁶Li и ³¹Р с использованием твердотельного ЯМР спектрометра Bruker AV-300. В качестве эталонов брали водные растворы LiCl и H₃PO₄ соответственно. Для регистрации спектров ЯМР применяли методику эха Хана. Для записи спектров ЯМР ⁶Li использовали вращение образца под магическим углом (MAS) с частотой 16 кГц. Температура образца в экспериментах ЯМР ⁶Li и ³¹Р составляла 328 и 300 К соответственно.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгенофазовый анализ. По данным РФА все ортофосфаты LiMPO₄, полученные путем нагревания активированных смесей реагентов при 750 °С, являются однофазными и имеют упорядоченную структуру оливина с ромбической сингонией (пространственная группа *Pnma*), состоящую из плотной гексагональной упаковки ионов кислорода, в которой ионы M^{2+} и Li⁺ занимают половину октаэдров, а ионы $P^{5+} - 1/8$ тетраэдров (рис. 1). Структуру можно представить как цепочку из октаэдров вдоль оси *c*, которые связаны тетраэдрами PO_4^{3-} и образуют трехмерный каркас. Октаэдры MO₆, образующие зигзагообразные цепи, соединены между собой вершинами; это затрудняет электронный перенос в LiMPO₄. Для LiMPO₄ характерно образование антиструктурных дефектов Li_{Fe}//Fe_{Li}· [11].

Как следует из табл. 1, параметры решетки полученных LiMPO₄, уточненные методом Ритвельда, уменьшаются от Mn к Ni, что связано с изменением радиуса октаэдрических ионов *d*-металла, находящихся в высокоспиновом состоянии, от 0,83 Å для Mn^{2+} до 0,69 Å для Ni²⁺ [12] (табл. 2), и согласуются с литературными данными [ICDD, 13, 14].

В табл. 3 приведены уточненные атомные параметры для LiFePO₄ и LiCoPO₄, а в табл. 4 —

избранные длины связей и углы в координационных полиэдрах этих соединений. Данные табл. 4 указывают на сильное отклонение окружения ионов металла в октаэдрах MO_6 от симметрии, что приводит к понижению симметрии от O_h до C_s . Все атомы лития в LiMPO₄ занимают одинаковые структурные позиции. Каждый атом лития соединен посредством кислорода с шестью октаэдрами MO_6 .

Полученные ортофосфаты LiMPO₄ служили также прекурсорами для синтеза фторофосфатов Li₂MPO₄F. На рис. 2 представлены результаты *in situ* РФА исследования процессов фазообразования при нагревании и охлаждении активированных смесей LiMPO₄ с LiF в токе гелия с использованием высокотемпературной камеры HTK 1200N дифрактометра D8 Advance Bruker. Установлено, что синтез Li₂CoPO₄F и Li₂NiPO₄F начинается на стадии MA. Завершение процессов синтеза

Рис. 1. Дифрактограммы LiMPO₄ (M = Mn, Fe, Co, Ni) и Li₂MPO₄F (M = Co, Ni)

Таблица 2

Заполнение d-орбиталей переходного металла в полиэдре MO ₆ , имеющем симметрию C _s ,	
сдвиг и полуширина (Δv) сигнала в MAS ЯМР ⁶ Li и центр тяжести спектра ЯМР ³¹ Р в LiMPO ₄	

Ионные радиусы и электронные конфигурации d-ионов в LiMPO₄.

M^{2+}	$R_{\mathrm{M}^{2+}_{hs/Oc}},$ Å	Элементарная конфигурация М ²⁺	<i>A</i> " ↑	$A'' \downarrow$	$A'\uparrow$	$A' \downarrow$	2 <i>S</i>	Сдвиг ⁶ Li, м.д.	Δν (⁶ Li), κΓц	Сдвиг ³¹ Р, м.д.
Mn	0,83	$3d^{5}4s^{2}$	2	0	3	0	5	68	0,19	8700
Fe	0,78	$3d^{6}4s^{2}$	2	1	3	0	4	-17	6,71	3820
Co	0,745	$3d^{7}4s^{2}$	2	2	3	0	3	-111	8,85	3200
Ni	0,69	$3d^{8}4s^{2}$	2	2	3	1	2	-49	0,95	2000
Li	0,76	—	—		—	—		—		

