УДК 621.373.826

Нуклеация и структурообразование в алюминии и сплаве ALSi12Cu2NiMg, модифицированных наночастицами с использованием электронно-лучевой технологии^{*}

Р. Лазарова¹, Г.Е. Георгиев¹, А.Н. Черепанов², В. Дякова¹

¹Институт металловедения, сооружений и технологий с центром гидро- и аэродинамики им. акад. А. Балевски БАН, София, Болгария

²Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: ancher@itam.nsc.ru

Экспериментально и теоретически исследуются процессы зарождения кристаллов в алюминии и структурообразования в алюминиевом сплаве при введении наночастиц кубической формы методом поверхностной электронно-лучевой обработки. Определена зависимость скорости зарождения твердой фазы от размера наночастиц TiCN в алюминии. С использованием программного продукта MAGMASOFT проведено численное моделирование процесса структурообразования в образце сплава AlSi12Cu2NiMg при электронно-лучевой обработке.

Ключевые слова: электронно-лучевая обработка, наночастицы, модифицирование, кристаллическая структура.

Введение

В предыдущих работах авторов [1–4] была показана возможность получения нанокомпозитных покрытий на алюминии и алюминиевых сплавах путем нанесения порошка наночастиц на поверхность образца и последующей обработки с помощью электроннолучевой технологии. В результате взаимодействия электронного луча с поверхностью образца образуется расплав, в котором наночастицы хорошо перемешиваются, модифицируя металл и становясь дополнительными центрами кристаллизации. В процессе затвердевания жидкого металла на поверхности образца формируется высокодисперсное наносодержащее композиционное покрытие. Схема электронно-лучевой модификации алюминиевой подложки с наночастицами показана на рис. 1. Было установлено повышение

^{*} Исследование проведено в рамках проекта № ДН 07/16, финансируемого исследовательским фондом Республики Болгарии, и частично проекта № 121030500137-5 гос. задания Министерства науки и высшего образования РФ.

[©] Лазарова Р., Георгиев Г.Е., Черепанов А.Н., Дякова В., 2022

Лазарова Р., Георгиев Г.Е., Черепанов А.Н., Дякова В.

Рис. 1. Схематическое представление процесса обработки подложки электронным пучком.

дисперсности структуры, увеличение прочностных свойств, микротвердости и износостойкости поверхностных слоев образца.

Целью настоящей работы является исследование процессов зарождения и структурообразования в алюминии и сплаве AlSi12Cu2NiMg в присутствии наночастиц TiCN. При рассмотрении сформулированной таким образом задачи учитываются следующие обстоятельства: кристаллизация жидкой зоны обрабатываемой подложки в присутствии тугоплавких наночастиц является неоднородной; небольшие объемы металла затвердевают с большой скоростью при облучении поверхности потоками высокой энергии.

1. Процесс образования зародышей

В процессе охлаждения жидких слоев алюминия и сплава AlSi12Cu2NiMg введенные в расплав наночастицы (HЧ) служат подложками, на которых образуются центры кристаллизации. Скорость их зарождения зависит от размера HЧ, их смачиваемости и атомных диаметров элементов, входящих в состав жидкого металла, а также от других физико-химических характеристик жидкого металла. Наночастицы являются также центрами зарождения кремниевой фазы и ограничивают рост эвтектического кремния. При более высоких концентрациях НЧ, которые однако ниже значений их коагуляции, и хорошей смачиваемости формируется более тонкая дендритная (или глобулярная) структура. Полученные новые свойства поверхности обработанного металла объясняются улучшенной, модифицированной наночастицами микроструктурой и высококонцентрированной электронно-лучевой обработкой.

В последние годы проводилось большое количество исследований по изучению влияния НЧ в расплаве на микроструктуру, образующуюся в процессе кристаллизации, и механические свойства затвердевшего металла [5–13]. Было обнаружено, что образовавшаяся микроструктура, содержащая НЧ, является более тонкой, чем соответствующая микроструктура, не содержащая НЧ [14–16]. Это означает, что НЧ оказывают измельчающее действие на кристаллиты. Другим установленным эффектом является модификация дендритной поверхности нанопорошками [17]. Эти наблюдения подтверждаются также теоретическим анализом, предполагающим, что нанопорошки могут блокировать диффузию компонентов сплава во время затвердевания [18].

