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сти, испарения и термической ионизации. Результаты модельных расчетов удовлетворительно
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ВВЕДЕНИЕ

Фазовая диаграмма висмута имеет слож-
ный вид [1–3]. Между данными [1–3] имеют-
ся некоторые отличия в числе существующих

твердых фаз и положении отдельных линий

фазового равновесия. В настоящей работе за

основу принята диаграмма [3], согласно кото-
рой при температуре T > 300 K и давлении

0 6 P 6 8 ГПа существует пять твердых фаз
(I, II, III, IV, V) и жидкость (L). Она и отдель-
ные фрагменты приведены на рис. 1. Тройные
точки 2 и 3 согласно [2] расположены левее,

чем в [3], а линия плавления фазы V TV,L(P )
по [1] расположена положе этой линии по [3].

Фаза V при T = 300 K по данным [4] суще-
ствует вплоть до максимально достигнутого в

этой работе давления 222 ГПа.
Ввиду полиморфизма висмута описание

его ударного сжатия, изоэнтропической раз-
грузки и ряда других данных требует привле-
чения моделей уравнения состояния (УРС), от-
ражающих многофазность твердого состояния

и плавление отдельных твердых фаз. В слу-
чае интенсивных ударных нагрузок, после ко-
торых происходит значительное изоэнтропиче-
ское расширение, необходим также учет испа-
рения вещества.

При моделировании поведения Bi приме-
няется несколько модельных УРС. В [5] пред-
ложена модель многофазного УРС, на основе
которой построено трехфазное УРС Bi. В нем
учитываются две твердые фазы низкого давле-
ния и жидкость. В уравнениях [6–8], основан-
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Рис. 1. Фазовая диаграмма Bi [3] (сплошные
линии; 1–5 — тройные точки) и отдельные
фрагменты диаграммы [1] (штриховая линия)
и [2] (пунктирные линии)

ных на модели [5], количество рассматривае-
мых твердых фаз увеличено до пяти, чем рас-
ширена область применимости УРС [5] по дав-
лению. В модели [9, 10] рассматриваются две
твердые фазы (самого низкого и самого высо-
кого давления) и жидкость. Уравнения [5–10]
в первую очередь ориентированы на описание

основной ударной адиабаты Bi (она определя-
ет поведение вещества, находящегося до сжа-
тия в нормальных условиях при P = 1 атм,
T = 300 K) и изоэнтропической разгрузки из
состояний на этой адиабате, характеризуемых
сравнительно небольшими ударными давлени-
ями. Свойства высокотемпературной жидкости
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(газа), в частности ее испарение, они не отра-
жают. В [11] с привлечением модели [12] по-
строено УРС Bi с учетом плавления, испаре-
ния и термической ионизации, хорошо описыва-
ющее имеющийся эксперимент, проведенный в
условиях высоких значений P , T . Недостатком
этого УРС является рассмотрение твердого Bi
в однофазном приближении.

В настоящей работе построено полуэмпи-
рическое УРС Bi с учетом пяти твердых фаз,
жидкости, ее испарения и термической иони-
зации. Для этого использован предложенный
в [13] способ построения многофазного УРС
(в [13] он применялся для Fe). Конкретная реа-
лизация этого способа зависит от вида фазовой

диаграммы (количества линий фазового равно-
весия и их поведения относительно друг дру-
га). Ниже дано его описание в приложении к Bi.
Приведены значения конкретизирующих УРС

свободных параметров. Результаты модельных
расчетов сопоставлены с экспериментальными

данными, полученными в статических и дина-
мических опытах.

СПОСОБ ПОСТРОЕНИЯ
МНОГОФAЗНОГО УРС

При описании конденсированного Bi в мо-
дельном УРС учитывалось наличие пяти твер-
дых фаз (I, II, III, IV, V) и жидкости (L). По-
строение модельной (расчетной по УРС) фазо-
вой диаграммы проводилось с учетом экспери-
ментальных данных, приведенных на рис. 1.

Для описания жидкой фазы при умерен-
ных температурах (вблизи температуры плав-
ления твердых фаз, рис. 1) применялась моди-
фицированная модель Ван-дер-Ваальса (мВдВ)
[14–18] без учета ионизации. Термическое УРС
представляется в следующей параметриче-
ской (с использованием внутренней перемен-
ной P rep) форме:

P = P rep + P att (V, T ), (1)

V = VC(P rep) +RT/P rep , (2)

где V — удельный объем (ρ = 1/V — плот-
ность), R = 8.3145 · 10−3/W кДж/(г ·K) — га-
зовая постоянная (W — атомная масса, для Bi
W = 208.98 г/моль), P att (V, T ) 6 0 — «дав-
ление притяжения» (в модели ВдВ P att (V ) =
−a/V 2, a = const), P rep > 0 — «давление от-
талкивания», VC — коволюм. В модели ВдВ

VC = const. В формуле (2) VC = VC(P rep).
Функции P att (V, T ) и VC(P rep) — эмпириче-
ские. В случае VC = const и P att = −a/V 2

уравнения (1), (2) записываются в виде P =
P rep − a/V 2, P rep = RT/(V − VC), которые
преобразуются в исходное уравнение ВдВ: P =
RT/(V − VC)− a/V 2.