Таблица З

Уточненные атомные параметры для LiFePO₄ и LiCoPO₄

Пориция		LiFe	PO ₄			Занятость			
позиция	Атом	x	у	Z	Атом	x	У	Z	позиции
4 <i>a</i>	Li1	0	0	0	Li1	0	0	0	1
4 <i>c</i>	Fe1	0,281	0,25	0,975	Co1	0,2789	0,25	0,9792	1
4 <i>c</i>	P1	0,0948	0,25	0,423	P1	0,0957	0,25	0,4226	1
4 <i>c</i>	O1	0,0940	0,25	0,741	O1	0,0934	0,25	0,7426	1
4 <i>c</i>	O2	0,453	0,25	0,227	O2	0,4519	0,25	0,2230	1
8d	O3	0,1613	0,047	0,282	O3	0,1606	0,0417	0,2765	1

Таблица 4

Избранные длины связей (А) и углы	(град.) в координационных	полиэдрах LiFePO ₄ и LiCoPO
-----------------------------------	---------------------------	--

Вектор	Длина связи	Угол		Вектор	Длина связи	Угол				
	Li	FePO ₄		LiCoPO ₄						
Fe1_O1	2,23176(3)	Fe1—O1—Li1	96,5145(1)	Co1_O1	2,190(11)	Col—Ol—Lil	95,6(3)			
Fe1_O2	2,13336(3)	Fe1—O2—Li1	123,273(1)	Co1_O2	2,102(12)	Col—O2—Lil	123,4(5)			
Fe1_O3	2,26451(2)	Fe1—O3—Li1	112,001(1)	Co1_O3	2,216(6)	Col—O3—Lil	114,74(34)			
Fe1_O3	2,09044(3)	Fe1—O3—Li1	96,008 (1)	Co1_O3	2,066(7)	Col—O3—Lil	95,7(2)			
Li1_01	2,16682(2)	Fe1-01-P1	119,226(1)	Li1_O1	2,134(7)	Col—Ol—Pl	119,6(4)			
Li1_O2	2,03715(2)	Fe1-02-P1	120,584(1)	Li1_O2	2,029(6)	Co1—O2—P1	122,0(5)			
Li1_O3 ×2	2,15073(3)	Fe1-03-P1	127,851(1)	Li1_O3 ×2	2,102(8)	Co1—O3—P1	125,9(4)			
P1_01	1,49546(3)			P1_O1	1,501(8)					
P1_O2	1,62831(2)			P1_O2	1,616(14)					
P1_O3 ×2	1,55141(2)			P1_O3 ×2	1,558(8)					

и кристаллизации Li₂CoPO₄F происходит в интервале температур 600—650 °C, а Li₂NiPO₄F — при 500—550 °C. Нагревание до более высоких температур, а также последующее медленное охлаждение приводит к распаду Li₂CoPO₄F и Li₂NiPO₄F, что свидетельствует о термодинамической неустойчивости данных соединений. Для получения Li₂CoPO₄F и Li₂NiPO₄F температуры отжига активированных смесей в печи составили 650 и 500 °C соответственно. Отожженные образцы с номинальным составом Li₂FePO₄F и Li₂MnPO₄F представляли собой смесь различных фаз. Этот факт соответствует литературным данным, согласно которым Li₂FePO₄F и Li₂MnPO₄F удается получить лишь из соответствующих натриевых аналогов путем ионного обмена Na⁺/Li⁺ [13, 14].

Puc. 2. In situ дифрактограммы продуктов взаимодействия LiCoPO₄ (*a*) и LiNiPO₄ (*b*) с LiF при нагревании и охлаждении

Введение в структуру ионов фтора зачастую приводит к преобразованию каркасной структуры в слоистую, а слоистой — в цепочечную, т.е. понижению размерности [10]. Это, в свою очередь, оказывает влияние на изменение размерности каналов для диффузии ионов лития и на свойства фторофосфатов, в частности, на электронную и ионную проводимость. Если данный эффект реализуется в случае Li₂FePO₄F и Li₂MnPO₄F, структура которых становится слоистой

