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Abstract

Regio- and diastereoselectivity of  1,3-dipolar cycloaddition of  4-methoxybenzonitriloxide to  α,β-
unsaturated esters of α-D-xylo-pentadialdo-1,4-furanose depending on the geometry of the double bond
and the method of generation of nitriloxide is studied.
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Scheme 1.

Reagents and conditions: à. Ph3PCHCOOEt, THF; b. ÑÍ(ÑO2Et)2, Py, TiCl4, THF.

INTRODUCTION

1,3-Dipolar cycloaddition of  nitriloxides to
alkenes is a simple and convenient way to
synthesize 4,5-dihydroisoxazoles [1-3] which are
synthetic precursors of a large number of bio-
logically active substances [4, 5], including gly-
cosylated 1,3-amino alcohols possessing high an-
tituberculosis activity against M. Tuberculosis
H37Rv and M. Tuberculosis H37Ra strains [6].

 RESULTS AND DISCUSSION

In order to develop an efficient method to
synthesize optically active 1,3-amino alcohols,

which are structural analogs of  known anti-
tuberculosis agents [7], we tested region- and
diastereoselectivity of two versions of the ni-
triloxide approach to obtaining the correspond-
ing 4,5-dihydroisoxasols from α,β-unsaturated
esters of α-D-xylo-pentadialdo-1,4-furanose
series  under the conditions of modelling the
geometry of the double bond and the degree
of its substitution.

Initial Z-ester 2à and Å-ester 2b were ob-
tained through the reaction of 3-O-benzyl-1,2-
O-isopropylidene-α-D-xylo-pentadialdo-1,4-
furanose  1 [8] with carbethoxymethylidenet-
riphenylphosphorane and separated by means
of column chromatography on SiO2. The syn-
thesis of  malonate 3 was carried out under the



486 N. A. ERMOLAEVA et al.

Reagents and conditions: a. MeO�C6H4�CHNOH, chloramine B, TEA,
EtOH; b. MeO�C6H4�CHNOH, aqueous solution 0.8 M NaOCl, ultrasonic
dispersing, ÑÍ2Ñl2, 5 °Ñ.

Scheme 2.

conditions of  Knoevenagel reaction in the mod-
ification proposed by Lehnert [9] (Scheme 1).

It was established previously [10] that the
method of nitriloxide generation can have a
substantial effect on the total yield of reaction
products, so 4-methoxybenzonitriloxide was
generated in situ from a mixture of syn- and
anti-anisaldehyde oxime using two methods: the
action of chloramine B in ethanol (method a)

[11] and the aqueous solution of 0.8 Ì NaOCl
in ÑÍ2Ñl2 at 5 °C under the ultrasonic treatment
of the reaction mixture (method b) [12]. The
results of  1,3-dipolar cycloaddition of  4-meth-
oxybenzonitriloxide to esters 2a, b and 3 are
shown in Scheme 2.

Comparison between the methods of nitril-
oxide generation showed that for Z-ester 2a the
regioselectivity of  1,3-dipolar cycloaddition is
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Fig. 1. Spatial structure of compounds 5à and 5c according
to quantum chemical calculations in the approximation
RB3LYP/6-311G(d, p).

not high: in the case of method a the ratio of
regioisomers 4a : 5à is 3 : 2, while in the case
of method b it is 1 : 1. Under the conditions of
the first method, the formation of products 4a
and 5a occurs diastereospecifically, while in the
case of method b the formation of diastereo-
meric pairs of each regioisomer takes place. This
fact is most likely due to epimerization of asym-
metric centres C4 (for 4a) and C5 (for 5à) due
to enolization of carbethoxy group under the
reaction conditions (ðÍ 11).

The interaction of 4-methoxybenzonitriloxide
with E-ester 2b was carried out only according
to method a to avoid the indicated side effects.
The change of the geometry of the double bond
caused a sharp increase of regioselectivity: the
ratio between 4,5-dihydroisoxazols 4c : 5c was
11 : 1. Diastereospecific formation of compounds
4c and 5c (similarly to the case of Z-ester 2a)
should be stressed.

The consequence of the introduction of an
additional carbethoxy group into conjugated
ester (malonate 3) is that 1,3-dipolar cycload-
dition becomes regiospecific with low diastere-
oselectivity: the ratio of products 7a : 7b in each
case (methods a and b) is 12 : 1.