Поясним отражение моделью мВдВ сжи-
маемости жидкости при низких значениях T .
Если использовать вместо функции VC(P rep)
(которая монотонно убывает с увеличением

P rep) обратную для нее функцию P rep(VC), то
в переменных VC , T соотношения (1), (2) мож-
но записать в форме

P = P rep(VC) + P att (V, T ), (3)

V = VC +RT/P rep(VC). (4)

Из (4) при T = 0 следует, что V = VC , и соот-
ношение (3) представляет собой в этом случае
уравнение для «холодного» давления Pcold :

Pcold (V ) = P rep(V ) + P att (V, T = 0). (5)

При надлежащем выборе эмпирических зави-
симостей P att (V, T ) и P rep(VC) (или, что экви-
валентно, вместо нее функции VC(P rep)) с по-
мощью (5) можно отразить сжимаемость жид-
кого вещества при T = 0 и других относитель-
но низких температурах (что не допускает мо-
дель ВдВ, в которой сжатие жидкости до объ-
ема V < VC = const невозможно).

Свободная энергия F жидкой фазы опреде-
ляется (в собственных для нее переменных V ,
T — совместно с формулой (2)) выражением

F = Erep(P rep) + Eatt (V, T )−

−RT ln (eT 5/2rσ0(T )/P rep), (6)

где

Erep(P rep) =

= −
P rep∫
0

P rep
(dVC(P rep)

dP rep

)
dP rep , (7)

Eatt (V, T ) = −
V∫
∞

P att (V, T ) dV, (8)
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e = 2.718 . . .; r = k5/2(m/2π~2)3/2, k — по-
стоянная Больцмана, m = AW/NA — атомная

масса (NA — число Авогадро), ~ — постоян-
ная Планка; σ0(T ) — внутренняя статистиче-
ская сумма индивидуального атома. Интегри-
рование в (8) проводится при T = const.

В случае VC = const модель мВдВ (2), (6)
переходит в модель ВдВ и подобно ей отражает

испарение жидкости. При V → ∞ она перехо-
дит в УРС идеального одноатомного газа (как
и модель ВдВ).

С помощью (2), (6) рассчитывается энтро-

пия S = −
(∂F
∂T

)
V

:

S =

V∫
∞

∂P att

∂T
dV +R ln

(T 5/2rσ0(T )

P rep

)
+

+R
d ln(T 5/2rσ0(T ))

d lnT
, (9)

а также рассчитываются давление P =

−
(∂F
∂V

)
T

(выражение для P совпадает с (1)),

внутренняя энергия E = F + TS и потенциал
Гиббса Φ = E − TS + PV .

Наиболее удобными переменными моде-
ли (2), (6) являются P rep , T . Сначала из (2) по
ним находится значение V = V (P rep , T ), после
чего по вышеприведенным формулам вычисля-
ются P = P (P rep , T ) (1), F = F (P rep , T ) (6),
S = S(P rep , T ) (9), E = E(P rep , T ), Φ =
Φ(P rep , T ). Исключение величины P rep из

какой-либо пары этих соотношений (например,
из пары V = V (P rep , T ) и P = P (P rep , T ))
приводит к обычным связям: V = V (P, T ),
S = S(P, T ), Φ = Φ(P, T ) и т. д.

Модель (2), (6) конкретизируется функ-
циями P att (V, T ), VC(P rep), σ0(T ). Далее при
описании процедуры построения многофазного

УРС Bi они считаются заданными (приводятся
в следующем параграфе), т. е. УРС жидкости
рассматривается как определенное.

Для представления УРС твердых фаз ис-
пользуется модель сжимаемого коволюма [19]
(формулы подчиняются термодинамическим

соотношениям V =
(∂Φ

∂P

)
T

, S = −
(∂Φ

∂T

)
P

):

V i = V iC(P ) +RT/(P + P i∗), (10)

Si = Si0 +

T∫
T0

Cip(T
′)

T ′
dT ′ −R ln

(
1 +

P

P i∗

)
, (11)

Φi = Φi0 +

P∫
P i
0

V iC(P ) dP +RT ln
(

1 +
P

P i∗

)
−

−
T∫

T0

( T ′∫
T0

Cip(T
′′)

T ′′

)
dT ′ − Si0(T − T0). (12)

Здесь i = I, II, III, IV, V — номер твердой

фазы; T0 = 298 К; Cip(T ) = T
(∂Si
∂T

)
P

— изо-

барическая теплоемкость при P = 1 атм =
1.01325 · 10−4 ГПа (далее малым отличием

свойств твердого вещества при P = 1 атм

и P = 0 пренебрегается); V iC(P ) — коволю-
мы твердых фаз (определяющие их объем при
T = 0 К); P i∗, S

i
0, P i0, Φi0 = const. Параметр P i∗

контролирует коэффициент теплового расши-
рения фазы i при относительно небольших зна-
чениях P , в частности при P = 0. УРС i-й
твердой фазы в виде (10)–(12) конкретизиру-
ется величинами P i∗, S

i
0, Cip(T ), P i0, Φi0 и V

i
C(P )

(ΦiC(P ) = Φi0+

P∫
P i
0

V iC(P ) dP ). Наиболее удобны-

ми переменными УРС (10)–(12) являются P , T .
Для дальнейшего описания способа опре-

деления многофазного УРС Bi используется
схематический рис. 2.

При термодинамическом равновесии фаз

равны их потенциалы Гиббса:

Φi(P, T ) = Φj(P, T ), (13)

где i, j = I, II, III, IV, V, L. Следствием (13)
является уравнение Клапейрона — Клаузиуса

Рис. 2. Схематическая фазовая диаграмма Bi
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dT i,j(P )

dP
=
V j − V i

Sj − Si
, (14)

где T i,j(P ) — температура на линии равно-
весия фаз i и j (удовлетворяющая уравне-
нию (13)), величины V j , V i и Sj , Si относятся
к состояниям на этой линии.