Таблица 5

Атом	Позиция	x	у	Ζ	Занятость позиции	Атом	Позиция	x	у	Ζ	Занятость позиции
Li1	8 <i>d</i>	0,751	1,034	0,668	1	01	8 <i>d</i>	0,8094	0,943	0,9821	1
Li2	4 <i>c</i>	0,965	0,75	0,705	1	O2	4 <i>c</i>	0,602	0,75	0,941	1
Li3	4 <i>c</i>	0,252	0,25	0,520	1	03	4 <i>c</i>	0,782	0,75	0,779	1
Col	4 <i>a</i>	0	0	0	1	O4	8 <i>d</i>	-0,0368	0,443	0,6804	1
Co2	4b	0	0	0,5	1	05	4 <i>c</i>	0,167	0,25	0,743	1
P1	4 <i>c</i>	0,751	0,75	0,9099	1	06	4 <i>c</i>	-0,035	0,25	0,876	1
P2	4 <i>c</i>	0,0249	0,25	0,748	1	F1	4 <i>c</i>	0,052	0,75	0,879	1
						F2	4 <i>c</i>	0,860	0,75	0,527	1

Уточненные атомные параметры для Li₂CoPO₄F

Таблица б

Избранные длины связей (Å) в координационных полиэдрах Li₂CoPO₄F

Вектор	Длина связи	Вектор	Длина связи	Вектор	Длина связи	Вектор	Длина связи
				~			
Lil_01	2,13(7)	Li2_02	2,1(3)	Col_O1	2,05(6)	P1_01 ×2	1,59(2)
Lil_O3	2,20(10)	Li2_03	2,07(19)	Co1_O6	2,5(2)	P1_O2	1,47(6)
Li1_04	2,23(16)	Li2_04	1,98(6)	Co1_F1	2,56(18)	P1_O3	1,59(5)
Li1_O5	1,91(10)	Li2_F1	2,1(3)				
Li1_F1	2,81(15)	Li2_F2	2,2(3)	Co2_O2	2,03(4)	P2_O4 ×2	1,58(3)
Li1_F2	2,63(12)			Co2_O4	2,04(3)	P2_05	1,48(6)
				Co2_F2	2,19(3)	P2_06	1,54(6)
Li3_01	2,05(6)	Li3_06	2,5(2)				
Li3_05	2,60(19)	LI3_F2	1,29(18)				

(пр. гр. *Pbcn* и *P*2₁/*n* соответственно [13, 14]), то структура Li₂CoPO₄F и Li₂NiPO₄F остается неизменной (пр. гр. *Pnma*). Структура Li₂CoPO₄F и Li₂NiPO₄F состоит из октаэдров MPO₄F, образующих цепочки рутильного типа вдоль направления *b*; октаэдры соединены вершинами с изолированными тетраэдрами PO₄. В структуре присутствуют сравнительно просторные каналы, доступные для диффузии ионов лития и расположенные вдоль цепочек из октаэдров MO₄F₂, связанных ребрами и соединенных в трехмерный каркас фосфат-ионами [15—17]. Связь тетраэдрических и октаэдрических ионов нарушается, и координационный полиэдр MO₆ становится более правильным. Li₂CoPO₄F и Li₂NiPO₄F являются изоструктурными соединения-ми [17]. Ионы лития занимают в них три различные структурные позиции: Li1 находится в 8*d*-позициях, а Li2 и Li3 находятся в 4*c*-позициях [16, 17]. При этом две из них являются энергетически близкими. Согласно расчетам BVS [16], предпочтительное участие в процессах интер-каляции—деинтеркаляции лития в Li₂CoPO₄F принимают ионы Li, находящиеся в 8*d*-позициях.

Дифрактограммы синтезированных Li₂CoPO₄F и Li₂NiPO₄F представлены на рис. 1. Уточненные параметры решетки продуктов приведены в табл. 1. Видно, что для Li₂MPO₄F наблюдается существенное увеличение объема элементарной ячейки по сравнению с соответствующими ортофосфатами; параметры решетки Li₂NiPO₄F ниже, чем у Li₂CoPO₄F. Атомные параметры и избранные длины связей для Li₂CoPO₄F приведены в табл. 5 и 6. Из табл. 6 следует, что при переходе от ортофосфатов к фторофосфатам симметрия тетраэдров PO₄ повышается.

