УДК 539.3

ТЕОРИЯ КРУЧЕНИЯ ПРИЗМАТИЧЕСКИХ ТЕЛ С МОМЕНТНЫМИ НАПРЯЖЕНИЯМИ ПРИ БОЛЬШИХ ДЕФОРМАЦИЯХ

А. А. Зеленина

Научно-исследовательский институт механики и прикладной математики им. И. И. Воровича Ростовского государственного университета, 344090 Ростов-на-Дону E-mail: zelenina@math.rsu.ru

В рамках трехмерной нелинейной теории упругости материалов с моментными напряжениями рассматривается задача о кручении и растяжении-сжатии призматического бруса, боковая поверхность которого свободна от нагрузки. Найдена подстановка, позволяющая отделить одну переменную в нелинейных уравнениях равновесия континуума Коссера и краевых условиях на боковой поверхности. С использованием указанной подстановки исходная пространственная задача о равновесии микрополярного тела сводится к двумерной нелинейной краевой задаче для плоской области в форме поперечного сечения призматического стержня. Приведены вариационные формулировки двумерной задачи на сечении, различающиеся набором варьируемых функций и ограничениями на их краевые значения.

Ключевые слова: большие деформации, моментные напряжения, нелинейная задача Сен-Венана.

1. Переход к двумерной краевой задаче. Система уравнений статики нелинейноупругой среды Коссера при отсутствии массовых сил и моментов [1, 2] состоит из уравнений равновесия для напряжений

$$\operatorname{div} D = 0, \qquad \operatorname{div} G + (C^{\mathrm{T}} \cdot D)_{\times} = 0, \tag{1.1}$$

определяющих уравнений

$$D = P \cdot H, \qquad G = K \cdot H,$$

$$P = \frac{\partial W}{\partial Y}, \qquad K = \frac{\partial W}{\partial L}, \qquad W = W(Y, L)$$
(1.2)

и геометрических соотношений

$$Y = C \cdot H^{\mathrm{T}}, \qquad C = \operatorname{grad} \boldsymbol{R}, \qquad \boldsymbol{R} = X_k \boldsymbol{i}_k, \qquad L \times E = -(\operatorname{grad} H) \cdot H^{\mathrm{T}}.$$
 (1.3)

Здесь D, G — тензоры напряжений и моментных напряжений типа Пиолы; P, K — тензоры напряжений и моментных напряжений типа Кирхгофа; C — градиент деформации; H — собственно ортогональный тензор микроповорота, характеризующий вращательные степени свободы частиц континуума Коссера; X_k (k = 1, 2, 3) — декартовы (эйлеровы) координаты деформированного тела; i_k — координатные орты; Y — мера деформации;

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 05-01-00638).

L — тензор изгибной деформации; E — единичный тензор; W — удельная свободная энергия упругого материала; div и grad — операторы дивергенции и градиента в лагранжевых координатах (далее в качестве лагранжевых координат используются декартовы координаты отсчетной конфигурации тела x_s (s = 1, 2, 3)); индекс "×" в (1.1) означает векторный инвариант тензора второго ранга. Подставив соотношения (1.2), (1.3) в (1.1), получим систему шести уравнений с неизвестными функциями X_1 , X_2 , X_3 , H и независимыми переменными x_1 , x_2 , x_3 .

Предположим, что в отсчетной конфигурации упругое тело имеет форму цилиндра (призмы) произвольного поперечного сечения. Образующие цилиндра параллельны оси x_3 , а координаты x_1 и x_2 отсчитываются в плоскости поперечного сечения. Для того чтобы трехмерную задачу нелинейной моментной теории упругости привести к двумерной, рассмотрим следующее двупараметрическое семейство деформаций континуума Коссера:

$$X_{1} = u_{1}(x_{1}, x_{2}) \cos \psi x_{3} - u_{2}(x_{1}, x_{2}) \sin \psi x_{3},$$

$$X_{2} = u_{2}(x_{1}, x_{2}) \cos \psi x_{3} + u_{1}(x_{1}, x_{2}) \sin \psi x_{3},$$

$$X_{3} = \lambda x_{3} + w(x_{1}, x_{2}) \qquad (\lambda, \psi = \text{const});$$

$$H(x_{1}, x_{2}, x_{3}) = H_{0}(x_{1}, x_{2}) \cdot Q(x_{3}),$$
(1.4)