При конструировании многофазного УРС,
наряду с УРС жидкости в виде (2), (6), счита-
ются фиксированными (заданными) также сле-
дующие характеристики УРС твердых фаз в

формулах (10)–(12) и фазовых границ на рис. 2:
(a) значение V iC(P = 0) фазы i = I,

(b) параметры P i∗ фаз i = I, II, III, IV, V,
(с) функции Cip(T ) фаз i = I, II, III, IV, V,
(d) линии (функции P ) фазового равнове-

сия T i,j(P ) при i, j = I, II, III, IV, V, L, пере-
сечение которых определяет значения P1, P2;
P3, P4, P5 и T1, T2; T3, T4, T5 в тройных точ-
ках 1–5. Линии T i,j(P ), разделяющие твердые

фазы между собой (например, T I,II(P )), далее
представляются полиномами вида

T i,j(P ) = Tm + am(P − Pm) +

+ bm(P − Pm)2 + cm(P − Pm)3, (15)

где Tm, Pm — температура и давление в трой-
ной точке с номером m (m = 1–5); am, bm,
cm = const.

Приняты следующие значения нижнего

предела интегралов по P в (12): P I
0 = 0, P II

0 =

P1, P III
0 = P3, P IV

0 = P2, PV
0 = P4.

Конкретизация параметров и функций,
фигурирующих в п. (а)–(d), дана в следующем
параграфе.

Далее реализуется следующий алгоритм

определения в (10)–(12) величин Si0, Φi0, V iC(P )

и ΦiC(P ) = Φi0 +

P∫
P i
0

V iC(P ) dP при i = I−V, кото-

рые определяют УРС твердых фаз (10)–(12) и,
как следствие, полное многофазное УРС (с уче-
том известного УРС жидкости и информации

п. (а)–(d)).

Из (10) с помощью величин V I
C(P = 0) и

P I
∗ находится объем V I (P = 0, T I,L(P = 0))
фазы I на линии плавления I–L при P = 0 (в
точке 6 на рис. 2, характеризуемой параметра-
ми P = 0, T I,L(P = 0)). УРС жидкости опре-

деляет значения V L (P = 0, T I,L(P = 0)) и

SL (P = 0, T I,L(P = 0)) в точке 6. После этого

из уравнения (14)
dT I,L(P )

dP
=

V I − V L

SI − SL
, при-

меняемого в точке 6, находится значение SI в
этой точке. С помощью SI и (11) (где P и T
отвечают состоянию в точке 6 рис. 2) опреде-

ляется константа SI0 в (11). Это делает опре-

деленными функцию SI(P, T ) (11) и последнее

слагаемое в выражении ΦI(P, T ) (12). Затем из

уравнения ΦI(P = 0, T I,L(P = 0)) = ΦL(P =

0, T I,L(P = 0)) (условия (13) для точки 6 на

рис. 2) находится ΦI
0 в (12). Далее из уравне-

ния (13) ΦI(P, T I,L(P )) = ΦL(P, T I,L(P )), рас-
сматриваемого вдоль заданной линии равнове-

сия T I,L(P ), определяется функция

P∫
0

V I
C(P ) dP

в (12) на участке 0 6 P 6 P1 (см. рис. 2). Тем
самым конкретизируется вся термодинамиче-
ская функция ΦI(P, T ) (12) при 0 6 P 6 P1.

Сама коволюмная функция V I
C(P ) на участ-

ке 0 6 P 6 P1 определяется из уравнения
dT I,L(P )

dP
=

V I − V L

SI − SL
(14), где V I = V I

C(P ) +

RT I,L(P )/(P + P I
∗) (остальные величины как

функции P в этом уравнении известны). В ре-
зультате УРС фазы I при 0 6 P 6 P1 (см.
рис. 2) полностью определено. Причем оно та-
ково, что плавление фазы I происходит вдоль
заданной линии T I,L(P ).

На следующем шаге рассматривается

тройная точка 1 (с параметрами P1, T1, рис. 2).
В ней выполняются уравнения

dT I,L(P )

dP
=
V I − V L

SI − SL
,

dT II,L(P )

dP
=
V II − V L

SII − SL
,

dT I,II(P )

dP
=
V I − V II

SI − SII
.

В них известны все величины, кроме V II и SII.
Исключение величины V II из двух последних

уравнений определяет значение

SII =
(
V L−V I−SL dT

II,L(P )

dP
+SI

dT I,II(P )

dP

)/
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/(dT I,II(P )

dP
− dT II,L(P )

dP

)
в точке 1. Оно и уравнение (11) (где P = P1,

T = T1) позволяют найти константу SII0 в (11).
Далее тем же способом, как для фазы I при 0 6
P 6 P1, на основе заданной линии плавления

T II,L(P ) находятся величины ΦII
0 ,

P∫
P II
0

V II
C (P ) dP

и V II
C (P ) на участке P1 6 P 6 P2 (см. рис. 2),

что определяет УРС (10)–(12) фазы II в этом
интервале давления.

Применение способа, аналогичного опи-
санному для точки 1, в тройной точке 2 (см.
рис. 2) позволяет определить УРС фазы IV на

участке P2 6 P 6 P4 (с привлечением линии

T IV,L(P )). Повторение той же процедуры в точ-
ке 4 определяет УРС фазы V при P > P4 (с

привлечением линии TV,L(P )).
Далее доопределяется (т. е. находятся

функции

P∫
P IV
0

V IV
C (P ) dP и V IV

C (P )) УРС фа-

зы IV на участке P4 6 P 6 P5. Это реа-
лизуется с помощью уже известного УРС фа-
зы V и заданной линии равновесия T IV,V(P )

на основе уравнений ΦIV(P, T IV,V(P )) =

ΦV(P, T IV,V(P )) и
dT IV,V(P )

dP
=

V IV − V V

SIV − SV
.