Литературные данные показывают, что добавление НЧ увеличивает скорость образования ядер (центров кристаллизации), одновременно ограничивая рост дендритов и изменяя их морфологию. В работах [19, 20], например, было обнаружено, что эти изменения в микроструктуре во время кристаллизации происходят в результате вызванного НЧ ограничения эффективной диффузии Zn перед дендритными осями, при котором снижается скорость роста их вершин. Механизм зарождения ядер в жидком металле с добавлением кубических НЧ описывался в работах [21, 22].

Рис. 2. Общий вид морфологии порошковых наночастиц TiCN.

Рис. 3. Микрофотография шлифа образца Al, модифицированного наночастицами TiCN.

1.1. Экспериментальная часть

Образцы чистого алюминия подвергались поверхностному модифицированию кубическими наночастицами TiCN, средний размер ребра которых $l_{\rm p}$ был равен 40 нм (рис. 2 и 3), с помощью электронно-лучевой обработки. Опытные образцы представляли собой параллелепипеды размерами 20×10×10 мм. Обрабатываемая поверхность образцов предварительно шлифовалась наждачной бумагой № 1200, очищалась этиловым спиртом и сушилась. Затем она покрывалась суспензией, состоящей из растворенных в трех каплях CHCl3 опилок из оргстекла и наноразмерного порошка TiCN. Покрытие наносилось на поверхность образцов в двух поверхностных концентрациях (M_n) — 0,015 и 0,03 мг/мм² — лабораторным шпателем для получения однородной пленки на поверхности подложки. Процесс электронно-лучевой обработки реализовывался в вакуумной установке Leybold Heraeus (EWS 300/15-60). Технологические параметры обработки были следующие: ток электронного пучка $I = 18 \div 25$ мА, скорость перемещения образца $v = 0.5 \div 5$ см/с, частота сканирования электронного пучка $f = 200 \div 10\ 000\ \Gamma$ ц. Во время всех экспериментов ускоряющее напряжение составляло U = 52 кВ, ток фокусировки — I_f = 472 мА. Обработка поверхности образцов осуществлялась сканированием электронного луча по круговой траектории.

1.2. Теоретическая часть

Согласно исследованию [23], тугоплавкие НЧ являются потенциальными центрами кристаллизации, на поверхности которых образуются отдельные кластеры, которые при определенных условиях превращаются в твердофазные ядра. Как и в работах [21, 22], будем предполагать, что ядро имеет форму сферического сегмента на поверхности кубической наночастицы с углом смачивания в интервале $0^{\circ} < \theta < 90^{\circ}$ (рис. 4), пятно контакта которого имеет диаметр, не превышающий длину $l_{\rm p}$ ребра кубической частицы, т.е. определяется как $2R_{\rm c} \sin \theta \le l_{\rm p}$, где $R_{\rm c}$ — критический радиус зародыша.

Скорость гетерогенного зарождения J и свободная энергия Гиббса ΔG^* в расплаве с НЧ с учетом размерного эффекта описываются выражениями [21]:

Рис. 4. Схема зародыша на плоской стенке наночастицы.

> *1* — расплав, *2* — зародыш, 3 — наночастица.

Рис. 5. Зависимость скорости зарождения от размера наночастиц при значениях параметра $2\delta/R_0 = 0$ (1), 0,007 (2), 0,05 (3) и $M_{\rm p} = 0.03 \text{ мг/мм}^2$.