где $H_0^{-1} = H_0^{\mathrm{T}}$; $Q = i_1 \otimes e_1 + i_2 \otimes e_2 + i_3 \otimes i_3$; $e_1 = i_1 \cos \psi x_3 + i_2 \sin \psi x_3$, $e_2 = -i_1 \sin \psi x_3 + i_2 \cos \psi x_3$ — единичные векторы; H_0, Q — собственно ортогональные тензоры. Геометрический смысл представлений (1.4), (1.5) состоит в том, что поперечное сечение призмы, отстоящее от начала координат на расстояние x_3 , испытывает некоторую плоскую деформацию, задаваемую функциями u_1, u_2 , и депланацию, описываемую функцией w, поворачивается вокруг оси стержня на конечный угол ψx_3 и поступательно перемещается вдоль оси на расстояние λx_3 . Кроме того, частицы тела испытывают микроповороты, задаваемые соотношением (1.5). Выражения (1.4), (1.5) являются обобщением предложенного в [3] представления конечной деформации кручения на случай среды с моментными напряжениями.

Из (1.3)–(1.5) находим

$$C = C_0(x_1, x_2) \cdot Q; \tag{1.6}$$

$$Y = C_0 \cdot H_0^{\mathrm{T}}, \qquad L = \frac{1}{2} \, \boldsymbol{i}_{\alpha} \otimes \left(\frac{\partial H_0}{\partial x_{\alpha}} \cdot H_0^{\mathrm{T}} \right)_{\times} + \psi \boldsymbol{i}_3 \otimes \boldsymbol{i}_3 \cdot H_0^{\mathrm{T}}, \tag{1.7}$$

где

$$C_0 = \frac{\partial u_\beta}{\partial x_\alpha} \, \boldsymbol{i}_\alpha \otimes \boldsymbol{i}_\beta + \frac{\partial w}{\partial x_\alpha} \, \boldsymbol{i}_\alpha \otimes \boldsymbol{i}_3 - \psi u_2 \boldsymbol{i}_3 \otimes \boldsymbol{i}_1 + \psi u_1 \boldsymbol{i}_3 \otimes \boldsymbol{i}_2 + \lambda \boldsymbol{i}_3 \otimes \boldsymbol{i}_3 \qquad (\alpha, \beta = 1, 2)$$

Так как Q(0) = E, справедливы равенства

$$C_0 = C(x_1, x_2, 0), \qquad H_0 = H(x_1, x_2, 0),$$

Согласно (1.7) мера деформации Y и тензор изгибной деформации L не зависят от координаты x_3 . В случае, если упругое тело однородно по координате x_3 , тензоры напряжений и моментных напряжений P и K в силу (1.2) являются функциями только координат x_1, x_2 . Однородность тела по координате x_3 означает, что удельная свободная энергия W зависит явно от координат x_1, x_2 , но не зависит явно от x_3 : $W = W(Y, L, x_1, x_2)$ (при этом материал может быть анизотропным). Из (1.2), (1.5) для тела, однородного по координате x_3 , получаем

$$D(x_1, x_2, x_3) = D_0(x_1, x_2) \cdot Q(x_3), \qquad G(x_1, x_2, x_3) = G_0(x_1, x_2) \cdot Q(x_3). \tag{1.8}$$

С учетом (1.8) уравнения равновесия (1.1) на деформациях вида (1.4), (1.5) принимают вид

$$\nabla \cdot D_0 + \psi \boldsymbol{i}_3 \cdot D_0 \cdot \boldsymbol{e} = 0; \tag{1.9}$$

$$\nabla \cdot G_0 + \psi \boldsymbol{i}_3 \cdot G_0 \cdot \boldsymbol{e} + (C_0^{\mathrm{T}} \cdot D_0)_{\times} = 0.$$
(1.10)

Здесь $e = -E \times i_3$ — дискриминантный тензор; ∇ — плоский оператор градиента, который в декартовых координатах имеет вид

$$abla = oldsymbol{i}_1 rac{\partial}{\partial x_1} + oldsymbol{i}_2 rac{\partial}{\partial x_2}$$

Используя компонентные представления тензоров

$$C_0 = C_{sk} \boldsymbol{i}_s \otimes \boldsymbol{i}_k, \qquad D_0 = D_{sk} \boldsymbol{i}_s \otimes \boldsymbol{i}_k, \qquad G_0 = G_{sk} \boldsymbol{i}_s \otimes \boldsymbol{i}_k,$$

