УДК 536.2.023:536.212.3:536.631

Калорические и переносные свойства циркониевого сплава Э-110 в широком интервале температур^{*}

А.Ш. Агажанов, Д.А. Самошкин, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: scousekz@gmail.com

Проведено комплексное экспериментальное исследование теплофизических свойств циркониевого сплава Э-110 (Zr–1 ат. % Nb), применяющегося в качестве конструкционного материала для ТВЭЛов современных реакторов. Получены новые экспериментальные данные по температуропроводности *a* и изобарной теплоемкости c_p в интервале температур 293–1275 К. По результатам измерений рассчитана теплопроводность λ для α -фазы сплава. Оцениваемая погрешность полученных данных составила 2–4%, 3–5% и 2–3% для *a*, λ и c_p соответственно. Проведено сопоставление с известными литературными данными. Разработана таблица рекомендуемых температурных зависимостей всех изученных свойств.

Ключевые слова: сплав циркония с ниобием Э-110, фазовые превращения, теплопроводность, температуропроводность, удельная теплоемкость.

Сплавы циркония с ниобием нашли широкое применение в современных водоводяных энергетических реакторах (ВВЭР) в качестве конструкционного материала, прежде всего, из-за весьма малой доли «паразитного» поглощения нейтронов в активной зоне в сравнении с водой и нержавеющей сталью [1]. Сплав Э-110 (Zr –1 ат. % Nb) используется для производства оболочек тепловыделяющих элементов (ТВЭЛ) и обладает высокой коррозийной стойкостью в воде (до 350 К) и паре (670-820 К), что объясняется способностью к пассивации с образованием защитных пленок [2]. Максимальной рабочей температурой эксплуатации ТВЭЛов в ВВЭР считается температура 620 К, выше которой уменьшаются прочностные и возрастают пластические свойства сплава Э-110. Для моделирования возможных аварийных ситуаций в атомных реакторах требуются высоконадежные данные по теплофизическим и эксплуатационным характеристикам конструкционных материалов в активной зоне в широком диапазоне температур. В расчетах температурных полей в ТВЭЛах используются такие параметры, как удельная теплоемкость (c_n), теплопроводность (λ) и температуропроводность (a) сплава Э-110. Если по первым двум свойствам имеется достаточное количество литературных данных [1–7], то по температуропроводности циркониевого сплава найти какие-либо результаты прецизионных измерений не удалось.

В настоящей работе исследование температуропроводности сплава проводилось методом лазерной вспышки [8] на автоматизированном экспериментальном стенде LFA-427

^{*} Исследования выполнены в рамках государственного задания ИТ СО РАН АААА-121031800219-2.

[©] Агажанов А.Ш., Самошкин Д.А., Станкус С.В., 2021

фирмы NETZSCH. Образец имел форму цилиндра диаметром 12,6 мм и толщиной 2,4 мм с плоскопараллельными шлифованными торцами. Использовалась расчётная модель, предложенная авторами работы [9]. Поправки на конечную длительность лазерного импульса и его реальную форму находились по методике [10]. Эксперименты проводились в безмасляном вакууме (1 мПа) в интервале температур 293–1275 К. Тепловое расширение образца не учитывалось. Общая погрешность определения температуропроводности была оценена по результатам измерений *а* молибдена и пирокерама и составила 2 % при комнатной температуре, 4 % — при 1500 К.

Измерения удельной теплоемкости сплава проводились методом дифференциальной сканирующей калориметрии. Для экспериментов выбирался образец, масса которого составляла 161,57 мг. Эксперименты выполнялись на установке DSC 404 F1 с использованием платиновых тиглей с корундовыми вкладышами в интервале температур 298–1275 К со скоростью нагрева 10 К/мин в проточной атмосфере аргона (20 мл/мин), чистота которого составляла 99,992 об. %. В качестве калибровочного образца использовалась нержавеющая сталь марки 12X18H10T массой 98,65 мг. Оцениваемая погрешность полученных данных, подтвержденная экспериментами с эталонными образцами сапфира и платины, составила 2–3 %.

Согласно фазовой диаграмме бинарной системы Zr-Nb сплав с содержанием ниобия 1 ат. % при комнатной температуре преимущественно состоит из твердого раствора ниобия в α -фазе циркония (α -Zr + Nb) [11]. При повышении температуры до $T_E = 893$ K в сплаве начинается эвтектоидное превращение с образованием зерен β -Zr + Nb, т.е. образование твердого раствора ниобия в β -матрице циркония. Выше T_E сплав проходит двухфазную область, состоящую из зерен двух растворов: α -Zr + Nb и β -Zr + Nb. Завершение фазовой перестройки происходит вблизи температуры $T_{\alpha\beta} = 1120$ K [11], выше которой сплав полностью состоит из раствора β -Zr + Nb.