Аналогичным образом доопределяются УРС

фазы II на участке P2 6 P 6 P3 (с помощью
уже известного УРС фазы IV и заданной линии

равновесия T II,IV(P )) и УРС фазы I на участке
P2 6 P 6 P3 (с помощью уже известного на

этом участке УРС фазы II и заданной линии
равновесия T I,II(P )).

Затем в тройной точке 3 проводятся дей-
ствия, аналогичные реализованным в тройных
точках 1, 2, 4, в результате которых определя-
ются значения SIII0 , ΦIII

0 , что позволяет на осно-

ве УРС фазы IV и линии равновесия T III,IV(P )

найти величины

P∫
P III
0

V III
C (P ) dP и V III

C (P ) при

P3 6 P 6 P5, т. е. определить УРС фазы III на
этом участке давления. Знание УРС фазы III
позволяет доопределить УРС фазы II при P >
P3 (с привлечением линии T II,III(P )). С помо-

щью УРС фазы II доопределяется (с привлече-

нием линии T I,II(P )) УРС фазы I при P > P3.
На последнем шаге доопределяется УРС

фазы III при P > P5 с помощью известного

УРС фазы V и заданной линии T III,V(P ). При

этом, поскольку значения V III, SIII, V V, SV в

точке 5 рис. 2 известны (определяются извест-
ным УРС фазы V при P > P4 и известным УРС
фазы III на участке P3 6 P 6 P5 по значениям
P5, T5 в точке 5), то линия T III,V(P ) задается
(п. (d)) таким образом, чтобы ее наклон (ве-
личина am=5 в (15)) в точке 5 удовлетворял

условию(dT III,V(P )

dP

)
P=P5

=
V III − V V

SIII − SV
.

Отметим следующее свойство рассматри-
ваемого способа определения коволюмов. Функ-
ции V I

C(P ) при P = P1, V II
C (P ) при P = P2

и P = P3, V IV
C (P ) при P = P4 и V III

C (P )
при P = P5 непрерывны, но их производные
dV iC(P )

dP
при свободно (без ограничений в (15))

назначенных линиях равновесия T i,j(P ) могут
иметь разрыв (скачок скорости звука). В опи-
санной выше процедуре при последовательном

обращении к тройным точкам 1–5 на рис. 2
(когда, в частности, последовательно опреде-

ляются константы SII0 , SIV0 , SV0 , SIII0 и am=5)
разрывы устраняются следующим образом. В
точке 1 действия таковы. Известное УРС фа-
зы I при 0 6 P 6 P1 позволяет определить зна-

чение
dV I

C(P )

dP
при P → P1 снизу. В выраже-

ние, определяющее
dV I

C(P )

dP
при P → P1 сверху

(на участке P1 6 P 6 P2 рис. 2), входит ве-

личина

(d2T I,II(P )

dP 2

)
P=P1

= 2bm=1. Значение

bm=1 определяется из условия совпадения про-

изводных
dV I

C(P )

dP
в пределах P → P1 снизу и

сверху. При этом остальные параметры линии
T I,II(P ) (15) фиксированы. Тем самым устра-

няется разрыв
dV I

C(P )

dP
в точке 1. Аналогич-

ным образом при устранении разрывов других

dV iC(P )

dP
определяются значения bm=2 линии

T II,IV(P ), bm=4 линии T IV,V(P ), bm=3 линии

T II,III(P ) и bm=5 линии T
III,V(P ). Во всех этих
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процедурах линии T I,L(P ), T II,L(P ), T IV,L(P ),

TV,L(P ), T III,IV(P ) задаются без ограничений.
Описанная схема полностью определяет

УРС всех твердых фаз (10)–(12), что совместно
с заданным УРС жидкости полностью опреде-
ляет рассматриваемое здесь многофазное УРС

с фиксированными (заданными) линиями фазо-
вого равновесия T i,j(P ) (см. рис. 2).

Наиболее удобными переменными полного

УРС, как и УРС жидкости, являются величины
P rep , T при условии, что четыре линии плав-
ления T I,L(P ), T II,L(P ), T IV,L(P ) и TV,L(P )
на рис. 2 (которые задействованы в процедуре
расчета функций ΦiC(P ) и V iC(P ) для фаз i = I,
II, IV, V) представлены в параметрическом ви-

де посредством четырех функций T I,L(P rep),

T II,L(P rep), T IV,L(P rep) и TV,L(P rep) (им отве-
чают четыре диапазона P rep = P

rep
0 ÷ P

rep
1 ,

P rep = P
rep
1 ÷ P

rep
2 , P rep = P

rep
2 ÷ P

rep
4 и

P rep > P
rep
4 ). С помощью этих четырех функ-

ций из (1), (2) находятся отвечающие им че-
тыре функции давления на линиях плавления

P (P rep) = P (P rep , T i,L(P rep)), i = I, II, IV,
V, определенные соответственно в диапазонах
P = 0 ÷ P1, P = P1 ÷ P2, P = P2 ÷ P4,
P > P4 на рис. 2. Например, в интервале
P rep = P

rep
0 ÷ P

rep
1 температурной функции

T I,L(P rep) отвечает рассчитываемая с помо-
щью УРС жидкости (1), (2) функция давле-

ния P (P rep) = P (P rep , T I,L(P rep)). Она сов-

местно с функцией T I,L(P rep) определяет тем-

пературу плавления фазы I T I,L(P ) в интервале
P = 0 ÷ P1.