из уравнений (1.9), (1.10) получим покомпонентную форму уравнений равновесия в задаче кручения:

$$\frac{\partial D_{11}}{\partial x_1} + \frac{\partial D_{21}}{\partial x_2} = \psi D_{32}, \qquad \frac{\partial D_{12}}{\partial x_1} + \frac{\partial D_{22}}{\partial x_2} = -\psi D_{31},$$

$$\frac{\partial D_{13}}{\partial x_1} + \frac{\partial D_{23}}{\partial x_2} = 0;$$
(1.11)

$$\frac{\partial G_{11}}{\partial x_1} + \frac{\partial G_{21}}{\partial x_2} - \psi G_{32} + C_{12}D_{13} + C_{22}D_{23} + C_{32}D_{33} - C_{13}D_{12} - C_{23}D_{22} - C_{33}D_{32} = 0,$$

$$\frac{\partial G_{12}}{\partial x_1} + \frac{\partial G_{22}}{\partial x_2} + \psi G_{31} + C_{13}D_{11} + C_{23}D_{21} + C_{33}D_{31} - (1.12)$$

$$- C_{11}D_{13} - C_{21}D_{23} - C_{31}D_{33} = 0.$$

$$\frac{\partial G_{13}}{\partial x_1} + \frac{\partial G_{23}}{\partial x_2} + C_{11}D_{12} + C_{21}D_{22} + C_{31}D_{32} - C_{12}D_{11} - C_{22}D_{21} - C_{32}D_{31} = 0.$$

Собственно ортогональный тензор H_0 можно представить [4] через вектор конечного поворота $\boldsymbol{\theta}$:

$$H_0 = \frac{1}{4+\theta^2} \left[(4-\theta^2)E + 2\boldsymbol{\theta} \otimes \boldsymbol{\theta} - 4E \times \boldsymbol{\theta} \right].$$
(1.13)

Тогда из (1.2), (1.7), (1.8), (1.13) следует, что уравнения (1.11), (1.12) представляют собой систему шести скалярных уравнений относительно трех функций двух переменных $u_1(x_1, x_2), u_2(x_1, x_2), w(x_1, x_2)$ и трех компонент вектора $\boldsymbol{\theta}$: $\theta_k(x_1, x_2) = \boldsymbol{\theta} \cdot \boldsymbol{i}_k$ (k = 1, 2, 3). В случае, если на боковой поверхности призмы с нормалью $\boldsymbol{n} = n_1 \boldsymbol{i}_1 + n_2 \boldsymbol{i}_2$ заданы распределенная силовая нагрузка \boldsymbol{f} и распределенная моментная нагрузка \boldsymbol{m} , граничные условия на этой поверхности имеют вид

$$\boldsymbol{n} \cdot \boldsymbol{D} = \boldsymbol{f}, \qquad \boldsymbol{n} \cdot \boldsymbol{G} = \boldsymbol{m}.$$
 (1.14)

Предположим, что векторы внешних нагрузок можно представить в форме $f = f^* \cdot C$, $m = m^* \cdot C$, где векторы f^* и m^* не зависят от координаты x_3 . (Например, вектор f^* не зависит от x_3 в случае гидростатического давления, равномерно распределенного по боковой поверхности, вектор m^* не зависит от x_3 в случае моментной нагрузки равномерной интенсивности, если эта нагрузка направлена по нормали к деформированной боковой поверхности цилиндрического тела.) Тогда краевые условия (1.14) для деформации вида (1.4), (1.5) не содержат переменную x_3 и вместе с уравнениями (1.9), (1.10) образуют двумерную краевую задачу для плоской области в форме поперечного сечения призмы. Таким образом, предположения (1.4), (1.5) о характере деформации призматического бруса приводят исходную пространственную задачу нелинейной статики среды Коссера к двумерной нелинейной краевой задаче.

В дальнейшем боковую поверхность бруса будем считать свободной от нагрузки, т. е. f = m = 0. Краевая задача для плоской области σ в форме поперечного сечения бруса состоит из уравнений равновесия (1.9), (1.10) и граничных условий на $\partial \sigma$

$$\boldsymbol{n} \cdot D_0 = 0, \qquad \boldsymbol{n} \cdot G_0 = 0 \tag{1.15}$$

(тензоры D_0 , G_0 в (1.9), (1.10), (1.15) выражены через неизвестные функции двух переменных u_1, u_2, w, θ с использованием определяющих соотношений и формул (1.3), (1.7); ψ и λ — заданные постоянные параметры).

