УДК 51-74

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ ВЗРЫВНЫХ ВОЛН И ИХ ВОЗДЕЙСТВИЯ НА ОБЪЕКТЫ

С. А. Вальгер^{1,2}, Н. Н. Фёдорова^{1,2}, А. В. Фёдоров^{1,2}

¹Новосибирский государственный архитектурно-строительный университет (Сибстрин) 630008 Новосибирск, swetla-ya@mail.ru

²Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН 630090 Новосибирск

Представлены результаты моделирования задачи о распространении ударной волны, образовавшейся в результате взрыва сферического заряда взрывчатого вещества, в полубесконечном пространстве, ограниченном плоской подложкой. Исследованы задачи о воздействии такой волны на жестко закрепленные на подложке объекты (одиночную призму и комплекс призм, имитирующих городскую застройку). Расчеты выполнены в трехмерной невязкой постановке с использованием модуля AUTODYN коммерческого программного комплекса ANSYS. Результаты расчетов сопоставлены с экспериментальными данными о распределении статического давления в датчиках, расположенных на стенках призм. Продемонстрирована возможность корректного описания нестационарной волновой картины, реализующейся в окрестности установленных на подложке препятствий. На основе данных моделирования выполнена оценка интенсивности воздействия на различные объекты.

Ключевые слова: взрыв, ударно-волновые воздействия, программные комплексы, ANSYS, AUTODYN.

DOI 10.15372/FGV20170407

ВВЕДЕНИЕ

Защита гражданских сооружений от угрозы террористических взрывов или техногенных катастроф, сопровождающихся взрывными явлениями, — одна из наиболее актуальных задач современной инженерии. Для обеспечения безопасности зданий и сооружений необходимо повышать их возможности противостоять взрывным воздействиям. Для этого прежде всего нужно уметь предсказывать параметры взрывного воздействия в зависимости от конкретной геометрии и силы взрыва, а также оценивать степень возможных разрушений сооружений при таком воздействии.

В России и других странах проводится активная деятельность по разработке методов оценки динамических/взрывных воздействий на сооружения. Эти методы положены в основу государственных норм, регулирующих проектирование и эксплуатацию зданий и сооружений. Как правило, они основаны на полуэмпирических теориях и представляют собой набор формул, которые следует применять в той или другой ситуации (см., например, регламенты нормативно-технических документов и пособия [1-5], аналогичные документы существуют и за рубежом [6-9]).

В [1, 5] расчет зданий и сооружений по предельным состояниям рекомендуется выполнять с учетом неблагоприятных сочетаний нагрузок при взрывных воздействиях. Проектирование промышленных зданий с взрывоопасными технологиями осуществляется в соответствии с рекомендациями СП 20.13330.2011 [2].

Однако нормативная база позволяет определять параметры ударно-волновых воздействий на строительные объекты только в простейших случаях. Упрощенная методика не может выполнить оценку с учетом сложной ударно-волновой картины течения, реализующейся при взрыве зарядов взрывчатого вещества (BB) вблизи нескольких объектов. В силу многопараметричности и сложности задачи разработка универсальных инженерных формул, способных описать указанное явление с достаточной степенью точности, представляется весьма затруднительной задачей.

Быстрый рост производительности совре-

Работа выполнена при поддержке Российского научного фонда (проект № 16-19-00010) и Российского фонда фундаментальных исследований (проект № 15-07-06581).

[©] Вальгер С. А., Фёдорова Н. Н., Фёдоров А. В., 2017.

менных ЭВМ, совершенствование алгоритмов расчета и развитие современных программных комплексов позволяют проводить численное моделирование распространения детонационных и ударных волн в окружающей среде с учетом их взаимодействия с поверхностью земли и расположенными на ней объектами, а также с учетом деформации и разрушения конструкций. В общем случае расчеты устойчивости зданий под воздействием ударно-волновых нагрузок подразумевают решение сопряженной задачи, включающей в себя расчет реализующегося при взрыве внешнего течения совместно с определением отклика конструкции на внешнее динамическое воздействие.

Для моделирования этих явлений используются оригинальные и коммерческие программные комплексы инженерного анализа (CAE), такие как ANSYS CFD, ANSYS AUTODYN, LS-DYNA и др., позволяющие решать широкий спектр прикладных задач газовой динамики, механики деформируемого твердого тела, а также проводить сопряженные расчеты взаимодействия потоков со структурами (FSI).

В предыдущих работах авторов [10–12] разработана расчетная технология решения задач о распространении ударных волн и взрывном воздействии на строительные конструкции, основанная на использовании достаточно адекватных математических моделей и современных программных средств компьютерной инженерии, а также выполнено моделирование ударно-волнового воздействия на конструкции.