Если при заданной переменной P rep (зна-
чение которой относится к одному из четы-
рех вышеназванных диапазонов) значение вто-
рой переменной T оказывается больше соот-
ветствующей температуры плавления (напри-

мер, T > T I,L(P rep), что эквивалентно вы-

полнению условия T > T I,L(P ), где P =

P (P rep , T I,L(P rep))), то расчеты проводятся

на основе УРС жидкости (2), (6). В против-
ном случае — по УРС твердого вещества

на основе формул (10)–(12), в которых P =

P (P rep , T i,L(P rep)) (где i = I, II, IV, V) — дав-
ление на одной из четырех линий плавления,
определяемой принадлежностью P rep к одно-
му из четырех названных диапазонов. Твердая
фаза, отвечающая переменной T < T i,L(P rep)
(i = I, II, IV, V) выбирается исходя из сопостав-
ления ее значения с температурами T i,j(P ).

В областях смеси фаз УРС строится на осно-
ве аддитивных соотношений для экстенсивных

характеристик V , S, E.
Положительным качеством описанного

УРС является его аналитичность в переменных

P rep , T .

КОНКРЕТИЗАЦИЯ УРС ВИСМУТА

В этом параграфе приводятся выраже-
ния для функций, определяющих многофаз-
ное УРС Bi, и их параметры. Их размер-
ность соответствует выражению термодина-
мических величин в следующих единицах: P ,
P rep , P att — [ГПа]; V , VC — [см3/г]; Cp(T ),
S — [кДж/(г ·К)]; Φ, E — [кДж/г], T — [K].

Для притяжения в (1), (8) использовалось
выражение

P att (V, T ) = −A χ exp (−λT ) + 1

χ+ 1

(V00
V

)n
(16)

с параметрами A = 6.95574, χ = 0.3, λ =
0.00025, V00 = 0.094473, n = 1.66152.

В (2), (7) коволюм VC(P rep) представлялся
различными функциями на двух участках (на
их границе функции «сшиты» по их значениям,
первым и вторым производным):

1) 0 < P rep < P
rep
1,0 = 243.4508 :

VC(P rep) = V00(1− ln (P rep/A)/ν), (17)

где A, V00 — константы в (16), ν = 6.483085,

2) P
rep
1,0 < P rep < P

rep
2,0 = 700 :

VC(P rep) = υ1/(P
rep)υ2 + υ3/(P

rep)υ4 , (18)

где υ1 = −488.1949, υ2 = 2.33789, υ3 =
0.395847, υ4 = 0.4.

Статсумма в (6) ограничивалась первым
слагаемым, σ0(T ) = 4 [20].

Принято V I
C(P = 0) = 0.10088 (п. (a)).

Использовались следующие значения па-
раметров P i∗ (п. (b)) для фаз I–V соответствен-
но: 10.503, 3.9205, 6.126, 4.020, 3.465.

Теплоемкости Cip(T ) в (11), (12) (п. (c))
представлялись в виде

Cip(T ) = Ci0 + Ci1T. (19)

В этом случае интегралы по T в (11), (12)
вычисляются явно. Принято Ci0 = 1.19 · 10−4

(= 3R) при i = I−V, CI
1 = 2.66 · 10−8, Ci1 = 0

при i = II−V.
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Параметры в формуле (21)

Фаза f i
1 f i

2 f i
3 f i

4

i = I 0.03349 0.20364 0.00300 6.17075

i = II 0.01049 0.02377 0.01301 8.58075

i = IV −0.00679 0.01119 0.02878 9.23075

i = V −0.01097 0.07855 0.03437 11.13075

Линии плавления T i,L(P rep) (i = I, II, IV,
V; п. (d)) представлялись в виде

T i,L(P rep) = P repVC(P rep)F i(P rep)/R, (20)

где VC(P rep) — (16), (17), функция F i(P rep)
определяется выражением

F i(P rep) = f i1 exp (−f i2(P rep − f i4)) + f i3 (21)

с коэффициентами, приведенными в таблице.
Параметры f I4, f II4 , f IV4 , fV4 тождественны па-

раметрам P
rep
0 , P

rep
1 , P

rep
2 , P

rep
4 , упоминавшим-

ся в конце предыдущего параграфа. Значению
переменной P rep = P

rep
0 соответствуют значе-

ния T I,L = T6 = 544.5 и P = 0 (параметры
точки 6 на рис. 2); значению P rep = P

rep
1 —

значения T II,L = T1 = 463.29 и P1 = 1.6905
(параметры точки 1); значению P rep = P

rep
2 —

значения T IV,L = T2 = 461.09 и P2 = 2.187 (па-
раметры точки 2); значению P rep = P

rep
4 —

значения TV,L = T4 = 571.04 и P4 = 3.777 (па-
раметры точки 4).

В случае P rep � fV4 (большие значения P )
уравнения (1), (2), (20), (21) для i = V дают

следующую связь объема жидкости на линии

плавления V melt ,L с VC(P rep):

(V melt ,L − VC(P rep))/VC(P rep) = const. (22)

То есть плавление происходит, когда движе-
нию атомов доступна постоянная доля свобод-
ного объема. Это является [14–16] аналогом
критерия плавления Линдеманна.