Пусть u_1, u_2, w, H_0 — некоторое решение указанной краевой задачи. Можно проверить, что функции

$$u_1^* = u_1 \cos \omega - u_2 \sin \omega, \qquad u_2^* = u_1 \sin \omega + u_2 \cos \omega, \qquad w^* = w + d, H_0^* = H_0 \cdot (g \cos \omega + e \sin \omega + \mathbf{i}_3 \otimes \mathbf{i}_3), \qquad g = E - \mathbf{i}_3 \otimes \mathbf{i}_3$$
(1.16)

 $(\omega, d - произвольные действительные постоянные)$ также удовлетворяют уравнениям (1.9), (1.10) и краевым условиям (1.15). Нечувствительность краевой задачи на сечении к замене (1.16) означает, что положение упругого тела после деформации определяется с точностью до поворота вокруг оси X_3 и поступательного смещения вдоль той же оси. Отмеченную неоднозначность решения можно устранить, наложив на неизвестные функции дополнительные условия

$$\iint_{\sigma} w \, d\sigma = 0, \qquad \iint_{\sigma} (\operatorname{tr} H_0 - 3) \, d\sigma = 0. \tag{1.17}$$

Тогда задача (1.9), (1.10), (1.15) будет иметь единственное решение.

2. Силы и моменты, действующие на концах бруса. Решение сформулированной выше двумерной задачи на сечении бруса точно удовлетворяет уравнениям равновесия в объеме тела и граничным условиям на его боковой поверхности. Граничные условия на торцевых поверхностях цилиндра $x_3 = \text{const}$ выполняются лишь приближенно, в интегральном смысле Сен-Венана, за счет подбора постоянных ψ и λ .

Определим главный вектор F и главный момент M сил и моментов, действующих в произвольном поперечном сечении цилиндрического тела, испытывающего деформацию кручения вида (1.4), (1.5) при отсутствии нагрузки на боковой поверхности. С учетом (1.8) имеем

$$\boldsymbol{F}(x_3) = \iint_{\sigma} \boldsymbol{i}_3 \cdot D \, d\sigma = F_1 \boldsymbol{e}_1 + F_2 \boldsymbol{e}_2 + F_3 \boldsymbol{i}_3, \tag{2.1}$$

$$\boldsymbol{M}(x_3) = \iint_{\sigma} [\boldsymbol{i}_3 \cdot \boldsymbol{G} - \boldsymbol{i}_3 \cdot \boldsymbol{D} \times (u_1 \boldsymbol{e}_1 + u_2 \boldsymbol{e}_2 + \lambda x_3 \boldsymbol{i}_3 + w \boldsymbol{i}_3)] \, d\sigma = M_1 \boldsymbol{e}_1 + M_2 \boldsymbol{e}_2 + M_3 \boldsymbol{i}_3,$$

где

$$F_k = \iint_{\sigma} D_{3k} \, d\sigma, \qquad M_1 = \iint_{\sigma} (G_{31} + D_{33}u_2 - D_{32}w) \, d\sigma,$$
$$M_2 = \iint_{\sigma} (G_{32} + D_{31}w - D_{33}u_1) \, d\sigma, \qquad M_3 = \iint_{\sigma} (G_{33} + D_{32}u_1 - D_{31}u_2) \, d\sigma.$$

(Главный момент в (2.1) вычислен относительно точки $X_1 = X_2 = X_3 = 0.$) Рассматривая аналогично [5] равновесие части цилиндра, ограниченной боковой поверхностью и сечениями $x_3 = a, x_3 = b$ (a, b — произвольные действительные числа), получим

$$F_1 = F_2 = M_1 = M_2 = 0. (2.2)$$

Равенства (2.2) означают, что реализация деформации вида (1.4), (1.5) требует приложения к торцам цилиндра системы сил и моментов, статически эквивалентной силе F_3 и моменту M_3 , действующим в точке оси X_3 и направленным вдоль этой оси. Далее предполагается, что поперечное сечение бруса σ обладает центральной симметрией, т. е. совмещается само с собой при повороте на 180° вокруг оси стержня. Примером может служить сечение, имеющее форму буквы Z. Сечения, имеющие две оси симметрии, также принадлежат этому классу. Методом, использованным в работе [3], в предположении ортотропности материала доказывается следующее свойство решений двумерной краевой задачи (1.9), (1.10), (1.15):

$$X_{\alpha}(-x_1, -x_2, x_3) = -X_{\alpha}(x_1, x_2, x_3) \qquad (\alpha = 1, 2).$$
(2.3)

Из (2.3) следует, что сечение горизонтальной плоскостью деформированного бруса также обладает центральной симметрией, причем ось X_3 , т. е. прямая $X_1 = X_2 = 0$, проходит через центры всех сечений. В частном случае, когда точка $x_1 = x_2 = 0$ принадлежит области σ (т. е. призматический брус не имеет полости в центральной части), из (2.3) следует, что $X_{\alpha}(0,0,x_3) = 0$ ($\alpha = 1,2$). Это означает, что материальная прямая, проходящая через центры сечений недеформированного бруса, после его закручивания остается прямой линией и также пересекает горизонтальную плоскость в точке $x_1 = x_2 = 0$.