7

8

ģ

10

$$J = n_{\rm p} (12\pi D_0) / (l_{\rm a}^4) (l_{\rm p} / l_{\rm c})^2 R_{\rm c}^2 (1 - \cos\theta) \exp[(-(E + \Delta G^*)) / (k_{\rm B}T)],$$
(1)

$$\Delta G^* = 1/3 \,\pi \sigma_{12}^{\infty} R_0^2 \,(1 - 6\,\delta/R_0) \,(1 - \cos\theta)^2 \,(2 + \cos\theta), \tag{2}$$

где $n_{\rm p} = m_{\rm p} \rho / 100 \rho_{\rm p} l_{\rm p}^3$, $R_{\rm c} \approx 2\sigma_{12}^{\infty} (1 - 2\delta/R_0) T_{\rm s} / (\kappa \rho \Delta T)$, T — текущая температура, σ_{12}^{∞} поверхностное натяжение на границе «зародыш – расплав» при $2\delta/R_0 \rightarrow 0$, m_p — массовая доля модификатора (масс. %), δ — параметр Толмана, характеризующий размер межфазного переходного слоя, ΔT — переохлаждение, $T_{\rm s}$ — температура кристаллизации, ρ — плотность металла, $\rho_{\rm p}$ —— плотность НЧ, κ — теплота кристаллизации, $l_{\rm a}$ диаметр атома жидкого металла, $l_{\rm c}$ — межатомное расстояние для подложки, $k_{\rm B}$ — постоянная Больцмана, D_0 — эмпирическая константа в законе Аррениуса, E — энергия активации процесса диффузии в расплаве алюминия.

Численные расчеты для оценки скорости гетерогенного зародышеобразования в расплаве алюминия выполнены при следующих исходных данных: $T_{\rm s} = 933$ K, $\rho = 2350$ кг/м³, $\kappa = 4,02 \cdot 10^5$ Дж /кг, $D_0 = 10^{-7}$ м²/с, $E = 4,2 \cdot 10^{-20}$ Дж, $\pi \sigma_{12}^{\infty} = 0,093$ Дж/м², $l_a = 2,86 \cdot 10^{-10}$ м, $l_{\rm c} = 4,235 \cdot 10^{-10}$ м, $\rho_{\rm p} = 5080$ кг/м³, $k_{\rm B} = 1,38 \cdot 10^{-23}$ Дж/К.

На рис. 5 представлена зависимость скорости зарождения ядер от размера наночастиц для трех значений параметра Толмана. Угол смачивания θ принят равным 10°, переохлаждение $\Delta T = 2$ K, поверхностная плотность наночастиц $M_{\rm p} = 0.03$ мг/мм². Анализ рассчитанных кривых показывает, что малый относительный параметр Толмана $(2\delta/R_0 < 0.01)$ слабо влияет на скорость зарождения, а уменьшение размера наночастицы при фиксированном значении массы материала подложки в расплаве приводит к ее увеличению, т. е. чем меньше НЧ, тем выше скорость нуклеации.

Вопрос о скорости зарождения в сплаве AlSi12Cu2NiMg является более сложным, поскольку параметр Толмана в этом случае должен определяться атомными диаметрами элементов, участвующих в сплаве, и зарождение разных фаз происходит при различных значениях переохлаждения. Кроме того, необходимо также рассматривать характер роста зерна в металлическом расплаве с НЧ. Исследования последних лет показали, что НЧ при кристаллизации жидкого металла не только измельчают, но и модифицируют зерно, т.е. они одновременно уменьшают размер и изменяют форму микроструктурных элементов [17, 19, 24].

2. Процессы роста и модификации

2.1. Рост и модификация дендритов

В исследовании [19] было обнаружено, что НЧ снижают эффективную диффузионную способность растворяющегося компонента Zn в жидкости, действуя как эффективный ингибитор роста дендритов. Также было обнаружено, что добавки НЧ изменяют морфологию микроструктуры, меняя ее с дендритной на гиперразветвленную с сильно разделенными концами. Количественное определение темпов роста верхней части дендритов с помощью наборов данных рентгеновской томографии в сочетании с аналитическими расчетами показывает, что изменение дендритной морфологии роста обусловлено тем фактом, что НЧ снижают эффективную растворимость легирующих веществ в жидкости перед границей раздела «твердое тело – жидкость». Это ограничивает перераспределение растворенных элементов, увеличивает их концентрацию на кончиках дендритов, что приводит к гиперразветвленной морфологии зерна.