Линии равновесия I–II, II–IV, II–III, III–IV,
IV–V, III–V (п. (d); (15)) представлялись выра-
жениями:

T I,II(P ) = T1 − 178(P − P1)− 7.1477(P − P1)2,

T II,IV(P ) = T2−190(P−P2)+10.9964(P−P2)2,

T II,III(P ) = T3 − 350(P − P3) +

+ 88.5944(P − P3)2 − 50(P − P3)3

(T3 = 453.26, P3 = 2.2284),

T III,IV(P ) = T3 − 3(P − P3),

T IV,V(P ) = T4−40(P −P4)−26.6817(P −P4)2,

T III,V(P ) = T5 − 39.9057(P − P5)−

− 9.3759(P − P5)2

(T5 = 443.94, P5 = 5.3351).
Значения приведенных определяющих па-

раметров подбирались исходя из, по возмож-
ности, оптимального описания многофазным

УРС совокупности экспериментальных данных

(за исключением данных по ударному сжатию
пористого Bi).

УЧЕТ ИОНИЗАЦИИ

При описании свойств жидкого и газооб-
разного Вi при высоких температурах исполь-
зовалась представленная в [13–18] модель мВдВ
с учетом термической ионизации, обобщающая
модель (2), (6) и переходящая в нее при низких
температурах. Ее переменными являются ве-
личины P rep , T , количество атомов и ионов Nk
(k = 0 — атом, k = 1, 2, 3, . . . — ион) и коли-
чество электронов Ne. В состоянии термодина-
мического равновесия значения Nk, Ne опреде-
ляются из уравнений типа уравнений иониза-
ционного равновесия Саха [21], которые пере-
ходят в последние при V → ∞. При этом мо-
дель переходит в УРС смеси идеальных газов

ионов и электронов. Для определения модели,
кроме приведенных в предыдущем параграфе

параметров жидкости, требуются потенциалы
ионизации атомов и ионов Ik и статвеса ос-
новных состояний этих частиц gk,0. Они были
взяты из [20]. В рассматриваемых далее слу-
чаях термическая ионизация существенна при

P > 100 ГПа на основной ударной адиабате
Bi, при ударном сжатии пористых образцов и
при изоэнтропической разгрузке из состояний с

высокой исходной температурой. Вдоль кривой
плавления она мала и ее можно не учитывать.
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Рис. 3. Фазовая диаграмма (сплошные линии)
и изоэнтропы (пунктирные линии) УРС Bi на-
стоящей работы

СРАВНЕНИЕ РАСЧЕТОВ С ЭКСПЕРИМЕНТОМ

На рис. 3 приведена фазовая диаграмма

построенного УРС Bi. В целом она близка к

представленной на рис. 1 диаграмме [3], хо-
тя точного ее описания достичь не удалось.
В частности, модельные тройные точки 1 и 2
смещены в сторону меньшего давления (как и
тройные точки 1 и 2 диаграммы [2] на рис. 1),

а наклон модельной линии плавления TV,L(P )
несколько меньше, чем этот наклон по [3] (ана-
логично наклону данной линии согласно [1]).

На рис. 3 также показаны зависимости

T (P ) вдоль модельных изоэнтроп S300, S400,
S500, S600 (на них при P = 1 атм значения

T = 300, 400, 500 и 600 K соответственно). Ка-
чественно они подобны представленным в [6].
На отрезках изоэнтроп S300, S400, S500, от-
вечающих смеси фаз i и j, линия равновесия
T i,j(P ) между которыми имеет отрицательный
наклон, значение T с увеличением P уменьша-

ется. Вдоль изоэнтропы
dT

dP
=

γT

ρC2
, где C =√(∂P

∂ρ

)
S

— скорость звука, γ = V
(dP
dE

)
V

—

коэффициент Грюнайзена. При
dT j,i(P )

dP
< 0

величина γ < 0 [18], что приводит к падению T
при изоэнтропическом сжатии смесевого веще-
ства.

На рис. 4 приведены экспериментальные

и модельные зависимости плотности ρ(T ) при
P = 1 атм для фазы I и жидкости. Их согласие

Рис. 4. Зависимость плотности от температу-
ры для фаз I и L при P = 1 атм для Bi:

эксперимент: кружки — [22], штриховая линия —
[23]; сплошные линии — расчет по УРС

Рис. 5. Зависимость скорости звука от темпе-
ратуры для фаз I и L при P = 1 атм для Bi:

эксперимент: кружок— [24], пунктирная линия—
[23], штриховая линия— [25]; сплошные линии—
расчет по УРС

находится в пределах ≈1 %.
На рис. 5 показаны экспериментальные и

модельные зависимости скорости звука C(T )
при P = 1 атм для фазы I и жидкости. Макси-
мальное расхождение составляет ≈3 %.

При P = 1 атм модельная теплоемкость

CI
p(T ) согласуется с экспериментальной [26] в
диапазоне T = 300 ÷ 544.5 K с точностью

≈5 %. При том же давлении отличие модель-
ного значения CL

p (T ) от рекомендации [23] при
T = 544.5 ÷ 600 K составляет ≈ 10 ÷ 20 %, при
T = 1 000 ÷ 1 800 K — ≈5 %.