Таким образом, продольная сила F_3 , возникающая на торцах бруса при деформации вида (1.4), (1.5), в случае бруса с центрально-симметричным сечением проходит через центр сечения.

После решения двумерной краевой задачи на сечении продольная сила и крутящий момент становятся известными функциями параметров ψ и λ :

$$F_3 = F(\psi, \lambda), \qquad M_3 = M(\psi, \lambda). \tag{2.4}$$

Обращение функций F и M позволяет определить параметры ψ и λ по заданным значениям силы F_3 и момента M_3 .

Рассмотрим функционал П погонной (рассчитанной на единицу длины) свободной энергии упругого бруса, вычисленный на решении $u_{\alpha}(x_1, x_2, \psi, \lambda)$, $w(x_1, x_2, \psi, \lambda)$, $H_0(x_1, x_2, \psi, \lambda)$ двумерной краевой задачи (1.9), (1.10), (1.15), (1.17) и зависящий от параметров ψ и λ :

$$\Pi(\psi,\lambda) = \iint_{\sigma} W[u_{\alpha}(x_1, x_2, \psi, \lambda), w(x_1, x_2, \psi, \lambda), H_0(x_1, x_2, \psi, \lambda); \psi, \lambda] \, d\sigma.$$
(2.5)

В (2.5) учтено, что согласно (1.2), (1.6), (1.7) удельная свободная энергия зависит от параметров ψ , λ не только через функции u_{α} , w, H_0 , но и явным образом. Используя метод, описанный в другом контексте в [6], можно доказать энергетические соотношения нелинейной теории кручения цилиндрических тел с моментными напряжениями

$$F = \frac{\partial \Pi(\psi, \lambda)}{\partial \lambda}, \qquad M = \frac{\partial \Pi(\psi, \lambda)}{\partial \psi}.$$
(2.6)

Представления (2.6) описывают нелинейное взаимодействие продольных и крутильных деформаций в упругих цилиндрах из микрополярных материалов и позволяют, в частности, изучать прямой и обратный эффекты Пойнтинга [7] в таких цилиндрах. 3. Уравнения совместности и функции напряжений. Преобразуем краевую задачу (1.9), (1.10), (1.15), (1.17) на сечении призмы, исключив из нее функции u_1 , u_2 , w и приняв в качестве основных неизвестных другие величины. В результате для $C_{sk} = \mathbf{i}_s \cdot C_0 \cdot \mathbf{i}_k$ получим уравнения совместности относительно компонент градиента деформации

$$\frac{\partial C_{32}}{\partial x_1} = \psi C_{11}, \qquad \frac{\partial C_{32}}{\partial x_2} = \psi C_{21}, \qquad \frac{\partial C_{31}}{\partial x_1} = -\psi C_{12}, \qquad \frac{\partial C_{31}}{\partial x_2} = -\psi C_{22}; \tag{3.1}$$

$$\frac{\partial C_{13}}{\partial x_2} = \frac{\partial C_{23}}{\partial x_1}.$$
(3.2)

С учетом (1.7) инвариантная бескоординатная запись уравнений (3.1), (3.2) имеет соответственно вид

$$\nabla \otimes \boldsymbol{i}_3 \cdot \boldsymbol{Y} \cdot \boldsymbol{H}_0 \cdot \boldsymbol{g} = \psi \boldsymbol{g} \cdot \boldsymbol{Y} \cdot \boldsymbol{H}_0 \cdot \boldsymbol{e}; \tag{3.3}$$

$$\nabla \cdot e \cdot Y \cdot H_0 \cdot \mathbf{i}_3 = 0. \tag{3.4}$$

Используя (3.3), (3.4), уравнения совместности можно записать в любых криволинейных координатах, введенных в области σ . Если к (3.3), (3.4) присоединить уравнения равновесия (1.9), (1.10), а также соотношение $i_3 \cdot Y \cdot H_0 \cdot i_3 = \lambda$, то получим полную систему уравнений с неизвестными функциями Y, H_0 . Тогда при формулировке двумерной краевой задачи в терминах Y, H_0 первое ограничение (1.17) не требуется.