To confirm the structure of compounds 4a�c,
5a�c, 7a,b and configurations of new asymmet-
ric centres C4 and C5, we used 1H and 13C NMR
and quantum chemical calculations.

Spectroscopic criteria for establishing stereo-
and regio-isomerism of dihydroisoxazol ring in
diastereomeric products of syn- and anti-addi-
tion were chemical shifts, spin-spin interaction
constants 3JHH, 1�3JCH, as well as the qualitative
estimation of nuclear Overhauser effect (NOE)
values for the whole series of derivatives.

With the help of theoretical calculations, we
determined the geometric parameters of dias-
tereomeric dihydroisoxazols 4a�c and 5a�c. Op-
timization of the geometric parameters of com-
pounds under investigation was carried out us-
ing the methods taking into account electron
correlations: in approximation RB3LYP/6-
311G(d, p). Comparison of experimental and
theoretical (method CSGT in MPW1PW91/6-
311+G(2d, p)) values of δH and δC provides
evidence that they coincide almost completely:
the correlation coefficient is 0.994�0.998. Gen-
eralization of the results of theoretical calcu-
lations points to the fact that conformational state

of dihydroisoxazol cycle approaches the plane
(Fig. 1), which agrees with literature data [13].

So,  the range of  vicinal spin-spin constants
between protons H4 and H5 is characteristic and
can serve as the criterion of cis/trans position
of H4 and H5.

Orientation of protons in position 5 (for 4a�c,
7a,b) and position 4 (for 5a�c) was determined
by comparing the corresponding spin-spin in-
teraction constants  (SSIC) J5�5′ and J4�5′ with
literature data [14].  On the basis of calculation
data about the spatial structure of 4,5-dihy-
droisoxazol cycle and SSIC J5�5′ and J4�5′ equal
to 9.8 Hz, dihydroisoxazols 4a and 5a were re-
lated to the products of syn-addition (the con-
formational state with dihedral angles between
the vicinal protons Í4 and Í5 close to zero),  while
dihydroisoxazols 4b,c and 5b,c were related to
the products of anti-addition (SSIC 4.8�6.9 Hz).
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EXPERIMENTAL

1H and 13C NMR spectra were recorded with
Bruker AM-300 with working frequencies 300.13
and 75.47 MHz, respectively, with TMS as in-
ternal standard. The angles of  optical rotation
were measured on a Perkin -Elmer 341 pola-
rimeter (λ = 589 nm) at 20 °C in chloroform. Ul-
trasonic treatment of the reaction mixture was
carried out with the ultrasonic dispersant
UZDN-2T (44 kHz, 400 W) with submersible
transmitter equipped with a conical head. Iden-
tity and purity of the synthesized compounds
were tested by means of TLC on Sorbfil
PTSKh-AF-V plates, column chromatography
was carried out using silica gel (50�100 mesh)
(Sorbpolimer Co.). Aldehyde I was obtained ac-
cording to the procedure described in [15], a
mixture of syn- and anti-oxime of anisalde-
hyde according to the data reported in [16].
Physicochemical constants of 3,4-bis(4-
methoxyphenyl)furoxane 6 corresponded to lit-
erature data [17].

Ethyl ester of Z-(3a′′′′′R,5′′′′′R,6′′′′′S,6a′′′′′R)-3-[6′′′′′-
(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofura[2,3-
d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-2-propenic acid (2a) and
ethyl ester of Å-(3a′′′′′R,5′′′′′R,6′′′′′S,6a′′′′′R-3-[6′′′′′-(ben-
zyloxy)-2 ′′′′′,2′′′′′-dimethyltetrahydrofura[2,3-
d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-2-propenic acid (2b). To
the solution of 2.30 g (8.30 mmol) of aldehyde
1 in 20 mL of THF, we added 2.90 g (8.30 mmol)
of  (carbethoxymethylene)triphenylphosphorane
and mixed at 20 °C. After the reaction was com-
plete (controlled by means of TLC), the reac-
tion mixture was concentrated, the residue was
separated using chromatography on SiO2 (hex-
ane/ethylacetate = 20 : 1). Thus we isolated
1.94 g of Z-isomer 2à and 0.38 g of E-isomer
2b with the total yield of 80 %.