Инфракрасная спектроскопия. На ИК спектрах ортофосфатов LiMPO₄ (M = Fe, Mn, Co, Ni) присутствует две группы полос, преимущественно относящихся к колебаниям PO₄ (точечная группа T_d): валентные v_1 (синглет) и v_3 (трижды вырожденные) колебания в области 900—1150 см⁻¹ и деформационные v_2 (дублет) и v_4 (трижды вырожденные) колебания в области

Рис. 3. ИК спектры LiMPO₄ (M = Mn, Fe, Co, Ni) и Li₂MPO₄F (M = Co, Ni)

400—650 см⁻¹ [18, 19] (рис. 3). Наиболее заметные изменения наблюдаются для симметричных колебаний v_1 и v_2 : при переходе от Мп к Fe они сдвигаются в коротковолновую область, а при дальнейшем переходе к Со и Ni происходит небольшой сдвиг в обратном направлении. Изменение частоты колебаний связи Р—О связано с изменением силы (ковалентности) связи Р—О: чем больше частота колебаний Р—О, тем выше кова-

лентность связи Р—О, а следовательно, ниже ковалентность связи М—О (индуктивный эффект). Чем сильнее связь М—О, тем затруднительнее происходит изгиб связи О—Р—О. Понижение ковалентности связи М—О приводит к понижению энергии окислительновосстановительной пары M^{3+}/M^{2+} и увеличению ее потенциала относительно пары Li^0/Li^+ [3]. Следует отметить, что потенциал пары M^{3+}/M^{2+} для LiFePO₄ ниже, чем для LiMnPO₄, что связано с особенностью электронной структуры Fe³⁺ [20].

Несмотря на очевидную схожесть, ИК спектры Li₂MPO₄F (M = Co, Ni) несколько отличаются от спектров соответствующих LiMPO₄. Во-первых, колебания v_1 в них очень слабо выражены. Вырожденность мод v_3 и v_4 становится менее выраженной, указывая на большую эквивалентность связей Р—О в результате повышения симметрии тетраэдров PO₄. Наблюдается сдвиг полос в более низкочастотную область, что свидетельствует о понижении энергии валентных (Р—О) и деформационных (О—Р—О) колебаний в Li₂CoPO₄F и Li₂NiPO₄F по сравнению с соответствующими колебаниями в LiMPO₄.

ЯМР спектроскопия. ЯМР спектроскопия является одним из наиболее информативных методов исследования литий-содержащих электродных материалов для ЛИА. Метод крайне чувствителен к наличию парамагнитных ионов, присутствующих в структуре материала. Известно, что положение линий ЯМР ⁶Li в спектрах LiMPO₄ и Li_xMPO₄F (M = Fe, Mn, Co, Ni) определяется контактным взаимодействием атомов лития с неспаренными электронами переходных металлов, находящимися на связывающих и разрыхляющих молекулярных орбиталях, перенос которых происходит вдоль цепочек Li—O—M [21]. Знак и величина контактного сдвига зависят от угла связи, ковалентности связи и числа неспаренных электронов в переходном металле [22]. Использование ЯМР спектроскопии для изучения влияния процессов механической обработки на синтез парамагнитных электродных материалов для ЛИА было впервые продемонстрировано в работе проф. С.П. Габуды с коллегами на примере литий-марганцевой шпинели LiMn₂O₄ [23], а в дальнейшем получило развитие при исследовании LiCoO₂ [24].

На спектрах MAS ЯМР ^{6,7}Li и ³¹P LiMPO₄ (M = Fe, Mn, Co, Ni) наблюдаются единичные линии (рис. 4), положение которых хорошо совпадает с литературными данными [21, 22]. Видно, что знак и величина парамагнитных сдвигов на ядрах лития в LiMPO₄ зависят от природы металла сложным образом, что связано с изменением энергии орбиталей вследствие сильного искажения формы координационного полиэдра металла MO₆, возникающего при его соединении с PO₄ общими ребрами. Если в октаэдре, относящемся к группе симметрии O_h , имеются три связывающих t_{2g} и две разрыхляющих e_g орбитали, то в искаженном полиэдре с симметрией C_s имеются две A'' орбитали с низкой и три A' орбитали с высокой энергией (см. табл. 2).