Как и в нелинейной теории кручения, не учитывающей моментные напряжения [5], систему уравнений, состоящую из уравнений совместности и уравнений равновесия, целесообразно использовать при наличии в призматическом теле винтовых дислокаций, оси которых параллельны оси x_3 . Уравнениям равновесия (1.11) для силовых напряжений можно тождественно удовлетворить с помощью подстановки

$$D_{\alpha\beta} = \psi \Phi_{\alpha\beta} \qquad (\alpha, \beta = 1, 2),$$

$$D_{13} = \frac{\partial \Omega}{\partial x_2}, \qquad D_{23} = -\frac{\partial \Omega}{\partial x_1}, \qquad D_{31} = -\frac{\partial \Phi_{12}}{\partial x_1} - \frac{\partial \Phi_{22}}{\partial x_2}, \qquad D_{32} = \frac{\partial \Phi_{11}}{\partial x_1} + \frac{\partial \Phi_{21}}{\partial x_2},$$
(3.5)

где $\Omega(x_1, x_2)$, $\Phi_{\alpha\beta}(x_1, x_2)$ — функции напряжений. Выражения (3.5) представляют собой общее решение уравнений (1.11), так как функции $\Phi_{\alpha\beta}(x_1, x_2)$ ($\alpha, \beta = 1, 2$) определяются по заданным в односвязной области σ напряжениям D_{sk} однозначно, а функция Ω — с точностью до произвольной аддитивной постоянной, не влияющей на напряженное состояние тела. В случае односвязной области σ силовые граничные условия (1.15) записываются через функции напряжений следующим образом:

$$Ω = 0, nαΦαβ = 0 Ha ∂σ (nα = n · iα).$$
(3.6)

Введя тензор функций напряжений $\Phi = \Phi_{\alpha\beta} i_{\alpha} \otimes i_{\beta}$ ($\alpha, \beta = 1, 2$), общее решение (3.5) силовых уравнений равновесия можно записать в инвариантной форме

$$D_0 = \psi \Phi + e \cdot \nabla \Omega \otimes \mathbf{i}_3 + \mathbf{i}_3 \otimes (\nabla \cdot \Phi) \cdot e + D_{33} \mathbf{i}_3 \otimes \mathbf{i}_3.$$
(3.7)

4. Вариационные постановки задачи на сечении. Рассмотрим функционал погонной энергии, определенный на множестве дважды дифференцируемых в области σ функций $u_{\alpha}(x_1, x_2), w(x_1, x_2), H_0(x_1, x_2)$, удовлетворяющих условиям (1.17):

$$\Pi[u_1, u_2, w, H_0] = \iint_{\sigma} W(Y, L) \, d\sigma. \tag{4.1}$$

Согласно (1.6), (1.7) удельная свободная энергия W(Y, L) в (4.1) выражена через функции u_1, u_2, w, H_0 . С учетом (1.2), (1.7) вариация функционала (4.1) имеет вид

$$\delta \Pi = \iint_{\sigma} \delta W \, d\sigma,$$

$$\delta W = \operatorname{tr} \left(D^{\mathrm{T}} \cdot \operatorname{grad} \delta \boldsymbol{R} \right) + \operatorname{tr} \left[D^{\mathrm{T}} \cdot \left(\operatorname{grad} \boldsymbol{R} \times \boldsymbol{\chi} \right) \right] + \operatorname{tr} \left(G_{0}^{\mathrm{T}} \cdot \nabla \boldsymbol{\chi} \right) - \psi \boldsymbol{i}_{3} \cdot G_{0} \cdot \boldsymbol{e} \cdot \boldsymbol{\chi}_{3}$$
$$\boldsymbol{R} = u_{1} \boldsymbol{e}_{1} + u_{2} \boldsymbol{e}_{2} + (\lambda x_{3} + w) \boldsymbol{i}_{3},$$

где $\boldsymbol{\chi}(x_1, x_2)$ — вектор виртуального поворота, определяемый соотношением $H_0^{\mathrm{T}} \cdot \delta H_0 = -E \times \boldsymbol{\chi}$. Можно проверить, что уравнениями Эйлера вариационной задачи о стационарности функционала П являются уравнения равновесия (1.9), (1.10), записанные через функции u_1, u_2, w, H_0 , а естественными краевыми условиями — условия (1.15) на боковой поверхности призматического бруса.

Как и в задаче нелинейного чистого изгиба тел с моментными напряжениями [8], для области σ можно получить другую вариационную формулировку двумерной задачи, аналогичную принципу Кастильяно классической теории упругости.