Compound 2a: found, %: Ñ 65.66, Í 6.87.
C19H24O6. Calculated, %: Ñ 65.50, Í 6.94. 1H
NMR spectrum (CDCl3, δ, ppm, J, Hz): 1.23 t
(3H, CH3, 

3J = 7.1), 1.3 s (3H, CH3), 1.5 s (3H,
CH3), 4.08 q (2H, CH2, 

3J = 7.1), 4.27 dd (1H,
C6′H, 3J = 2.7, 3J = 3.2), 4.43 d (1H, CH2,

 2J =
12.0), 4.58 d (1H, CH2, 

2J = 12.0), 4.62 dd (1H,
C6a′H, 3J = 2.7, 3J = 3.5), 5.61 dd (1H, C5′H, 3J =
6.7, 3J = 3.2), 5.9 d (1H, C2H, 3J = 11.7), 6.0 d
(1H, C3a′H, 3J = 3.5), 6.38 dd (1H, C3H, 3J =
6.7, 3J = 11.7), 7.18�7.38 m (5H, Ar). 13C NMR
(CDCl3, δ, ppm): 14.04 (CH3), 26.26 (CH3), 26.74

(CH3), 60.20 (CH2), 71.35 (CH2), 78.02 (C5�H),
82.93 (C6′H), 83.60 (C6a′H), 105.01 (C3a′H), 111.57
(C2′), 121.00 (C2H), 127.60 (2CH, Ar), 127.70
(CH, Ar), 128.22 (2CH, Ar), 137.35 (C, Ar),
145.13 (C3H), 165.31 (C1ÎÎÑ2Í5).

Compound 2b: found, %: Ñ 65.71, Í 6.99.
C19H24O6. Calculated, %: Ñ 65.50, Í 6.94.

1H NMR spectrum (CDCl3, δ, ppm, J, Hz):
1.30 t (3H, CH3, 

3J = 7.3), 1.33 s (3H, CH3),
1.50 s (3H, CH3), 3.96 dd (1Hå, C

6′H, 3J = 2.7,
3J = 3.2), 4.22 q (2H, CH2, 

3J = 7.3), 4.50 d (1H,
CH2, 

 2J = 12.0), 4.63 d (1H, CH2, 
2J = 12.0),

4.65 dd (1Ha, C
6a′H, 3J = 2.7, 3J = 3.1), 4.80 dd

(1H, C5′H, 3J = 5.0, 3J = 3.2), 6.0 d (1He, C
3a′H,

3J = 3.1), 6.16 d (1H, C2H, 3J = 15.7), 6.97 dd
(1H, C3H, 3J = 5.0, 3J = 15.7), 7.2�7.4 m (5H,
Ar). 13C NMR (CDCl3, δ, ppm): 14.21 (CH3),
26.21 (CH3), 26.81 (CH3), 60.44 (CH2), 72.25
(CH2), 79.49 (C

5′H), 82.82 (C6′H), 82.95 (C6a′H),
105.03 (C3a′H), 111.93 (C2′), 123.32 (C2H), 127.79
(2CH, Ar), 128.05 (CH, Ar), 128.52 (2CH, Ar),
137.12 (C, Ar), 141.41 (C3H), 166.01 (C1ÎÎÑ2Í5).

Diethyl ester of (3a′′′′′R,5′′′′′R,6′′′′′S,6a′′′′′R)-2{[6′′′′′-
(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofura[2,3-
d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]methylene}malonic acid (3).
To 100 mL of THF in the atmosphere of ar-
gon at a temperature of �5 °C and under vig-
orous agitation, we added 4.43 mL of TiCl4 in
10 mL of ÑÑl4. Avoiding temperature rise above
0 °C, the solution of 5.56 g (0.02 mol) of alde-
hyde 1 and 3.05 mL (0.02 mol) of malonic ester
in 45 mL of THF were added and mixed for
15 min. Then the solution of 6.49 mL of pyri-
dine in 20 mL of THF was added. The reaction
mixture was agitated for 48 h at 20 °C, then it
was diluted with 50 mL of H2O and extracted
with Et2O (3 × 50 mL). The organic layers were
brought together, washed with the saturated
solution of NaCl (3 × 50 mL), and dried with
MgSO4. Then the mixture was concentrated; the
residue was separated by chromatography on
SiO2 (hexane/ethyl acetate = 5 : 1); the prod-
uct was 7.48 g of compound 3 with the yield
of 89 %.