На рис. 1 приведены результаты экспериментов по температуропроводности и удельной теплоемкости Э-110 в интервале 293–1275 К. Образцы для экспериментов вытачивались из одной заготовки. Плотность сплава при комнатной температуре определялась путем прямых измерений геометрических размеров и массы и составила $\rho_0 = 6,46 \pm 0,03$ г/см³. Как видно по зависимости $c_p(T)$, фазовая перестройка в сплаве отчетливо проявлялась в виде нескольких пиков разной протяженности и амплитуды.

Рис. 1. Результаты исследования свойств сплава Э-110. Экспериментальные данные по температуропроводности (1) и удельной теплоемкости (3), результаты расчетов по уравнениям (1) и (2) (2).

Первый пик на кривой $c_p(T)$ при $T_E = 916$ К указывает на начало эвтектоидного превращения. Судя по графику, изменения α - β состава сплава в двухфазной области проходили с переменной интенсивностью в интервале от T_E до $T_{\alpha\beta} = 1132$ К. Суммарный тепловой эффект α - β превращения в сплаве определялся общей площадью под пиками и составил 41,77 Дж/г, что практически совпадает с аналогичной величиной, полученной в работе [3] — 41,80 Дж/г.

Сопоставление температур твердофазных превращений в Э-110 и в бинарном сплаве Zr-Nb (1 ат. % Nb) показывает, что легирующие элементы в Э-110 повышают как температуру начала эвтектоидного превращения T_E (на 23 K), так и температуру завершения двухфазной области $T_{\alpha\beta}$ (на 12 K).

Как видно по графику на рис. 1, полученная зависимость a(T) имеет сложный вид с пологим минимумом при 770 К. Выше 1070 К наблюдается резкий рост температуропроводности, который заканчивается при 1170 К. Скачок *a* в этом интервале соответствует второму пику на кривой теплоемкости, т.е. окончанию двухфазной области и структурному превращению при $T_{\alpha\beta}$. Выше 1170 К величина *a* продолжает расти, но уже не так резко. Таким образом, зависимость a(T) для α -фазы сплава является нелинейно-спадающей функцией, а в β -фазе — линейно-растущей. Аппроксимация первичных экспериментальных данных *a* для областей α - и β -фаз дала следующие уравнения:

$$a(T) = 5,83 + 1,369 \cdot 10^{-3} T + 7,833 \cdot 10^{-7} T^{2} + 1449 T^{-1}, \quad 293 \le T \le 973 \text{ K}, \tag{1}$$

$$a(T) = 6.02 + 5.94 \cdot 10^{-3} T, \quad 1173 \le T \le 1275 \text{ K},$$
 (2)

где *а* приводится в MM^2/c . Среднеквадратичные отклонения экспериментальных точек от (1) и (2) не превышают 0,8 и 0,4 % соответственно.

Измерения теплоемкости сплава Э-110, выполненные при трех последовательных нагревах в интервале 298–1275 К, показали плохую воспроизводимость результатов выше 1050 К (рис. 2). Максимумы пиков при 1132 К различались в 1,6 раза. Аналогичные результаты были получены в работе [3] методами импульсного нагрева и адиабатического калориметра, где также была показана зависимость результатов от скорости нагрева образцов. Следует заметить, что выше $T_{\rm E}$ теплоемкость является эффективной величиной, поскольку отражает как собственную теплоемкость фаз в сплаве (фазы α -Zr + Nb

Рис. 2. Изменение удельной теплоемкости в интервале температур 298–1275 К. Данные исследований [1] (1), [3] (2), [4] (3), [5] (4) и настоящей работы по первому (5), второму (6) и третьему (7) нагревам.

и β -Zr + Nb), так и вклад от теплового эффекта α - β превращения циркония. По этой причине большое влияние на получаемые данные могут оказывать низкая скорость протекания структурного перехода и изменения фазового состава образцов, связанные с образованием метастабильных фаз [4]. Как видно из рис. 2, ниже 900 К данные настоящего исследования по теплоемкости сплава хорошо согласуются в большинстве случаев с имеющимися результатами [см. 1, 3–5] в пределах 6 %. Аппроксимация измеренной удельной теплоемкости сплава Э-110 для области α -фазы дала следующее уравнение:

$$c_p(T) = 0,228 + 1,972 \cdot 10^{-4} T - 7,859 \cdot 10^{-8} T^2, \quad 293 \le T \le 916 \text{ K}$$
 (3)

где c_p приводится в Дж/(г·К). Среднеквадратичное отклонение экспериментальных точек от данных, рассчитанных по (3), не превышает 1 %.