Рассмотрим класс материалов, для которых удельную потенциальную энергию деформации можно представить в виде

$$W(Y,L) = W_1(Y) + W_2(L).$$
(4.2)

Условие (4.2) выполняется, например, для физически линейного изотропного континуума Коссера [2] с упругим потенциалом в виде квадратичной формы от тензоров Y - E и L:

$$W = (1/2)[\lambda_0 \operatorname{tr}^2 \varepsilon + (\mu + \alpha) \operatorname{tr} (\varepsilon \cdot \varepsilon^{\mathrm{T}}) + (\mu - \alpha) \operatorname{tr} \varepsilon^2 + \beta \operatorname{tr}^2 L + (\gamma + \eta) \operatorname{tr} (L \cdot L^{\mathrm{T}}) + (\gamma - \eta) \operatorname{tr} L^2], \qquad \varepsilon = Y - E \quad (4.3)$$

 $(\lambda_0, \mu, \alpha, \gamma, \beta, \eta$ — упругие постоянные). Отсутствие в (4.3) билинейных слагаемых (т. е. линейных по ε и линейных по L) обусловлено тем, что мера изгибной деформации L является псевдотензором и при инверсии пространства меняет знак. Для материала, обладающего свойством (4.2), в силу (1.2) тензор P будет зависеть только от Y, а тензор K — только от L:

$$P(Y) = \frac{dW_1(Y)}{dY}, \qquad K(L) = \frac{dW_2(L)}{dL}.$$
(4.4)

Предполагая однозначную обратимость зависимости P(Y), построим функцию $V_1(P)$, связанную с $W_1(Y)$ преобразованием Лежандра:

$$V_1(P) = \operatorname{tr} [P^{\mathrm{T}} \cdot Y(P)] - W_1(P).$$
(4.5)

Тогда по свойству преобразования Лежандра

$$Y = \frac{dV_1}{dP}.\tag{4.6}$$

Функцию

$$V(P,L) = V_1(P) + W_2(L)$$
(4.7)

назовем удельной дополнительной энергией упругого материала, обладающего свойством (4.2). Из (4.4)–(4.7) следуют соотношения

$$Y = \frac{\partial V}{\partial P}, \qquad K = \frac{\partial V}{\partial L}.$$
(4.8)

В качестве примера приведем выражение функции удельной дополнительной энергии для материала с потенциалом (4.3):

$$\begin{split} V(P,L) &= \operatorname{tr} P + \frac{1+m}{8m\mu} \operatorname{tr} \left(P \cdot P^{\mathrm{T}} \right) - \frac{m-1}{8m\mu} \operatorname{tr} P^2 - \frac{\nu}{4\mu(1+\nu)} \operatorname{tr}^2 P + \\ &+ \frac{1}{2} \left[\beta \operatorname{tr}^2 L + (\gamma + \eta) \operatorname{tr} \left(L \cdot L^{\mathrm{T}} \right) + (\gamma - \eta) \operatorname{tr} L^2 \right], \\ m &= \frac{\lambda_0}{\mu}, \qquad \nu = \frac{\lambda_0}{2(\lambda_0 + \mu)}. \end{split}$$

Так как согласно (1.5), (1.7), (1.8) в задаче кручения $P = D_0 \cdot H_0^{\mathsf{T}}$, а тензор L выражается через H_0 и ∇H_0 , удельную дополнительную энергию можно считать функцией D_0 , H_0 , ∇H_0 .

В задаче кручения призматического тела с моментными напряжениями функционал типа Кастильяно задается выражением

$$\Pi_1(\Phi,\Omega,D_{33},H_0) = \iint_{\sigma} V[D_0(\Phi,\Omega,D_{33}),H_0,L(H_0)] \, d\sigma.$$
(4.9)

В (4.9) использовано представление (3.7) тензора напряжений Пиолы через функции напряжений, тождественно удовлетворяющие силовым условиям равновесия (1.9). Допустимые функции напряжений должны быть дважды дифференцируемыми и удовлетворять краевым условиям (3.6), а варьируемое поле ортогонального тензора H_0 должно удовлетворять второму соотношению в (1.17).

С учетом (4.8) вариация функционала (4.9) имеет вид

$$\delta\Pi_1 = \iint_{\sigma} \left\{ \operatorname{tr} \left[(Y \cdot H_0) \cdot \delta D_0^{\mathrm{T}} \right] + (C_0^{\mathrm{T}} \cdot D_0)_{\times} \cdot \boldsymbol{\chi} + \operatorname{tr} \left(G_0^{\mathrm{T}} \cdot \nabla \boldsymbol{\chi} \right) - \psi \boldsymbol{i}_3 \cdot G_0 \cdot \boldsymbol{e} \cdot \boldsymbol{\chi} \right\} d\sigma.$$
(4.10)

Из (3.7) и (4.10) следует, что условие стационарности $\delta \Pi_1 = 0$ эквивалентно уравнениям совместности (3.3), (3.4), моментным уравнениям равновесия (1.10), соотношению $\lambda = \partial V / \partial D_{33}$ и моментным граничным условиям (1.15).

Приведенные вариационные постановки можно использовать при решении двумерной задачи на сечении призматического тела методом Ритца или методом конечных элементов.