Ширина линий MAS ЯМР ^{6,7}Li ортофосфатов LiMPO₄ значительно отличается друг от друга. Авторами [11] на основании *ab initio* расчетов было показано, что для LiMPO₄ характерно образование антиструктурных дефектов $Li_{Fe'}/Fe_{Li}$. Можно заметить, что наибольшее увеличе-

Рис. 4. Спектры ЯМР LiMPO₄ (M = Mn, Fe, Co, Ni) и Li₂MPO₄F (M = Co, Ni): спектры MAS ЯМР ⁶Li, приведены сдвиги сигналов; неотмеченные пики являются сателлитами вращения (*a*); спектры ЯМР ³¹P, приведены значения центров тяжести спектров (δ)

ние ширины линий ЯМР наблюдается в тех случаях, когда ионный радиус металла (КЧ 6, высокоспиновое состояние) наиболее близок к радиусу иона лития (см. табл. 2), что, по-видимому, и способствует образованию антиструктурных дефектов. Сдвиги ЯМР ³¹Р линий для всех соединений определяются общим количеством неспаренных электронов (2*S*) у *d*-металла (см. табл. 2). Из рис. 4 следует, что величины контактных сдвигов ЯМР ³¹Р в спектрах LiMPO₄ существенно больше, чем сдвигов ЯМР ⁶Li, указывая на то, что ковалентность связи Р—О—М значительно выше, чем связи Li—O—M [22]. Это подтверждается данными ИК спектроскопии. Изменение ковалентности связи М—О в LiMPO₄ оказывает существенное влияние на рабочее напряжение: оно повышается в ряду Fe—Mn—Co—Ni [20] (см. табл. 1).

В отличие от ортофосфатов, в спектрах MAS ЯМР ⁶Li фторофосфатов наблюдается несколько пиков, что обусловлено наличием в них различных структурных позиций лития (см. рис. 4). Спектр Li₂CoPO₄F содержит три перекрывающихся пика, соответствующие трем различным позициям Li [9]. Поскольку величина контактного сдвига зависит от температуры, а температура — от скорости вращения образца, измеренные сдвиги несколько выше приведенных в [25]. Согласно *ab initio* расчетам, проведенным в работе [25], наблюдаемые пики при –2, –52 и –99 м.д. могут быть отнесены к ионам лития Li3, Li1 и Li2 соответственно. Спектр Li₂NiPO₄F содержит два сигнала со сдвигами –15 и –55 м.д. и близкими с учетом сателлитов интегральными интенсивностями (ошибка составляет 15%). Очевидно, что сигналы, принадлежащие ионам лития Li2 и Li3 в позициях 4*c*, накладываются друг на друга.

Разница сдвигов ЯМР ³¹Р Li₂NiPO₄F и Li₂CoPO₄F невелика (см. табл. 2): центры тяжести спектров расположены при 1030 и 1075 м.д. соответственно, что свидетельствует о близости параметров химической связи в фосфат-ионах этих соединений. В случае Li₂NiPO₄F имеются признаки тонкой структуры, однако добиться наблюдения отдельных сигналов с применением MAS до 18 кГц не удалось.

Таким образом, фторофосфаты кобальта и никеля характеризуются меньшей величиной контактных сдвигов ⁶Li и ³¹P по сравнению с соответствующими фосфатами, что можно связать с уменьшением перекрывания электронных орбиталей вдоль связи Li—O—M за счет высокой электроотрицательности фтора. Повышения окислительно-восстановительного потенциала пары M²⁺/M³⁺ при этом не происходит. С другой стороны, ширина линий спектров MAS ЯМР ⁶Li

фосфатов и фторофосфатов отличается. Это, вероятно, связано с различной концентрацией антиструктурных дефектов в этих соединениях, что определяется природой *d*-металла и методом синтеза.

ЗАКЛЮЧЕНИЕ

Сравнительное структурное исследование ортофосфатов LiMPO₄ (M = Mn, Fe, Co, Ni) и фторофосфатов Li₂MPO₄F (M = Co, Ni), полученных механохимически стимулированным твердофазным синтезом, с помощью методов РФА, ИК и ЯМР спектроскопии показало, что все соединения кристаллизуются в ромбической сингонии (пр. гр. *Pnma*). Параметры элементарной ячейки уменьшаются при переходе от Mn к Ni, что связано с уменьшением ионного радиуса *d*-металла. При этом наблюдается понижение энергии связи М—О, обусловливающее увеличение потенциала окислительно-восстановительной пары M^{2+}/M^{3+} относительно пары Li^0/Li^+ в данном ряду (так называемый индуктивный эффект). В отличие от ортофосфатов с ионами лития, находящимися в одинаковых кристаллографических позициях, фторофосфаты отличаются наличием ионов лития в трех разных позициях и повышением симметрии тетраэдров PO₄. Энергия связи М—О при этом меняется незначительно, что не приводит к изменению величины окислительно-восстановительной M^{3+}/M^{3+} , несмотря на введение в их структуру более отрицательных ионов фтора. Кроме того, фторофосфаты отличаются меньшей термической устойчивостью.