В данной статье представлены результаты расчета распространения ударных волн, образовавшихся в результате детонации конденсированного ВВ в окрестности призмы (задача 1) и комплекса призм, имитирующих городскую застройку (задача 2). Для расчета используется модуль ANSYS AUTODYN, предназначенный для моделирования быстропротекающих процессов в сплошной среде, который позволяет провести исследование сложной ударно-волновой структуры течения, сформировавшейся в результате отражения ударной волны (УВ) от подложки и стен зданий, дифракции УВ на элементах застройки и интерференции многочисленных УВ.

1. ВЗРЫВ И ЕГО ВОЗДЕЙСТВИЕ НА ОБЪЕКТЫ

Предварительно приведем некоторые эле-

ментарные сведения из теории взрывных явлений и их воздействия на окружающую среду. Взрыв — это крупномасштабный физический процесс с внезапным выбросом большого количества энергии, в результате чего образуется область горячих газов с давлением до 300 кбар и температурой 3 000 ÷ 4 000 °C [13, 14]. Расширяющиеся продукты детонации формируют сферическую УВ, которая распространяется во внешнюю область. УВ имеет характерный профиль с узким и крутым фронтом повышения давления и других параметров, за которым следует зона снижения параметров в направлении к эпицентру взрыва [15].

Взрывная волна создает избыточное давление в окружающей среде, существенно превышающее атмосферное. Профиль давления имеет крутой фронт, за которым следует зона разгрузки, которая начиная с некоторого расстояния от источника может приводить к падению избыточного давления ниже нуля. Наступает фаза разрежения, которая имеет небольшую амплитуду, но большую продолжительность по сравнению с «положительной» фазой [15].

Интенсивность УВ зависит от энергии, выделившейся в результате взрыва, и быстро убывает в зависимости от расстояния до эпицентра. УВ вовлекает в движение окружающий воздух, что приводит к образованию сильного ветра, оказывающего динамическое давление p_{a0} . Когда фронт УВ подходит к препятствию, он отражается и дифрагирует вокруг его поверхности с образованием зоны разрежения вблизи верхней грани. Суммарное воздействие взрыва на препятствие складывается из обусловленного ветром динамического давления p_{a0} , давления падающей p_{s0} и отраженной p_r УВ, в результате чего действующее на объект давление существенно превышает пиковое давление p_{s0} [5].

Повреждение строительных конструкций вызывает избыточное давление, превышающее атмосферный уровень всего лишь на 3÷5 %. Кроме того, опасны отрицательные значения избыточного давления, которые приводят к повреждению стеклянных и других легкосбрасываемых конструкций. Поэтому необходимо точно моделировать процесс прохождения УВ и ее воздействие на конструкции с учетом возможных отражений от поверхности земли и окружающих объектов, а также дифракции и интерференции УВ.

Рис. 1. Параметры ударной волны, воздействующей на объект (a), и диапазоны критических значений избыточного давления и импульса взрывной волны (δ) :

 $1 - p_r$, кПа; $2 - p_{s0}$, кПа; $3 - I_r$, кПа·мс/кг^{1/3}; $4 - I_s$, кПа·мс/кг^{1/3}; $5 - t_a$, мс/кг^{1/3}; $6 - t_0$, мс/кг^{1/3}; $7 - u_s$, м/мс

Параметры взрывов и образовавшихся УВ интенсивно изучались в середине XX в. [13]. Было показано, что параметры УВ зависят от количества высвободившейся в результате взрыва энергии E [кДж], вместо которой часто используют тротиловый эквивалент массой W[кг], и от расстояния от точки взрыва R. Поведение параметров УВ описывают как функцию автомодельного параметра

$$Z = R/W^{1/3}.$$
 (1)

В литературе можно найти экспериментальные корреляционные зависимости, описывающие параметры УВ. Значения избыточного давления p_{s0} , отраженного давления p_r , скорости УВ u_s , а также время прихода УВ t_a и длительность отрицательной фазы t_o в зависимости от Z представлены на рис. 1, a [9, 16]. Для оценки воздействия на сооружение важно не только вычислить избыточное давление, воздействующее на конструкцию, но и оценить значение импульса. Диаграмма [17] на рис. 1, б показывает диапазон критических значений избыточного давления $\bar{p} = p - p_0$ и импульса взрывной волны

$$I(t) = \int_{0}^{t} p(\tau) d\tau, \qquad (2)$$

где p_0 — давление окружающей среды.

2. ФИЗИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Рассмотрим задачу 1 о воздействии воздушного взрыва заряда конденсированного BB на призму прямоугольного сечения, установленную на поверхности земли на некотором расстоянии от эпицентра взрыва. Моделирование проведено в условиях, соответствующих экспериментальным данным [18]. В эксперименте давление измеряли в ряде точек, расположенных на наветренной и подветренной сторонах призмы. Это позволяет сравнить данные численного и натурного экспериментов по времени прихода взрывной УВ в эти точки и по пиковым давлениям УВ на стенках призмы.

Размеры призмы составляют $0.061 \times 0.183 \times 0.183$ м. Взрыв ВВ Demex массой 23.7 г (тротиловый эквивалент $W_{\text{THT}} = 27.26$ г) происходит на расстоянии 1.5 м от фронтальной поверхности призмы на высоте 0.1 м над поверхностью земли.

На рис. 2 представлена схема расчетной области задачи 1 в изометрии. С целью сокращения расчетных ресурсов задача решена в симметричной постановке относительно плоскости XZ. Характерные размеры расчетной области $2.6 \times 0.6 \times 0.6$ м.

На рис. 3 показана схема расчетной области задачи 2, включающей уже семь призм различного сечения и высоты. Максимальная высота призм (призмы A и G) достигает 0.45 м, в

Рис. 2. Схема расчетной области задачи 1 в изометрии

то время как наиболее низкие объекты D и Fимеют высоту 0.3 м. Расстояние между соседними объектами меньше или сопоставимо по масштабу с поперечными размерами обтекаемых объектов, что характеризует данную конфигурацию застройки как плотную. В отличие от задачи 1, моделирование ударно-волнового течения в окрестности данной конфигурации тел не может проходить в симметричной постановке и требует построения полной трехмерной расчетной области.

Заряд ВВ массой $m_{\text{THT}} = 0.016$ кг находится в точке с координатами (0.478, 0.35, 0.04 м). Постановка задачи выбрана в соответствии с данными эксперимента [19], в котором проведены замеры давления в зависимости от времени в ряде точек, расположенных на стенках призм. Координаты датчиков давления даны в табл. 1, их расположение показано также на рис. 3.

Таблица 1 Координаты точек замеров давления

Датчик	Координаты, м			
	X	Y	Ζ	
Τ1	0.3	1.1	0.105	
T11	-0.3	1.0	0.075	
T21	1.26	1.0	0.075	

Рис. 3. Схема расчетной области задачи 2 в плане

3. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Воздушная среда и заряд конденсированного ВВ моделируются на основе единого гидродинамического подхода. Для расчетов использован модуль AUTODYN программного комплекса ANSYS*, предназначенный для моделирования быстропротекающих процессов механики сплошной среды. Используется эйлеров решатель, основанный на методе конечных разностей, хорошо зарекомендовавший себя в задачах с высокими градиентами и разрывными решениями.

Моделирование выполнено в невязкой постановке. Движение воздушной среды описывается системой трехмерных уравнений Эйлера, дополненной уравнением состояния идеального газа. Течение расширяющихся продуктов детонации ВВ описывается с помощью гидродинамической модели материала [13] с использованием уравнения состояния Джона — Вилкинса — Ли (JWL):

$$P = A\left(1 - \frac{\lambda\eta}{R_1}\right) \exp\left(-\frac{R_1}{\eta}\right) + B\left(1 - \frac{\lambda\eta}{R_2}\right) \exp\left(-\frac{R_2}{\eta}\right) + \lambda\rho e, \quad (3)$$

где эмпирические константы равны $A = 3.737 \cdot 10^8$ кПа, $B = 3.747 \cdot 10^6$ кПа, $R_1 = 4.15$, $R_2 = 0.9$, $\lambda = 0.35$; $e = 6.0 \cdot 10^6$ кДж/м³ — удельная внутренняя энергия, $\eta = \rho/\rho_0$ — относительная удельная плотность, $\rho_0 = 1.630$ кг/м³.

^{*}Academic Research, Custom number 531495.

Таблиц	a	2
--------	---	----------

№ п/п	d_X , см	d_Y , см	d_Z , см	N_X	N_Y	N_Z	$N_X \times N_y \times N_z$
1	1	1	1	260	60	60	$9.36\cdot 10^5$
2	0.5	1	1	520	60	60	$1.872\cdot 10^6$
3	0.25	1	1	1 0 4 0	60	60	$3.744\cdot 10^6$
4	0.5	0.5	0.5	520	120	120	$7.488\cdot 10^6$

Данные о расчетных сетках для задачи 1

Подложка и закрепленные на ней призмы предполагаются абсолютно жесткими. На твердых границах заданы условия непротекания, т. е. равенство нулю нормальной к границе компоненты скорости. На внешних границах расчетной области применены «мягкие» экстраполирующие граничные условия, обеспечивающие выход возмущений за границы области.