5. Кручение кругового цилиндра. Рассмотрим круговые цилиндрические координаты: лагранжевы *r*, *\varphi*, *z* и эйлеровы *R*, *\Phi*, *Z*. Справедливы формулы

$$x_1 = r \cos \varphi,$$
 $x_2 = r \sin \varphi,$ $x_3 = z,$
 $X_1 = R \cos \Phi,$ $X_2 = R \sin \Phi,$ $X_3 = Z.$

Используя цилиндрические координаты, семейство деформаций (1.4), (1.5) континуума Коссера можно представить в эквивалентной форме

$$R = \rho(r,\varphi), \qquad \Phi = \psi z + v(r,\varphi), \qquad Z = \lambda z + w(r,\varphi), \qquad H = H_0(r,\varphi) \cdot Q(z). \tag{5.1}$$

Частным случаем представления (5.1) является предложенное в [9] выражение для деформации кручения и осевого растяжения-сжатия кругового цилиндра:

$$R = \rho(r), \qquad \Phi = \varphi + \psi z, \qquad Z = \lambda z,$$

$$H = \mathbf{e}_r \otimes \mathbf{e}_R + \cos \tau(r) (\mathbf{e}_\varphi \otimes \mathbf{e}_\Phi + \mathbf{e}_z \otimes \mathbf{e}_Z) - \sin \tau(r) (\mathbf{e}_z \otimes \mathbf{e}_\Phi - \mathbf{e}_\varphi \otimes \mathbf{e}_Z),$$
(5.2)

$$egin{aligned} oldsymbol{e}_r &= oldsymbol{i}_1\cosarphi + oldsymbol{i}_2\sinarphi, & oldsymbol{e}_arphi &= -oldsymbol{i}_1\sinarphi + oldsymbol{i}_2\cosarphi, \\ oldsymbol{e}_R &= oldsymbol{i}_1\cos\Phi + oldsymbol{i}_2\sin\Phi, & oldsymbol{e}_\Phi &= -oldsymbol{i}_1\sin\Phi + oldsymbol{i}_2\cos\Phi, \\ oldsymbol{e}_z &= oldsymbol{e}_Z = oldsymbol{i}_3. \end{aligned}$$

Как доказано в [9], подстановка (5.2) приводит задачу кручения кругового (в том числе полого) цилиндра из изотропного полярного материала к краевой задаче для системы двух нелинейных обыкновенных дифференциальных уравнений относительно функций $\rho(r), \tau(r)$. В случае несжимаемого изотропного псевдоконтинуума Коссера согласно [9] указанная задача допускает точное решение в квадратурах.

ЛИТЕРАТУРА

- 1. Шкутин Л. И. Механика деформаций гибких тел. Новосибирск: Наука. Сиб. отд-ние, 1988.
- Zubov L. M. Nonlinear theory of dislocations and disclinations in elastic bodies. Berlin: Springer, 1997.
- Zubov L. M., Bogachkova L. U. The theory of torsion of elastic noncircular cylinders under large deformations // Trans. ASME. J. Appl. Mech. 1995. V. 62, N 2. P. 373–379.
- 4. Зубов Л. М. Методы нелинейной теории упругости в теории оболочек. Ростов н/Д: Изд-во Ростов. гос. ун-та, 1982.
- Зубов Л. М., Губа А. В. Нелинейная теория кручения призматических упругих тел, содержащих винтовые дислокации // Изв. вузов Сев.-Кавк. региона. Естеств. науки. 2003. Спецвыпуск: Нелинейные проблемы механики сплошных сред. С. 212–222.
- Зубов Л. М., Зеленина А. А. Трехмерный анализ больших деформаций пространственного изгиба кривого бруса // Экол. вестн. науч. центров Черномор. экон. сотрудничества. 2003. № 1. С. 46–54.
- 7. Зубов Л. М. О прямом и обратном эффектах Пойнтинга в упругих цилиндрах // Докл. РАН. 2001. Т. 380, № 2. С. 194–196.
- 8. Зеленина А. А. Нелинейная теория чистого изгиба призматических упругих тел с моментными напряжениями // Изв. вузов Сев.-Кавк. региона. Естеств. науки. 2003. Спецвыпуск: Нелинейные проблемы механики сплошных сред. С. 207–211.
- Глушенко А. В., Зубов Л. М. Точные решения задач о больших деформациях нелинейноупругих тел с моментными напряжениями // Фундаментальные и прикладные проблемы механики деформируемых сред и конструкций. Н. Новгород: Изд-во Нижегород. гос. ун-та. 1993. Вып. 1. С. 70–78.

Поступила в редакцию 12/IX 2005 г.