Compound 3: found, %: Ñ 62.70, Í 6.93.
C19H28O9. Calculated, %: Ñ 62.85, Í 6.71. 1H
NMR spectrum (CDCl3, δ, ppm, J, Hz): 1.25 t
(6H, 2CH3, 

3J = 7.0), 1.30 s (3H, CH3), 1.40 s
(3H, CH3), 4.20 q (4H, 2CH2, 

3J = 7.0), 4.25 dd
(1H, C6′H, 3J = 2.7, 3J = 3.3), 4.45 d (1H, CH2,
2J = 11.9), 4.58 d (1H, CH2, 

2J = 11.9), 4.6 dd
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(1H, C6a′H, 3J = 2.7, 3J = 3.4), 5.05 dd (1H, C5′H,
3J = 7.0, 3J = 3.3), 5.95 d (1H, C3a′H, 3J = 3.4),
7.05 d (1H, C1H, 3J = 7.0), 7.18�7.33 m (5H,
Ar). 13C NMR (CDCl3, δ, ppm): 13.82 (2CH3),
26.02 (CH3), 26.51 (CH3), 61.25 (2CH2), 72.18
(CH2), 77.56 (C

5′H), 82.70 (C6′H), 84.12 (C6a′H),
105.23 (C3a′H), 111.69 (C2′), 127.72 (2CH, Ar),
127.69 (CH, Ar), 128.19 (2CH, Ar), 128.92 (C2,
Ar), 136.95 (C), 144.94 (C1H), 163.13
(C3ÎÎÑ2Í5), 163.91 (C

1aÎÎÑ2Í5).

Interaction of esters 2a,b and 3
with 4-methoxybenzonitriloxide

Method a . To the solution of 0.08 g
(0.53 mmol) of a mixture of syn- and anti-oxime
of anisaldehyde, 0.18 g (0.53 mmol) of ester
2à and 0.14 g (0.64 mmol) of chloramine B in
6 mL of EtOH under mixing, we added 0.5
mL of TEA. After the reaction was complete
(monitored with TLC), the reaction mixture was
concentrated and separated by chromatography
on SiO2 (hexane/ethyl acetate = 20 : 1). The
resulting products were 0.15 g of isoxazol 4a
and 0.07 g of isoxazol 5a with the yields 57 and
26 %, respectively, and 0.04 g of furoxane 6.

Method b. A solution of 0.17 g (0.50 mmol)
of ester 2a in 10 mL of CH2Cl2 was poured
into a reactor with submersible ultrasonic probe.
Then 2.2 mL of the 0.8 M NaOCl aqueous solu-
tion was added at once. The reaction mixture
was treated with ultrasound; a solution of 0.23 g
(1.50 mmol) of a mixture of syn- and anti-oxime
of anisaldehyde in 15 mL of CH2Cl2 was slow-
ly added drop by drop; reaction temperature
was maintained at about 5 °C.  After the reac-
tion was over (monitored with the help of TLC),
the aqueous layer was separated, extracted with
methylene chloride (5 × 10 mL). The organic lay-
ers were brought together and dried with
MgSO4, then concentrated and separated by
means of chromatography on SiO2 (hexane/eth-
yl acetate = 20 : 1). Thus we isolated 0.06 g of
isoxazol 4a, 0.05 g 4b, 0.06 g 5a and 0.04 g 5b
with the yields 24, 19, 23 and 18 %, respec-
tively, and 0.20 g of furoxane 6.

Ethyl ester of (4S,5R,3a′′′′′R,5′′′′′S,6′′′′′S,6a′′′′′R)-5-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,5-dihydro-4-isoxazolcarboxylic acid (4a).

20[ ]Dα  �56.25°. Found, %: Ñ 65.24, Í 6.56, N 2.70.