Начальное распределение параметров воздушной среды соответствует нормальным атмосферным условиям: плотность 1.225 кг/м³, температура 298.15 K, статическое давление 101325 Па, удельная теплоемкость 1004 Дж/(кг·K).

Решение нестационарных трехмерных уравнений Эйлера выполнено методом конечных разностей. Интегрирование уравнений по времени осуществлялось с помощью явной схемы первого порядка с соблюдением условия устойчивости схемы по числу Куранта. Для аппроксимации уравнений использованы модифицированный метод Годунова [20, 21] и метод коррекции потоков FCT [22] второго порядка точности по пространству.

Поскольку на начальной стадии процесс детонации BB в открытом пространстве развивается симметрично, задача до того момента, как фронт УВ достигает поверхности ближайшей призмы, решается в двумерном осесимметричном приближении. Затем данные, полученные в двумерной задаче, интерполируются на трехмерную расчетную область и моделируется распространение сформировавшейся воздушной УВ и ее взаимодействие с подложкой и призмами.

4. РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧИ 1

На первом этапе проведено тестирование используемого метода решения, для чего исследовалась сеточная сходимость решения. Была выполнена серия расчетов на равномерных сетках различного разрешения, параметры которых показаны в табл. 2. Самая грубая расчетная сетка имела характерный масштаб d = 0.01 м и включала порядка 10^6 ячеек. Наиболее подробная расчетная сетка имела характерный масштаб ячейки d = 0.005 м во всех направлениях и включала около $7.5 \cdot 10^6$ ячеек.

На рис. 4 показаны профили статического давления в точке T1, рассчитанные на различных сетках с использованием модификации схемы Годунова второго порядка точности и полученные в эксперименте [18]. Точка T1 расположена на наветренной стороне призмы на высоте h = 0.0915 м от поверхности земли, что соответствует расположению датчика в эксперименте. Как видно из рис. 4, значения времени прихода первичной УВ в решениях на различных сетках существенно не отличаются, однако решение на сетке 4 наиболее близко к экспериментальным значениям пикового давления. Результаты, представленные в этом параграфе, получены на наиболее подробной сетке 4.

Полученный в расчетах режим распространения УВ согласуется с описанными в ли-

Рис. 4. Зависимости статического давления в точке T1 от времени, полученные в эксперименте [18] и в расчетах на различных сетках с использованием схемы Годунова второго порядка точности

Рис. 5. Мгновенные поля статического давления в моменты времени 0.018 (*a*), 0.13 (*б*), 0.36 (*в*), 0.62 (*г*), 2.72 (*д*), 2.95 мс (*e*)

тературе. При распространении взрывная волна отражается от подложки и препятствий, что приводит к ее усилению. Поскольку взрыв произошел на некоторой высоте над поверхностью земли, при достижении земли взрывной ударной волной происходит отражение фронта сферической УВ. По мере распространения УВ угол, под которым волна подходит к поверхности, возрастает. В некоторый момент времени регулярный режим отражения изменяется на нерегулярный с образованием ножки Маха и тройной точки. Известно, что давление за прямым скачком (ножкой Маха) существенно выше, чем за косой УВ. Отраженные волны интерферируют между собой и движутся в направлении эпицентра, где в некоторый момент времени происходит «схлопывание» волн. В результате образуется фронт новой более слабой УВ, распространяющейся во внешнюю среду от эпицентра (вторичный фронт).

Волновая картина взрывного воздействия осложняется многочисленными интерференционными явлениями между первичными, вторичными и отраженными фронтами, дифракцией и отражением УВ от подложки и призмы, что приводит к образованию вторичных пиков давления.

На рис. 5 приведены полученные в расчетах поля статического давления в плоскости симметрии в некоторые характерные моменты времени. Как видно из рис. 5, *a*, соответствующего моменту времени t = 0.018 мс, фронт первичной УВ 1 отражается от поверхности земли регулярным образом.

На рис. 5, 6 режим отражения УВ от подложки изменился на нерегулярный с образованием ножки Маха 2. Фронт волны, состоящий из участков первичной волны 1 и ножки Маха 2, распространяется в воздушной среде от эпицентра по направлению к призме. В это же время отраженные волны 3 и 4, исходящие из тройной точки маховской конфигурациии, движутся к эпицентру (рис. 5, e), где после их взаимодействия (рис. 5, c) образуется фронт вторичной волны 5.