С использованием измеренных значений температуропроводности *a* в области α -фазы сплава, аппроксимационной зависимости (3) для удельной теплоемкости c_p и данных по плотности ρ рассчитывалась теплопроводность сплава Э-110 по известной формуле $\lambda = a \rho c_p$. Плотность ρ определялась через величину ρ_0 и термический коэффициент линейного расширения [2]. С учетом неопределенностей величин *a*, ρ и c_p погрешность расчета теплопроводности составила 3–5 %. Аппроксимация рассчитанных данных по λ дала уравнение

$$\lambda(T) = 4,64 + 2,05 \cdot 10^{-2} T - 7,97 \cdot 10^{-6} T^2 + 3022 T^{-1}, \quad 293 \le T \le 916 \text{ K},\tag{4}$$

где λ приводится в Вт/(м·К). Среднеквадратичное отклонение рассчитанных точек от результатов, полученных по (4), составило 0,6 %. В работе [7] стационарным методом теплового потока с погрешностью 5–6 % были выполнены измерения теплопроводности сплава Э-110 в интервале температур 400–1550 К. Сравнение этих измеренных данных с результатами настоящей работы показало, что новые данные лежат в среднем на 5,6 % выше данных [7], т.е. расхождение не превышает суммарных погрешностей измерений.

Таким образом, выполненные эксперименты показали, что при температурах ниже 900 К изменение изученных свойств сплава Э-110 носит монотонный характер, без скачков или изломов, что указывает на неизменность структуры сплава в α -фазе. Выше 900 К наблюдаются пики и резкие скачки на температурных кривых $c_p(T)$ и a(T), что обусловлено фазовой перестройкой. В таблице приведены рекомендуемые значения a, c_p и λ для α -фазы сплава.

Т, К	<i>а</i> , мм ² /с	<i>с_p</i> , Дж/(г·К)	λ , Bt/(m·K)
293,15	11,24	0,279	20,28
300	11,14	0,280	20,16
350	10,54	0,287	19,49
400	10,12	0,294	19,13
450	9,82	0,300	18,98
500	9,61	0,307	18,96
550	9,45	0,312	19,02
600	9,35	0,318	19,13
650	9,28	0,323	19,27
700	9,24	0,327	19,43
750	9,23	0,331	19,59
800	9,24	0,335	19,75
900	9,30	0,341	20,03
916	9,32	0,342	20,06

Рекомендуемые значения *a*, c_p и λ сплава Э-110 для α-фазы

Таблица

Список литературы

- Синяткин Е.Ю., Кузьмин А.В. Теплофизические свойства циркония и его сплавов, используемых в отечественных тепловых реакторах // Матер. докл. XVI Всерос. науч.-техн. конф. «Энергетика: экология, надежность, безопасность». Томск: ТПУ, 2010. С. 127–129.
- 2. Кириллов П.Л., Терентьева М.И., Денискина Н.Б. Теплофизические свойства материалов ядерной техники. М.: ИздАт, 2007. 200 с.
- 3. Люстерник В.Е., Пелецкий В.Э., Петрова И.И. Экспериментальное исследование калорических свойств реакторных материалов на основе циркония. Сплав Э-110 // Теплофизика высоких температур. 1993. Т. 31, № 4. С. 560–564.
- **4.** Займовский А.С., Никулина А.В., Решетников Н.Г. Циркониевые сплавы в атомной энергетике. М.: Энергоиздат, 1981. 232 с.
- Пузанов Д.Н., Сатин А.А. Анализ и обобщение данных по свойствам циркониевых сплавов, применяющихся в качестве конструкционных материалов // Науч.-техн. конф. молодых специалистов: Материалы конф. ОКБ «Гидропресс», 16–17 марта. 2011.
- 6. Коростин О.С., Никулина А.В., Пелецкий В.Э., Петрова И.И., Попов Н.Н., Самсонов Б.Н. Экспериментальное исследование калорических свойств сплава Zr-1 % Nb при высоких температурах // Теплофизика высоких температур. 1998. Т. 36, № 2. С. 223-226.
- 7. Пелецкий В.Э., Грищук А.П., Мусаева З.А. Кинетические свойства реакторного сплава Э-110 в области высоких температур // Теплофизика высоких температур. 1994. Т. 32, № 6. С. 820–824.
- Agazhanov A.Sh., Abdullaev R.N., Samoshkin D.A., Stankus S.V. Thermal conductivity and thermal diffusivity of Li-Pb eutectic in the temperature range of 293–1273 K // Fusion Engng and Design. 2020. Vol. 152, No. 111456. P. 1–5.
- Cape J.A., Lehman G.W. Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity // J. Appl. Phys. 1963. Vol. 34, No. 7. P. 1909–1913.
- Blumm J., Opfermann J. Improvement of the mathematical modeling of flash measurement // High Temp.–High Press. 2002. Vol. 34, No. 5. P. 515–521.
- Nb-Zr binary phase diagram evaluation. Сайт издательства Springer. https://materials.springer.com/msi/phasediagram/docs/sm_msi_r_20_015221_01_full_LnkDia0.

Статья поступила в редакцию 1 апреля 2021 г., после доработки — 1 апреля 2021 г., принята к публикации 18 мая 2021 г.