C27H31NO8. Calculated, %: Ñ 65.18, Í 6.28, N
2.82. 1H NMR spectrum (CDCl3, δ, ppm, J,
Hz): 1.23 t (3H, CH3, 

3J = 7.0), 1.30 s (3H, CH3),
1.45 s (3H, CH3), 3.80 s (3H, OCH3), 4.17 dd
(1H, C6′H, 3J = 2.8, 3J = 3.2), 4.25 q (2H, CH2,
3J = 7.0), 4.57 dd (1H, C5′H, 3J = 9.8, 3J = 3.2),
4.58 dd (1H, C6a′H, 3J = 2.8, 3J = 3.5), 4.59 d
(1H, C4H, 3J = 9.8), 4.68 d (1H, CH2,

 2J = 11.6),
4.76 d (1H, CH2,

 2J = 11.6), 5.18 t (1H, C5H,
3J = 9.8), 5.90 d (1H, C3a′H, 3J = 3.5), 6.90�8.10 m
(9H, Ar). 13C NMR (CDCl3, δ, ppm): 13.90 (CH3),
26.45 (CH3), 26.77 (CH3), 55.26 (OÑÍ3), 56.21
(Ñ4Í), 61.00 (CH2), 72.76 (CH2), 77.43 (C5′H),
79.39 (C6′H), 81.79 (C6a′H), 82.71 (C5H), 105.30
(C3a′H), 112.12 (C2′), 114.22 (2CH, Ar), 120.86 (C,
Ar), 127.69 (2CH, Ar), 127.89 (CH, Ar), 128.23
(2CH, Ar), 128.41 (2CH, Ar), 137.48 (C, Ar),
155.04 (C3=N), 161.23 (C, Ar), 167.93 (COÎÑ2Í5).

Ethyl ester of (4R,5R,3a′′′′′R,5′′′′′S,6′′′′′S,6a′′′′′R)-5-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,5-dihydro-4-isoxazolcarboxylic acid (4b).

20[ ]Dα  +159.1°. Found, %: Ñ 65.34, Í 6.41, N 2.97.

C27H31NO8. Calculated, %: Ñ 65.18, Í 6.28, N
2.82. 1H NMR spectrum (CDCl3, δ, ppm, J,
Hz): 1.01 t (3H, CH3, 

3J = 7.0), 1.27 s (3H, CH3),
1.39 s (3H, CH3), 3.80 s (3H, OCH3), 3.90 dd (H,
C6′H, 3J = 3.2, 3J = 2.7), 4.05 d (1H, C4H, 3J =
4.9), 4.14 q (2H, CH2, 

3J = 7.0), 4.22 d (1H, CH2,
2J = 11.6), 4.27 d (1H, CH2,

 2J = 11.6), 4.43 dd
(1H, C5′H, 3J = 9.0, 3J = 3.2), 4.51 dd (1H, C6a′H,
3J = 2.7, 3J = 3.5), 4.68 dd (1H, C5H, 3J = 9.0,
3J = 4.9), 5.84 d (1H, C3a′H, 3J = 3.5), 6.90�8.10
m (9H, Ar). 13C NMR (CDCl3, δ, ppm): 13.69
(CH3), 26.52 (CH3), 26.80 (CH3), 55.55 (OÑÍ3),
63.69 (Ñ4Í), 60.92 (CH2), 72.58 (CH2), 77.20
(2C5′,6′H), 81.44 (C6a′H), 83.28 (C5H), 105.03 (C3a′H),
111.57 (C2′), 114.06 (2CH, Ar), 126.91 (C, Ar),
127.37 (2CH, Ar), 127.66 (CH, Ar), 128.38 (2CH,
Ar), 129.48 (2CH, Ar), 137.02 (C, Ar), 157.03
(C3=N), 161.77 (C, Ar), 167.15 (COÎÑ2Í5).

Ethyl ester of (4S,5S,3a′′′′′R,5′′′′′S,6′′′′′S,6a′′′′′R)-5-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxazol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,5-dihydro-4-isoxazolcarboxylic acid (4ñ).

20[ ]Dα   �79.2°. Found, %: Ñ 65.44, Í 6.99, N 2.81.

C27H31NO8. Calculated, %: Ñ 65.18, Í 6.28, N
2.82. 1H NMR spectrum (CDCl3, δ, ppm, J,
Hz): 1.15 t (3H, CH3, 

3J = 7.0), 1.26 s (3H, CH3),
1.31 s (3H, CH3), 3.83 s (3H, OCH3), 4.17 dd
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(H, C6′H, 3J = 3.2, 3J = 2.7), 4.12 q (2H, CH2,
3J = 7.0), 4.35 dd (1H, C5′H, 3J = 7.2, 3J = 3.2),
4.62 dd (1H, C6a′H, 3J = 2.7, 3J = 3.7), 4.64 d (1H,
CH2,