В момент времени t = 2.45 мс первичная

Рис. 6. Зависимости статического давления (a, δ) и импульса (e, c) в точках T1 (a, e) и T2 (δ, c) , полученные в эксперименте (точки) и в расчете по схеме Годунова (1), схеме FCT (2) и с помощью функции CONWEP (3)

УВ 2 приходит на фронтальную стенку призмы и отражается от нее ударной волной 6, что сопровождается резким увеличением статического давления. Далее давление на стенке призмы начинает падать и наступает «отрицательная» фаза, при которой статическое давление вблизи стенки опускается ниже 1 атм. Рис. 5, d, e показывают дифракцию волны 2 на призме и распространение отраженной УВ 6 в направлении эпицентра. В дальнейшем отраженная УВ 6 и вторичная волна 5 интерферируют, что приводит к образованию новой системы ударных фронтов меньшей интенсивности, которая оказывает влияние на распределение давления на поверхности призмы.

Значение автомодельной переменной (1), вычисленное по массе заряда BB и характерному расстоянию, равно в этом случае Z = 5. В соответствии с графиком, приведенным на рис. 1, избыточное давление падающей на фронтальную стенку призмы УВ равно 40 кПа, отраженной — 100 кПа, время прихода УВ в точку T1 — 2.4 мс, падающий импульс — 70 кПа · мс, отраженный импульс — 180 кПа · мс. Характер воздействия ударно-вол-

новых структур на стенки призмы можно оценить по зависимости статического давления p(t) и импульса I(t) (2). На рис. 6 показаны зависимости статического давления и импульса от времени в точках Т1 и Т2, полученные с использованием модифицированной схемы Годунова второго порядка точности и метода коррекции потоков FCT. На рис. 6 представлены также зависимости статического давления и эффективного импульса от времени в точках Т1 и Т2, полученные с помощью полуэмпирической функции CONWEP [17]. Функция описывает зависимости параметров УВ от времени и позволяет определить взрывную нагрузку на конструкцию. Однако функция CONWEP не позволяет учитывать эффекты «затенения» УВ объектами, лежащими на пути ее распространения, и локальные эффекты ее отражения от элементов конструкции. Кроме того, область применения функции ограничена значениями приведенного расстояния: 0.178 < Z < 40.0.

Как видно из рис. 6,*a*, на фронтальной поверхности призмы наблюдается несколько локальных максимумов давления. Первый пик $p_{\text{max}} \approx 213 \text{ кПа}$ фиксируется в момент времени $t \approx 2.45$ мс и обусловлен приходом основной УВ. Второй пик $p_{\text{max}} \approx 115$ кПа при $t \approx$ 4.3 мс обусловлен приходом УВ, образовавшейся в результате взаимодействия УВ 3 и 4 (см. рис. 5). Стоит заметить, что численные расчеты с использованием схемы Годунова несколько занижают пики давления на наветренной и подветренной сторонах призмы, а также дают задержку во времени прихода первого пика УВ на 0.13 мс в точках Т1 и Т2.

Зависимость статического давления от времени на подветренной стороне призмы изображена на рис. 6, б. Первый пик давления связан с воздействием обогнувшей призму первой УВ. Второй пик, обусловленный воздействием этой же УВ, отразившейся от подложки, количественно предсказывается обеими схемами с погрешностью. Следствием этого является небольшое занижение эффективного импульса в точке Т2, при этом предсказание этого параметра в точке, расположенной на фронтальной поверхности, можно считать удовлетворительным. Сравнение графиков показывает, что расчет методом коррекции потоков позволяет более точно предсказывать пиковое давление и эффективный импульс по сравнению со схемой Годунова и с большей точностью разрешать вторичные максимумы давления. Расхождения с экспериментом связаны в первую очередь с диссипативными свойствами использованных разностных схем. Тем не менее, количественное сравнение расчетных и экспериментальных данных, приведенное в табл. 3, можно считать вполне удовлетворительным.

Результаты расчетов с использованием полуэмпирической функции CONWEP хорошо согласуются с экспериментальными данными по максимальному давлению и времени прихо-

Таблица 3 Время прихода УВ и максимальное статическое давление

	T1		Τ2	
Данные	$p_{st,\max},$ кПа	$t_1,$ MC	$p_{st,\max},$ кПа	t ₂ , мс
Эксперимент [22]	112	2.32	34	2.82
Схема Годунова	94	2.46	31	2.95
Metod FCT	113	2.45	34	2.95
CONWEP	101	2.47	40	2.63

да УВ. Этот подход позволяет точно определить пиковое значение взрывной нагрузки на исследуемую конструкцию. Однако, как видно из рис. $6, \delta$, он не позволяет определить вторичные и отраженные УВ в структуре течения. Поэтому данный метод неприменим для застроек сложной конфигурации, где на распределение давления на стенках объектов существенно влияют многие интерференционные эффекты.

5. РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧИ 2

Опишем структуру ударно-волнового течения в окрестности комплекса призм, восстановленную на основе мгновенных полей статического давления в характерные моменты времени (рис. 7), а также зависимостей статического давления от времени в характерных точках замеров T1, T11 и T21 (рис. 8).

На рис. 7 показаны мгновенные поля статического давления в характерные моменты времени t в горизонтальном сечении h =0.105 м. Сферическая УВ 1, сформированная в результате высвобождения энергии при детонации ВВ, распространяется в свободном пространстве. В момент времени $t \approx 0.1$ мс она приходит на угол призмы F и отражается от него. Максимальное давление во фронте УВ 1 в момент отражения составляет ≈6 МПа. Через некоторое время УВ 1 приходит на стенку призмы С и острый угол призмы Е. Отражение УВ 1 от стенок призм E и F носит нерегулярный характер, что приводит к формированию ножек Maxa и тройных точек 3, 4 и 5 (рис. 7, 6). При отражении УВ 1 от стенки призмы С формируется УВ 2, которая движется по направлению к эпицентру взрыва. Отраженная от стенок призмы F УВ 6 (рис. 7,6) в момент времени $t \approx 0.4$ мс начинает взаимодействовать с отраженной УВ 2 и образует ударно-волновую структуру 7 (рис. 7,г). При этом УВ 2 огибает острый угол здания С, взаимодействуя с первичной УВ 1 (рис. 7,*в*,*г*).

В относительно узком канале между призмами E и F в момент времени ≈ 0.4 мс начинается интерференция структур 3 и 4. УВ 5 движется от эпицентра взрыва и огибает острую кромку призмы F (рис. 7,e). В момент времени $t \approx 0.5$ мс УВ, образованная в ходе взаимодействия УВ 1 и УВ 2, приходит на стенку призмы D и через некоторое время на стенку призмы B, в результате чего происходит формирование более мелких отраженных УВ, фрон-

Рис. 7. Мгновенные поля статического давления в моменты времени 0.1 (*a*), 0.2 (*b*), 0.3 (*b*), 0.4 (*c*), 0.7 (*d*), 0.9 мс (*e*)

ты которых движутся по направлению к эпицентру взрыва (рис. 7, ∂). Сформировавшийся вследствие взаимодействия УВ 3 и УВ 4 фронт УВ 8 движется по направлению к стенке призмы G.

С другой стороны, УВ 2 после отражения от поверхности призмы C взаимодействует с УВ 5. В эпицентре взрыва возникает сложная ударно-волновая структура, образовавшаяся в результате взаимодействия УВ 7 и УВ, сформировавшихся из тройных точек 3 и 4. В момент времени t = 0.9 мс ударно-волновая структура 1, 2 приходит в точку T1 (рис. 7, e) на призме B. УВ 8 приходит на стенку призмы G и отражается от нее регулярным образом (рис. 7, e). В это же время УВ 9, сформировавшаяся в результате нерегулярного отражения УВ 2 от стенки призмы B, движется по направлению к стенке призмы A.

Если рассмотреть далее мгновенное распределение относительного статического давления в момент времени $t \approx 1.3$ мс, оказывается, что при отражении от стенки призмы G УВ 8 образуется отраженная УВ, которая распространяется к эпицентру взрыва, где взаимодействует с более слабой вторичной УВ. УВ 8

Рис. 8. Зависимости статического давления (a, e, d) и эффективного импульса (b, c, e) в точках T1 (a, b), T11 (e, c) и T21 (d, e), полученные в эксперименте (символы) и рассчитанные по схеме Годунова (1) и методу FCT (2)

распространяется между призмами E и G, многократно отражаясь от их стенок. Это обусловливает пики статического давления в точке T21, расположенной на стенке призмы G, в моменты времени t = 2 и 2.5 мс. При этом за УВ 8 в этой зоне формируется зона разрежения с падением давления ниже 1 атм (до 43 кПа).

В момент времени t = 1.7 мс УВ 9 приходит в точку T11 на стенке призмы A, что сопровождается увеличением избыточного давления в этой точке до 165 кПа.