2.2. Рост и модификация кристаллов кремния

В работах [25–27] было показано, что НЧ могут контролировать рост эвтектической фазы Si в процессе затвердевания сплава. Авторами [28, 29] было установлено, что НЧ Al₂O₃ и TiCN ингибируют рост эвтектической фазы Si за счет их распределения на границе раздела Al/Si и таким образом приводят к повышению дисперсности эвтектической фазы.

Сравнительный качественный микроскопический анализ образцов сплава AlSi12Cu2NiMg (рис. 6*a* и 6*b*) показывает, что применение наномодифицирующих наночастиц существенно измельчает первичные и эвтектические кристаллы в обработанном слое.

Рис. 6. Микроструктура поверхностного слоя образцов с концентрацией НЧ 0,015 (*a*) и 0,03 (*b*) мг/мм².

```
3. Моделирование процесса структурообразования
в образце сплава AlSi12Cu2NiMg,
подвергнутом электронно-лучевой обработке,
с использованием программного продукта MAGMASOFT
```

Трехмерная схема образца сплава AlSi12Cu2NiMg, использованного в экспериментах, представлена на рис. 7. В поверхностном тонком слое, расплавленном в результате ЭЛО, выбираются равномерно расположенные контрольные точки, помеченные как T1, T2, ..., T10. Схема построена с помощью геометрического модельера программного пакета MAGMASOFT версии 5.5.0.1. Процесс нагрева и плавления верхнего поверхностного слоя образца был подготовлен и проведен в условиях, описанных в разделе 1.1, с помощью программного инструментария. В результате решения температурной задачи было получено температурное поле образца, представленное на рис. 8. Значения температур в контрольных точках, расположенных в соответствии с рис. 7, показаны на рис. 9 также с цветовым кодированием. Для решения температурной задачи температура в контрольных точках вычисляется с помощью математической модели программного

Рис. 7. Схема образца сплава AlSi12Cu2NiMg, подвергнутого ЭЛО, с указанием контрольных точек.

Рис. 8. Температурное поле образца в различные моменты времени в процессе нагрева. t = 0.262 (a), 0.782 (b), 0.912 (c), 1.172 (d) с.

обеспечения MAGMASOFT. В этих точках показано изменение значения температуры за время 1,33 с, в течение которого электронный луч сканирует поверхность образца. На графике также представлены температуры солидуса и ликвидуса сплава AlSi12Cu2NiMg. Это позволяет проследить динамику процесса, в котором для каждой локальной области может быть учтено время, в течение которого она находилась в двухфазной зоне, т.е. между температурой солидуса и ликвидуса, а также время, когда металл был в жидком состоянии, а затем затвердел. В это время уже формируется микроструктура, и очевидно, что оно значительно короче, чем продолжительность сканирования.

С помощью феноменологического критерия «размер зерна», предложенного программным обеспечением, получена прогнозная оценка размера зерен, сформировавшихся в слое, обработанном электронным лучом. На рис. 10 представлен увеличенный сегмент вертикального сечения этого слоя. Для наглядной визуализации распределения зерен по размерам использовалось цветовое кодирование диапазона размеров. Видно, что у поверхности слоя размер зерна составляет около 1,0 мкм, с ростом глубины он увеличивается до ~1,85 мкм, что является чрезвычайно мелкозернистой структурой. Наибольшие крупные зерена находятся в середине сечения (желтоватые и красные цвета), а ближе к нижней и к верхней поверхностям рассматриваемого слоя (синие цвета) наблюдается тенденция к уменьшению размера зерен, обусловленная более высокой интенсивностью охлаждения поверхности образца. Рисунок 11 иллюстрирует

графическое распределение характерных размеров кристаллического зерна в поперечном сечении обработанного слоя. Следует отметить, что представленные таким образом предсказанные результаты близки к зарегистрированным в экспериментах (см. рис. 10).

Рис. 10. Размеры зерен в поверхностном слое образца сплава AlSi12Cu2NiMg, подвергнутого ЭЛО.

Рис. 11. Распределение размера зерен в поперечном сечении обработанного слоя (по оси Z).