 2J = 11.6), 4.67 d (1H, C4H, 3J = 5.3), 4.70 d
(1H, CH2,

 2J = 11.6), 5.35 dd (1H, C5H, 3J = 7.2,
3J = 5.3), 5.96 d (1H, C3a′H, 3J = 3.7), 6.90�8.10 m
(9H, Ar). 13C NMR (CDCl3, δ, ppm): 13.93 (CH3),
26.21 (CH3), 26.83 (CH3), 55.32 (OÑÍ3), 56.40
(Ñ4Í), 61.80 (CH2), 72.52 (CH2), 79.74 (C

5′H), 81.50
(C6′H), 82.23 (C6a′H), 82.63 (C5H), 105.35 (C3a′H),
112.06 (C2′), 114.20 (2CH, Ar), 120.87 (C, Ar),
127.97 (2CH, Ar), 128.56 (CH, Ar), 128.56 (2CH,
Ar), 128.93 (2CH, Ar), 137.21 (C, Ar), 154.03
(C3=N), 161.26 (C, Ar), 169.30 (COÎÑ2Í5).

Ethyl ester of (4S,5S,3a′′′′′R,5′′′′′R,6′′′′′S,6a′′′′′R)-4-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,5-dihydro-5-isoxazolcarboxylic acid (5a).

20[ ]Dα  �34.2°. Found, %: Ñ 65.34, Í 6.51, N 2.97.

C27H31NO8. Calculated, %: Ñ 65.18, Í 6.28, N
2.82. 1H NMR spectrum (CDCl3, δ, ppm, J,
Hz): 1.20 t (3H, CH3, 

3J = 7.0), 1.30 s (3H, CH3),
1.45 s (3H, CH3), 3.83 s (3H, OCH3), 4.06 dd
(H, C6′H, 3J = 3.2, 3J = 2.7), 4.12 q (2H, CH2,
3J = 7.0), 4.22 d (1H, C5H, 3J = 9.8), 4.26 dd
(1H, C5′H, 3J = 9.6, 3J = 3.2), 4.58 d (1H, CH2,
2J = 11.6), 4.67 dd (1H, C6a′H, 3J = 2.7, 3J =
3.6), 4.73 d (1H, CH2,

 2J = 11.6), 4.93 dd (1H,
C4H, 3J = 9.8, 3J = 9.6), 6.04 d (1H, C3a′H, 3J =
3.6), 6.90�8.10 m (9H, Ar). 13C NMR (CDCl3, δ,
ppm): 14.00 (CH3), 26.42 (CH3), 26.91 (CH3),
55.01 (OÑÍ3), 55.28 (Ñ4Í), 61.89 (CH2), 72.17
(CH2), 79.36 (C

5′H), 82.05 (C6′H), 82.69 (C6a′H),
83.27 (C5H), 105.45 (C3a′H), 112.00 (C2′), 114.17
(2CH, Ar), 120.96 (C, Ar), 127.74 (2CH, Ar),
128.09 (CH, Ar), 128.27 (2CH, Ar), 128.58 (2CH,
Ar), 137.19 (C, Ar), 155.72 (C3=N), 161.27 (C,
Ar), 168.12 (COÎÑ2Í5).

Ethyl ester of (4S,5R,3a′′′′′R,5′′′′′R6′′′′′S,6a′′′′′R)-4-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,5-dihydro-5-isoxazolcarboxylic acid (5b).

20[ ]Dα  �169.5°. Found, %: Ñ 65.23, Í 6.11, N 2.59.

C27H31NO8. Calculated, %: Ñ 65.23, Í 6.11, N
2.59. C27H31NO8.

 1H NMR spectrum (CDCl3, δ,
ppm, J, Hz): 0.90 t (3H, CH3, 

3J = 7.0), 1.30 s
(3H, CH3), 1.45 s (3H, CH3), 3.84 s (3H, OCH3),
3.88 dd (H, C6′H, 3J = 3.2, 3J = 2.7), 4.12 q (2H,
CH2, 

3J = 7.0), 4.43 dd (1H, C5′H, 3J = 8.0, 3J =
3.2), 4.48 d (1H, CH2,

 2J = 11.6), 4.50 dd (1H,

C4H, 3J = 8.0, 3J = 4.8), 4.54 d (1H, C5H, 3J =
4.8), 4.55 dd (1H, C6a′H, 3J = 2.7, 3J = 3.5), 4.65
d (1H, CH2,