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект № 14-03-01082). Авторы благодарны к.х.н. Н.В. Булиной за снятие дифрактограмм и ЦКП НИОХ СО РАН за снятие ИК спектров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zaghib K., Guerfi A., Hovington P., Vijh A., Trudeau M., Mauger A., Goodenough J.B., Julien C.M. // J. Power Sources. 2013. 232. P. 357 369.
- 2. Amatucci G.G., Pereira N. // J. Fluor. Chemistry. 2007. 128. P. 243 262.
- 3. Yamada A., Chung S.C., Hinokuma K. // J. Electrochem. Soc. 2001. 148. P. A224 A229.
- 4. Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. // J. Electrochem. Soc. 1997. 144. P. 1188 1194.
- 5. Barker J., Saidi M.Y., Swoyer J.L. // Electrochem. Solid State Lett. 2003. 6. P. A53 A55.
- 6. Kosova N.V., Devyatkina E.T., Petrov S.A. // J. Electrochem. Soc. 2010. 157. P. A1247 A1252.
- 7. Kosova N.V., Devyatkina E.T., Slobodyuk A.B., Petrov S.A. // Electrochim. Acta. 2012. **59**. P. 404 411.
- Kosova N.V., Podgornova O.A., Devyatkina E.T., Podugolnikov V.R., Petrov S.A. // J. Mater. Chem. A. 2014. – 2. – P. 20697 – 20705.
- 9. Kosova N.V., Devyatkina E.T., Slobodyuk A.B. // Solid State Ionics. 2012. 225. P. 570 574.
- 10. Long J.R., McCarty L.S., Holm R.H. // J. Am. Chem. Soc. 1996. 118. P. 4603 4616.
- 11. Fisher C.A.J., Prieto V.M.H., Islam M.S. // Chem. Mater. 2008. 20. P. 5907 5915.
- 12. Shannon R.D. // Acta Crystallogr. Section A. 1976. 32. P. 751 767.
- 13. Kim S.W., Seo D.H., Kim H., Park K.Y., Kang K. // Phys. Chem. Chem. Phys. 2012. 14. P. 3299 3303.
- 14. Ellis B.L., Makahnouk W.R.M., Makimura Y., Toghill K., Nazar L.F. // Nat. Mater. 2007. 10. P. 749 753.
- 15. Okada S., Uena M., Uebou Y., Yamaki J.-I. // J. Power Sources. 2005. 146. P. 565 569.
- 16. *Hadermann J., Abakumov A.M., Turner S., Hafideddine Z., Khasanova N.R., Antipov E.V., Van Tendeloo G.* // Mater. – 2011. – 23. – P. 3540 – 3545.
- Dutreilh M., Chevalier C., El-Ghozzi M., Avignant D. // J. Solid State Chem. 1999. 142. P. 1 5.
 Ait Salah A., Jozwiak P., Zaghib K., Garbarczyk J., Gendron F., Mauger A., Julien C.M. // Spectrochim. Acta A. – 2006. – 65. – P. 1007 – 1013.
- 19. Paques-Ledent M.T., Tarte P. // Spectrochim. Acta A. 1974. 30. P. 673 689.
- 20. Zhou F., Cococcioni M., Kang K., Ceder G. // Electrochem. Commun. 2004. 6. P. 1144 1148.
- 21. Tucker M.C., Doeff M.M., Richardson T.J., Finones R., Cairns E.J., Reimer J.A. // J. Am. Chem. Soc. 2002. **124**. P. 3832 3833.
- 22. Wilcke S.L., Lee Y.-J., Cairns E.J., Reimer J.A. // Appl. Magn. Res. 2007. 32. P. 547 563.
- 23. Косова Н.В., Козлова С.Г., Габуда С.П., Аввакумов Е.Г. // Докл. АН. 1998. **362**. С. 493 496.
- 24. Келлерман Д.Г., Габуда С.П., Журавлев Н.А., Семенова А.С., Денисова Т.А., Плетнев Р.Н. // Изв. РАН. Сер. физ. 2006. **70**. С. 974 976.
- 25. Okumura T., Shikano M., Yamaguchi Y., Kobayashi H. // Chem. Mater. DOI: 10.1021/cm504633p