Заключение

В процессе охлаждения жидких слоев алюминия и сплава AlSi12Cu2NiMg введенные в расплав наночастицы служат подложками, на которых образуются ядра кристаллизации. Скорость их зарождения

зависит от размера НЧ и атомных диаметров элементов, входящих в состав жидкого металла, а также от других физико-химических характеристик жидкого металла. Эта скорость теоретически определена для чистого алюминия. Показано, что наночастицы измельчают не только зерна первичной фазы, но также являются центрами зарождения кремниевой фазы и препятствуют росту эвтектического кремния. Полученное повышение свойств обработанного слоя металла объясняется улучшенной мелкозернистой структурой металла и высокоэнергетической электронно-лучевой обработкой.

Авторы благодарны своим коллегам из Лаборатории физических технологий Института электроники Болгарской академии наук, которые провели эксперименты с образцами, подвергнутыми электронно-лучевой обработке.

Список литературы

- Lazarova R., Dimitrova R., Murdjeva Y., Valkov St., Petrov P. Layers obtained on aluminum by nanopowder deposition and subsequent electron beam scanning // Materials and Manufacturing Processes. 2018. Vol. 33, No. 10. P. 1128–1132.
- Anestiev L., Lazarova R., Petrov P., Dyakova V., Stanev L. On the strengthening and the strength reducing mechanisms at aluminium matrix composites reinforced with TiCN nano-sized particulates // Phil. Magazine. 2019. Vol. 101, Iss. 2. P. 129–153.
- Valkov S., Bezdushnyi R., Lazarova R., Dimitrova R., Petrov P. Surface modification of Al substrate with TiCN nanopowder by electron-beam treatment // AIP Conf. Proceedings. 2019. Vol. 2075, Iss. 1. P. 160017-1–160017-5.
- 4. Lazarova R., Valkov S., Dyakova V., Petrov P. Layers obtained on TiCN aluminum nanocomposites by electronbeam treatment // Intern. Conf. on Novel Functional Materials. IOP Conf. Series: Materials Sci. and Engng. 2020. Vol. 733. P. 012017-1–012017-9.
- Lazarova R., Bojanova N., Dimitrova R., Panov I., Manolov V. Influence of nanoparticles introducing in the melt of aluminum alloys on castings microstructure and properties // Intern J. of Metalcasting. 2016. Vol. 10, Iss. 4. P. 466–476.
- 6. Черепанов А.Н., Оришич А.М., Овчаренко В.Е., Маликов А.Г., Дроздов В.О., Пшеничников А.П. Влияние наномодифицирующих добавок на свойства многослойного композиционного покрытия, получаемого при лазерной наплавке // Физика металлов и металловедение. 2019. Т. 120, № 1. С. 107–112.
- Dieringa H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review // J. Mater. Sci. 2011. Vol. 46, No. 2. P. 289–306.
- Черепанов А.Н., Овчаренко В.Е., Лю Г., Цао Л. Модификация структуры и свойств никелевых сплавов наноструктурированными композиционными порошками // Теплофизика и аэромеханика. 2015. Т. 22, № 1. С. 131–136.
- Schultz B.F., Ferguson J.B., Rohatgi P.K. Microstructure and hardness of Al₂O₃ nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing // Mater. Sci. Engng. 2011. Vol. 530. P. 87–97.
- Jia X.Y., Liu S.Y., Gao F.P., Zhang Q.Y., Li W.Z. Magnesium matrix nanocomposites fabricated by ultrasonic assisted casting // Int. J. Cast Metal Res. 2009. Vol. 22, No. 4. P. 196–199.
- Katsarou L., Mounib M., Lefebvre W., Vorozhtsov S., Pavese M., Badini C., Molina-Aldareguia J.M., Jimenez C.C., Prado M.T.P., Dieringa H. Microstructure, mechanical properties and creep of magnesium alloy Elektron 21 reinforced with AlN nanoparticles by ultrasound-assisted stirring // Mater. Sci. Engng. 2016. Vol. 659. P. 84–92.