 2J = 11.6), 5.90 d (1H, C3a�H, 3J =
3.5), 6.90�8.10 m (9H, Ar). 13C NMR (CDCl3, δ,
ppm): 13.67 (CH3), 26.32 (CH3), 26.74 (CH3),
55.25 (OÑÍ3), 60.98 (CH2), 62.49 (Ñ4Í), 71.99
(CH2), 78.74 (C

5′H), 80.80 (C6′H), 81.53 (C6a′H),
82.46 (C5H), 105.40 (C3a′H), 111.94 (C2′), 114.08
(2CH, Ar), 126.90 (C, Ar), 127.68 (2CH, Ar),
127.97 (CH, Ar), 128.28 (2CH, Ar), 129.59 (2CH,
Ar), 136.79 (C, Ar), 157.24 (C3=N), 161.79 (C,
Ar), 167.16 (COÎÑ2Í5).

Ethyl ester of (4R,5S,3a′′′′′R,5′′′′′R,6′′′′′S,6a′′′′′R)-4-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,5-dihydro-5-isoxazolcarboxylic acid (5ñ).

20[ ]Dα  �116.7°. Found, %: Ñ 65.23, Í 6.34, N 2.98.

C27H31NO8. Calculated, %: Ñ 65.18, Í 6.28, N
2.82. 1H NMR spectrum (CDCl3, δ, ppm, J, Hz):
1.05 t (3H, CH3, 

3J = 7.0), 1.28 s (3H, CH3), 1.33 s
(3H, CH3), 3.83 s (3H, OCH3), 3.95 dd (H, C6�H,
3J = 3.2, 3J = 2.7), 4.13 q (2H, CH2, 

3J = 7.0),
4.37 d (1H, CH2,

 2J = 11.8), 4.43 dd (1H, C5�H,
3J = 6.9, 3J = 3.2), 4.45 d (1H, CH2,

 2J = 11.8),
4.65 d (1H, C5H, 3J = 6.9), 4.66 dd (1H, C6a′H, 3J
= 3.7, 3J = 2.7), 5.31 t (1H, C4H, 3J = 6.9), 6.04
d (1H, C3a′H, 3J = 3.7), 6.90�8.10 m (9H, Ar). 13C
NMR (CDCl3, δ, ppm): 13.69 (CH3), 26.09 (CH3),
26.60 (CH3), 50.40 (Ñ4Í), 56.58 (OÑÍ3), 61.56
(CH2), 71.68 (CH2), 77.23 (C

5′H), 80.42 (C6′H),
81.49 (C6a′H), 83.85 (C5H), 105.57 (C3a′H), 112.21
(C2′), 114.03 (2CH, Ar), 120.39 (C, Ar), 127.84
(2CH, Ar), 128.40 (CH, Ar), 128.79 (2CH, Ar),
128.90 (2CH, Ar), 136.83 (C, Ar), 156.05 (C3=N),
160.97 (C, Ar), 169.74 (COÎÑ2Í5).

Diethyl ester of (5R,3a′′′′′R,5′′′′′S,6′′′′′S,6a′′′′′R)-5-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,4(5Í)-isoxazoldicarboxylic acid (7a).

20[ ]Dα  �63.0°. Found, %: C 63.44, H 6.21, N 2.52.

C30H35NO10. Calculated, %: C 63.26, H 6.19, N
2.46. 1H NMR spectrum (CDCl3, δ, ppm, J, Hz):
1.15 t (3H, CH3, 

3J = 7.0), 1.20 t (3H, CH3, 
3J =

7.0), 1.30 s (3H, CH3), 1.40 s (3H, CH3), 3.80 s
(3H, OCH3), 4.15 q (2H, CH2, 

3J = 7.0), 4.17 dd
(1H, C6′H, 3J = 2.7, 3J = 3.4), 4.32 dd (1H, C5′H,
3J = 10.1, 3J = 3.4), 4.36 q (2H, CH2, 