Серия небольших локальных пиков в точ-

ке T1 связана с приходом слабых вторичных УВ, возникших в результате интерференции более слабой вторичной УВ и отраженных от стенок призм *B* и *D* слабых УВ. На более поздних этапах времени структура течения характеризуется многократными переотражениями, дифракцией и интерференцией УВ, что приводит к возникновению локальных пиков нагрузки на стенки призм и ряда локальных зон разрежения за фронтами УВ.

Сравнение результатов расчетов и экспериментов [19] по зависимостям статического

давления (см. рис. $8, a, e, \partial$) и эффективного импульса (см. рис. $8, \delta, c, e$) от времени в точках T1, T11, T21, расположенных на стенках призм B, A и G соответственно, показало, что расчеты по обеим схемам — FCT и Годунова — качественно воспроизводят изменение ударно-волновой нагрузки на стенки призм, однако схема коррекции потоков, как и в предыдущих расчетах, существенно лучше предсказывает пиковые значения нагрузки. Для всех точек численные расчеты хорошо предсказывают фазу разрежения за фронтом УВ.

Максимальные значения избыточного давления, полученные по схемам Годунова и FCT в точке T1, составляют 200 и 260 кПа соответственно (см. рис. 8,a). Максимальные избыточное давление в эксперименте в этой точке равно примерно 300 кПа.

Фаза разрежения носит продолжительный характер: в точке T1 около 1.5 мс, в точке T21 около 1.7 мс. В точке T21 амплитуда давления в отрицательной фазе существенна (≈ 60 кПа) и сопоставима с пиковой нагрузкой (≈ 80 кПа), связанной с приходом УВ 8 на стенку здания G. Наличие фазы разрежения с существенно более низкими давлениями относительно 1 атм является неблагоприятным для строительного объекта и в ряде случаев может привести к «выталкиванию» оконных и дверных проемов, срыву и разрушению кровли, опор.

Импульсная нагрузка, приходящаяся на стенки призм в рассматриваемых точках, показана на рис. $8, \delta, c, e$. Интервалы эффективного действия на стенки призм A, B и G включают в себя фазы сжатия и разрежения волн, приходящих на стенки.

Таким образом, представленные результаты расчетов позволяют подробно проанализировать сложную волновую структуру течения, образованную в результате детонации заряда конденсированного ВВ. Результаты расчетов удовлетворительно совпадают с экспериментальными данными, что дает основание для использования описанных выше методов математического моделирования для прогнозирования ударно-волновых нагрузок на стенки зданий и сооружений в условиях плотной городской застройки.

Сопоставление расчетных данных с p-Iдиаграммой (рис. 9) показало, что графики p(I), построенные для точек T1 (задача 1) и T21 (задача 2), захватывают области, соответствующие слабым и средним разрушениям кон-

Рис. 9. *p*–*I*-диаграмма нагрузок в различных точках

струкции. Профили, построенные для остальных точек, захватывают только область слабых разрушений.

выводы

В работе представлена физико-математическая модель в трехмерном эйлеровом приближении механики сплошных сред. Математическая технология тестирована в рамках пакета прикладных программ AUTODYN коммерческого программного комплекса ANSYS для решения задач о взрывном воздействии на окружающую среду, моделирующую городскую застройку.

В задачах о воздействии взрывных волн на одиночную призму и их совокупность выявлена газодинамическая структура интерференционных волн, и проведено сопоставление полученных численно нагрузок на призмы с данными замеров, показавшее неплохое воспроизведение первого пика давления и некоторую погрешность в предсказании вторичных пиков.

Эмпирическая функция CONWEP не воспроизводит «отрицательную» фазу воздействия, не учитывает эффекты затенения и некорректно предсказывает время прихода ударной волны на подветренную сторону призмы и вторые пиковые значения ударно-волновой нагрузки.

В целом можно заключить, что современные программные средства компьютерной инженерии достаточно точно предсказывают сложную ударно-волновую картину, реализующуюся в окрестности расположенных на подложке объектов. Сопоставление результатов расчета с p-I-диаграммой (рис. 1, δ) позволяет определить области возможных разрушений объектов.

В качестве недостатков используемого модуля AUTODYN можно отметить отсутствие инструментов динамической адаптации расчетной сетки, что затрудняет точность описания деталей сложного течения и снижает точность предсказания вторичных пиков нагрузки.