- Wang D.K., De Cicco M.P., Li X.C. Using diluted master nanocomposites to achieve grain refinement and mechanical property enhancement in as-cast Al-9Mg // Mater. Sci. Engng. 2012. Vol. 532. P. 396–400.
- Men H., Jiang B., Fan Z. Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt // Acta Mater. 2010. Vol. 58, No. 19. P. 6526–6534.
- Mirihanage W., Xu W.W., Tamayo-Ariztondo J., Eskin D., Garcia-Fernandez M., Srirangam P., Lee P. Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites // Mater. Lett. 2016. Vol. 164. P. 484–487.
- Jia X.Y., Liu S.Y., Gao F.P., Zhang Q.Y., Li W.Z. Magnesium matrix nanocomposites fabricated by ultrasonic assisted casting // Intern. J. Cast Metal Res. 2009. Vol. 22, No. 4. P. 196–199.
- Wang D.K., De Cicco M.P., Li X.C. Using diluted master nanocomposites to achieve grain refinement and mechanical property enhancement in as-cast Al-9Mg // Mater. Sci. Engng. 2012. Vol. 532. P. 396–400.
- Chen L.Y., Peng J.Y., Xu J.Q., Choi H., Li X.C. Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing // Scripta Mater. 2013. Vol. 69, No. 8. P. 634–637.
- Daudin R., Terzi S., Lhuissier P., Tamayo J., Scheel M., Hari Babu N., Eskin D.G., Salvo L. Particle-induced morphological modification of Al alloy equiaxed dendrites revealed by sub-second in situ microtomography // Acta Mater. 2017. Vol. 125. P. 303–310.
- Chen L.Y., Xu J.Q., Choi H., Konishi H., Jin S., Li X.C. Rapid control of phase growth by nanoparticles // Nat. Commun. 2014. Vol. 5, Iss. 1. P. 3879.
- 20. Guo E., Shual S., Kazantsev D., Karagadde S. et al. The influence of nanoparticles on dendritic grain growth in Mg alloys // Acta Materialia. 2018. No. 152. P. 127–137.
- Cherepanov A.N., Cherepanova V.K., Manolov V., Yovkov L. On crystallization of a metal inoculated with nanoparticles // IOP Conf. Series: J. of Physics: Conf. Series. 2018. Vol. 1115. P. 042042-1–042042-7.
- Cherepanov A.N., Cherepanova V.K., Manolov V. Heterogeneous nucleation and growth of a solid in a nanomodified alloy // J. of Crystal Growth. 2019. Vol. 527. P. 125251-1–125251-4.
- **23. Rebinder P.A.** Qualitative Steel. 1939. No. 3. P. 31–34.
- 24. Jiang P.D., Yu J.K. Simultaneous refinement and modification of the eutectic Si in hypoeutectic Al–Si alloys achieved via the addition of SiC nanoparticle // J. of Material Researches Technology. 2019. Vol. 8, No. 3. P. 2930–2943.
- Chen L.Y., Xu J.Q., Li X.C. Controlling phase growth during solidification by nanoparticles // Mater Res Lett. 2015. Vol. 3, No. 1. P. 43–49.
- 26. Wang K., Jiang H.Y. Nanoparticle-inhibited growth of primary aluminum in Al–10Si alloys // Acta Mater. 2016. Vol. 103. P. 252–263.
- 27. Божанова М., Манолов В.К., Димитрова Р.Н., Лазарова Р.Л., Черепанов А.Н. Повышение качества отливок из алюминиевых сплавов с помощью наномодифицирования // Тяжелое машиностроение. 2014. № 6. С. 2–6.
- Choi H., Li X. Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al-20Si-4.5Cu alloy with addition of Al2O3 nanoparticles // J. Mater. Sci. 2012. Vol. 47, No. 7. P. 3096–3102.
- 29. Wang K., Jiang H.Y. Microstructure and mechanical properties of hypoeutectic Al–Si composite reinforced with TiCN nanoparticles // Mater Des. 2016. No. 95. P. 545–554.

Статья поступила в редакцию 1 февраля 2022 г., после доработки — 19 марта 2022 г., принята к публикации 22 марта 2022 г.