3J = 7.0),
4.40 dd (1H, C6a′H, 3J = 2.7, 3J = 3.5), 4.74 d
(1H, CH2, 

2J = 11.6), 4.82 d (1H, CH2, 
2J = 11.6),

5.86 d (1H, C5H, 3J = 10.1), 5.93 d (1H, C3a′H,
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3J = 3.5), 6.80�8.10 m (9H, Ar). 13C NMR (CDCl3,
δ, ppm): 13.48 (CH3), 13.68 (CH3), 26.25 (CH3),
26.68 (CH3), 62.79 (CH2), 62.90 (CH2), 72.23 (C

4),
72.70 (CH2), 76.19 (C5′H), 82.03 (C6′H), 82.26
(C6a′H), 84.30 (C5H), 105.51 (C3a′H), 111.84 (C2′),
113.43 (2CH, Ar), 120.65 (C, Ar), 127.67 (2CH,
Ar), 128.36 (CH, Ar), 128.71 (2CH, Ar), 129.66
(2CH, Ar), 137.52 (C, Ar), 154.18 (C3=N), 160.83
(C, Ar), 166.14 (COÎÑ2Í5), 165.39 (COÎÑ2Í5).

Diethyl ester of (5S,3a′′′′′R,5′′′′′S,6′′′′′S,6a′′′′′R)-5-
[6′′′′′-(benzyloxy)-2′′′′′,2′′′′′-dimethyltetrahydrofu-
ra[2,3-d][1′′′′′,3′′′′′]dioxol-5′′′′′-yl]-3-(4-methoxyphe-
nyl)-4,4(5Í)-isoxazoldicarboxylic acid (7b).

20[ ]Dα  +71.2°. Found, %: C 63.34, H 6.23, N 2.50.

C30H35NO10. Calculated, %: C 63.26, H 6.19, N
2.46. 1H NMR spectrum (CDCl3, δ, ppm, J,
Hz): 0.80 t (3H, CH3, 

3J = 7.0), 1.20 t (3H, CH3,
3J = 7.0), 1.30 s (3H, CH3), 1.50 s (3H, CH3),
3.80 s (3H, OCH3), 3.55 dd (1H, C5′H, 3J = 7.1,
3J = 3.4), 3.86 dd (1H, C6′H, 3J = 2.7, 3J = 3.4),
4.28 q (4H, 2CH2, 

3J = 7.0), 4.54 d (1H, CH2, 
2J

= 11.8), 4.69 dd (1H, C6a′H, 3J = 2.7, 3J = 3.6),
4.70 d (1H, CH2, 

2J = 11.8), 5.48 d (1H, C5H, 3J
= 7.1), 6.03 d (1H, C3a′H, 3J = 3.6), 6.80�8.10 m
(9H, Ar). 13C NMR (CDCl3, δ, ppm): 13.37 (CH3),
13.77 (CH3), 26.60 (CH3), 27.10 (CH3), 62.56
(CH2), 62.67 (CH2), 70.44 (C

4), 71.34 (CH2), 78.82
(C5′H), 82.69 (C6′H), 83.10 (C6a′H), 87.60 (C5H),
105.28 (C3a′H), 112.30 (C2′), 113.60 (2CH, Ar),
120.76 (C, Ar), 127.09 (2CH, Ar), 127.66 (CH,
Ar), 128.30 (2CH, Ar), 129.10 (2CH, Ar), 137.45
(C, Ar), 155.07 (C3=N), 160.88 (C, Ar), 165.50
(COÎÑ2Í5), 166.16 (COÎÑ2Í5).

CONCLUSION

New glycosylated 4,5-dihydroisoxazols of the
series of α-D-xylopentadialdo-1,4-furanose
were synthesized. These compounds are synthet-
ic precursors of the corresponding 1,3-aminoal-
cohols which are the representatives of the
structural group of highly active anti-tuber-
culosis agents. For each of diastereomeric 4,5-
dihydroisoxazols isolated in the individual form,
a number of physicochemical characteristics

were determined, the stereochemistry of new
asymmetrical centres was established. It was
shown that regioselectivity of  1,3-dipolar cy-
cloaddition of 4-methoxybenzonitriloxide
(chloramine B, TEA) to conjugated esters of
carbohydrate series increases when passing from
Z- to E-ester. In the case of double-substituted
double bond, the process becomes regiospecific.
The contribution from reaction conditions (gen-
eration of nitriloxide by the action of NaOCl,
USI) into the stereochemical result of cycload-
dition was marked; the result is represented
by the effect of epimerization of the asym-
metric centre connected with the carbethoxy
group due to its enolization in alkaline medium.
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