На рис. 6 приведено описание эксперимен-
тальных данных [27] по изотермическому (T =
300 K) сжатию фаз висмута I, III и V. Согласие
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Рис. 6. Зависимость давления от плотности
при изотермическом (T = 300 K) и ударном
(ρ0 = 9.8 г/см3) сжатии Bi при относительно
низком давлении:

изотермическое сжатие фаз I, III, V: светлые знач-
ки — экспериментальные данные [27], пунктир-
ные линии — расчетные зависимости; ударное
сжатие: квадраты — эксперимент [24], звездоч-
ки— эксперимент [28], сплошные линии— расчет

по УРС для фаз V, L и их смеси V + L

составляет ≈1 % по плотности ρ.
В состоянии T = 300 K, P = 2.7 ГПа зна-

чение ρ фазы II cогласно опытным данным [27]
равно 11.06 г/см3, согласно УРС— 11.05 г/см3.
При T = 503 K, P = 3.9 ГПа эксперименталь-
ное значение ρ фазы IV составляет 10.52 г/см3

[1], модельное — 10.55 г/см3.
На рис. 6 также представлены результаты

эксперимента и расчета вдоль основной удар-
ной адиабаты Bi (до сжатия в опытах вис-
мут находится в фазе I и имеет начальную

плотность ρ0 = 9.8 г/см3; при P = 1 атм,
T = 300 K согласно УРС ρ0 = 9.802 г/см3).
Модельная ударная адиабата определяется из

уравнения [29]

E = E0 + P (1/ρ0 − 1/ρ)/2, (23)

где ρ0, E0 — плотность и энергия вещества

согласно УРС перед фронтом ударной волны.
Расчетная зависимость на рис. 6 отвечает фа-
зам V и L и их смеси V + L (место пере-
хода отмечено косой чертой). Модель хорошо
воспроизводит данные ударно-волновых изме-
рений [24, 28]. По результатам расчета нача-
лу плавления отвечает ударное давление P =
22.9 ГПа, полное плавление происходит при

P = 30.6 ГПа. Эти значения согласно моделям

Рис. 7. Расчетная зависимость температуры
от давления вдоль основной ударной адиаба-
ты (штриховая линия) и вдоль пяти изоэнтроп
разгрузки (пунктирные линии):

сплошные линии — модельные линии равновесия

[7, 8, 10] составляют соответственно 16 и 28,
21 и 31, 16 и 25 ГПа. Можно отметить, что
по данным рентгенографических исследований

[30, 31] при ударном давлении 22 ГПа висмут
еще остается твердым. Поэтому более пред-
почтительными представляются относительно

высокие модельные значения давления начала

плавления фазы V.
На рис. 7 приведена расчетная зависи-

мость T (P ) вдоль основной ударной адиабаты,
а также модельные зависимости T (P ) вдоль
изоэнтроп разгрузки до P = 1 атм из пяти

состояний с начальными значениями P = 10,
15, 20, 25, 35 ГПа. На изоэнтропах 1 и 2 при
разгрузке до P = 1 атм реализуется значение
T = 544.5 K, что отвечает смеси фаз I + L, на
изоэнтропах 3–5 разгруженное вещество явля-
ется жидким. Согласно расчету значение удар-
ного давления, разгрузка из которого приводит
к началу плавления фазы I при P = 1 атм,
составляет 9.2 ГПа, полному плавлению при

разгрузке до P = 1 атм отвечает давление

17.4 ГПа.
Расчетная зависимость температуры, ре-

ализуемой при изоэнтропической разгрузке до

P = 1 атм, от начального ударного давления
(см. рис. 7) приведена на рис. 8 (внизу). На нем
также представлены экспериментальные зна-
чения этой величины (данныеM. Mondot, 1993,
цитируются по [10]) и результаты ее расчета по
УРС [10]. Рассматриваемое здесь УРС несколь-
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Рис. 8. Зависимость температуры от давле-
ния при изоэнтропической разгрузке Bi до P =
1 атм (A), разгрузке в преграды LiF (B) и
ПММА (C ) и нагрузке до преграды из сап-
фира (D):

эксперимент: звездочки — разгрузка до P =
1 атм [10], квадрат — разгрузка в ПММА [32],
кружки — разгрузка в LiF [33], ромбы — нагруз-
ка до сапфира [32], треугольники — разгрузка в

LiF [34]; сплошные линии — расчет по настояще-
му УРС, пунктирные линии— расчет по УРС [10]
при разгрузке до P = 1 атм и в преграду из LiF

ко лучше описывает эксперимент по сравнению

с УРС [10]. Оба расчета дают постоянное зна-
чение T = 544.5 K при P ≈ 10 ÷ 20 ГПа. В рас-
сматриваемом УРС интервал постоянства тем-
пературы меньше, чем в модели [10].Можно от-
метить, что в ходе изоэнтропической разгрузки
из состояний с ударным давлением P < 20 ГПа
вещество претерпевает несколько фазовых пе-
реходов (см., например, изоэнтропы 1 и 2 на
рис. 7).

На рис. 8 дополнительно представлены

экспериментальные данные и расчетные за-
висимости T (P ), реализуемые при изоэнтро-
пической разгрузке ударно-сжатого Bi (ρ0 =
9.8 г/см3) в преграды из LiF и ПММА (орг-
стекло) и вторичной ударной нагрузке Bi до
преграды из сапфира (в этом случае на рис. 8
T — температура Bi на границе с соответству-
ющей преградой, P — давление на этой грани-
це). Для сопоставления расчетов с данными по
разгрузке необходимо преобразование модель-
ных изоэнтроп разгрузки от P (ρ) к коорди-
натам P , U (U — массовая скорость) и опре-
деление точек пересечения зависимостей P (U)
с ударными адиабатами преград, вдоль кото-
рых ударное давление определяется соотноше-

нием P (U) = ρ0D(U)U (ρ0 — начальная плот-
ность материала преграды, D — волновая ско-
рость в преграде). При расчете величины U(P )
вдоль изоэнтроп разгрузки использовалось со-
отношение Римана [29]

U(P ) = Uн(Pн) +

Pн∫
P

d(P )

C(P )ρ(P )
, (24)

где Uн(Pн) — начальная массовая скорость при

начальном ударном давлении Pн. Для преград
применялись следующие значения ρ0 и удар-
ные соотношения D(U) (D, U — км/с): LiF —
ρ0 = 2.65 г/см3, D = 5.13 + 1.310U [28],
ПММА — ρ0 = 1.18 г/см3, D = 3.02 + 1.339U −
0.0018U2 [28], сапфир — ρ0 = 3.98 г/см3,
D = 8.76 + 0.952U (линейная аппроксимация
данных [24]). Как видно из рис. 8, рассмат-
риваемое УРС хорошо описывает результаты

[32, 33], полученные в экспериментах с LiF,
ПММА и сапфиром. Из четырех точек рабо-
ты [34], характеризующих разгрузку Bi в LiF,
расчет воспроизводит лишь две. Аналогичное
качество при сопоставлении с данными, полу-
ченными в экспериментах с LiF, показывает
приведенный на рис. 8 расчет по УРС Bi [10].