ЛИТЕРАТУРА

- СП 20.13330.2011. Свод правил. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (утв. Приказом Минрегиона РФ от 27.12.2010 № 787): введ. 2011-05-20 // КонсультантПлюс. ВерсияПроф [Электронный ресурс].
- СП 56.13330.2011. Свод правил. Производственные здания. Актуализированная редакция СНиП 31-03-2001 (утв. Приказом Минрегиона РФ от 30.12.2010 № 850): введ. 2011-05-20 // КонсультантПлюс. ВерсияПроф [Электронный ресурс].
- 3. Об утверждении федеральных норм и правил в области промышленной безопасности «Правила безопасности при взрывных работах»: приказ Ростехнадзора от 16.12.2013 № 605 (зарегистрировано в Минюсте России 01.04.2014 № 31796) // КонсультантПлюс. ВерсияПроф [Электронный ресурс].
- ТР ТС 012/2011. Технический регламент Таможенного союза. О безопасности оборудования для работы во взрывоопасных средах: решение Комиссии Таможенного союза от 18.10.2011 № 825 (ред. от 13.05.2014) // Консультант-Плюс. ВерсияПроф [Электронный ресурс].
- 5. Аварии и катастрофы. Предупреждение и ликвидация последствий: учебное пособие в 3 кн. / под ред. К. Е. Кочеткова, В. А. Котляревского, А. В. Забегаева. — М.: Изд-во АСВ, 1995. — Кн. 1.
- ENV 1991: Eurocode 1: Basis Design and Action on Structures. Pt 2–4: Wind Action. — CEN, 1994.
- Structures to Resist the Effects of Accidental Explosions, TM 5-1300. U. S. Departments of the Army, Navy, and Air Force, 1990.
- 8. **The** Design and Analysis of Hardened Structures to Conventional Weapons Effects (DAHS CWE). — 1998.
- Unified Facility Criteria (UFC), Structures to Resist the Effects of Accidental Explosions. — U. S. Army Corps of Engineering Command. Air Force Civil Engineer Support Agency, UFC 3-340-02, 5, December 2008.
- 10. Вальгер С. А., Данилов М. Н., Федорова Н. Н., Федоров А. В. Сравнение данных моделирования ударно-волнового воздействия на сооружения с использованием ПК ANSYS

АUTODYN и LS-DYNA // Изв. вузов. Строительство. — 2014. — № 9. — С. 85–96.

- 11. Вальгер С. А., Федорова Н. Н., Федоров А. В. Моделирование ударно-волновой нагрузки от взрыва на отдельно стоящую призму прямоугольного сечения и комплекс призм, имитирующих городскую застройку // Динамика многофазных сред: тр. XIV Всерос. семинара, приуроченного к 75-летию акад. РАН В. М. Фомина. Новосибирск: Автограф, 2015. С. 23–26.
- Захарова Ю. В., Федорова Н. Н. Моделирование взрыва в ограниченном пространстве с помощью ANSYS AUTODYN // Динамика многофазных сред: тр. XIV Всерос. семинара, приуроченного к 75-летию акад. РАН В. М. Фомина. — Новосибирск: Автограф, 2015. — С. 174– 176.
- Физика взрыва / Ф. А. Баум, Л. П. Орленко, К. П. Станюкевич, В. П. Челышев, Б. И. Шехтер. — М.: Наука, 1975.
- Покровский Г. И. Взрыв. 3-е изд. М.: Недра, 1973.
- Ngo T., Mendis P., Gupta A., Ramsay J. Blast loading and blast effects on structures — an overview // Electron. J. Structur. Eng. Spec. Iss.: Loading on Structures. — 2007. — P. 76–91.
- Hyde D. User's Guide for Microcomputer Programs CONWEP and FUNPRO — Applications of TM 5-855-1. — U. S. Army Engineer Waterways Experimental Station, Vicksburg, 1988.
- Remennikov A. M. A review of methods for predicting bomb blast effects on buildings // J. of Battlefield Technol. — 2003. — V. 6, N 3. — P. 5–10.
- Rose T. A. An Approach to the Evaluation of Blast Loads on Finite and Semi-Infinite Structures: PhD Thesis / Engineering Systems Department, Cranfield Univ., Royal Military College of Science. — February, 2001.
- 19. Brittle M. A. Blast Propagation in a Geometrically Complex Environment: MSc Dissertation / Cranfield Univ., Defence College of Management and Technology, Defence Academy of the UK. — Shrivenham, Swindon, UK, July 2004.
- Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин, М. Я. Иванов, А. Н. Крайко, Г. П. Прокопов. — М.: Наука, 1976.
- Van Leer B. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method // J. Comput. Phys. — 1979. — V. 32, iss. 1. — P. 101–136.
- Zalesak S. T. Fully multidimensional fluxcorrected transport algorithms for fluids // J. Comput. Phys. — 1979. — V. 31, iss. 3. — P. 335– 362.

Поступила в редакцию 8/XI 2016 г.