На рис. 9 дано описание опытов по ударно-
му сжатию исходно жидкого Bi при начальной
плотности ρ0 = 9.89 г/см3 (T0 = 673 K) и ис-
ходно пористого Bi при ρ0 = 6.62 г/см3 (по от-
ношению к ρ0 = 9.8 г/см3 пористостьm = 1.48)
и ρ0 = 5.10 г/см3 (m = 1.92). При определе-
нии модельных ударных зависимостей исполь-
зуется уравнение (23) (значение E0 в случае

исходно пористого Bi полагалось равным E0
для сплошного материала в нормальных усло-
виях). Представленные на рис. 9 расчеты вы-
полнены по модельному УРС без учета тер-
мической ионизации (штриховые линии) и с
учетом ее (сплошные линии). Последний ва-
риант явно лучше согласуется с эксперимен-
том с пористыми образцами. Расчетные значе-
ния T вдоль ударных адиабат составляют от

нескольких тысяч до нескольких десятков ты-
сяч градусов.

На рис. 10 показаны экспериментальные

данные и расчетные зависимости по ударно-
му (ρ0 = 9.8 г/см3) и изотермическому (T =
300 K) сжатию Bi при высоких давлениях. Изо-
термический эксперимент воспроизводится с

точностью ≈2 % по ρ. Модельная ударная за-
висимость описывает эксперимент в пределах
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Рис. 9. Зависимость давления от плотности
при ударном сжатии исходно жидкого и по-
ристого Bi:

экспериментальные данные [28]: ромбы — исход-
но жидкий Bi при ρ0 = 9.89 г/см3, треугольники
и квадраты — пористый Bi при m = 1.48 и 1.92
соответственно; штриховые и сплошные линии—
расчетные ударные адиабаты соответственно без

учета и с учетом ионизации при отвечающих экс-
перименту значениях ρ0; вдоль расчетных удар-
ных адиабат висмут является жидким; пунктир-
ные линии — модельные изотермы T = 10 000 и
50 000 K

его разброса (до ≈5 % по ρ). Следует отме-
тить, что при P ≈ 100 ÷ 150 ГПа значение ρ по
данным [24] систематически больше (на ≈2 %),
чем по [28], в то время как при сравнительно
малых давлениях (см. рис. 6) данные этих ра-
бот хорошо согласуются друг с другом. При-
чина этого различия не ясна, и описание экспе-
римента проводилось с использованием осред-
ненных данных. Не исключено, что расчетная
основная адиабата Bi при высоких давлениях
требует некоторого ужесточения.

В [28] представлены результаты опытов по
изоэнтропической разгрузке исходно сплошно-
го (m = 1) и пористого (m = 2.45) ударно-
сжатого Bi. Их описание с помощью рассмат-
риваемого УРС дано на рис. 11. Четыре изоэн-
тропы S1–S4 определяют разгрузку при m = 1,
две изоэнтропы S5, S6 — при m = 2.45. При
расчетах изоэнтроп использовалось соотноше-
ние (24). Исходные состояния для разгрузки
(Pн, Uн в (24)) определялись из условия совпа-
дения экспериментальных (приводятся в [28]) и
расчетных значений волновой скорости D при

ударном сжатии. Описание эксперимента по
разгрузке находится на уровне его погрешно-

Рис. 10. Зависимость давления от плотно-
сти при изотермическом и ударном (ρ0 =
9.8 г/см3) сжатии Bi при высоком давлении:

штриховая линия — эксперимент [4] при T =
300 K; квадраты и звездочки — ударный экспе-
римент [24] и [28] соответственно; сплошная ли-
ния — расчетная ударная адиабата; пунктирные
линии — модельные изотермы T = 300, 50 000 и
100 000 K

Рис. 11. Зависимость давления от массо-
вой скорости при изоэнтропической разгрузке

ударно-сжатого Bi при m = 1 и 2.45:

данные приm = 2.45 сдвинуты на 10 км/с вправо;
значки — эксперимент по разгрузке [28]; штрихо-
вые линии — расчетные изоэнтропы, сплошные
линии — расчетные ударные адиабаты m = 1 и
m = 2.45

сти (несколько процентов по U). На расчетных
изоэнтропах косой чертой отмечены места на-
чала испарения Bi (перехода однофазного веще-
ства в смесь фаз жидкость + газ). По расчету
излом изоэнтроп S2, S3, S5 происходит при от-
носительно высоком давлении (∼0.1 ГПа), что
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Рис. 12. Зависимость давления от плотно-
сти при изоэнтропической разгрузке ударно-
сжатого Bi при m = 1 (штриховые линии)
и вдоль кривой равновесия жидкость — газ

(сплошная линия):

кружок — модельная критическая точка, пунк-
тирная линия— модельная изотерма T = 10 000 K

согласуется с расчетом по УРС Bi [11].
Изоэнтропы S1–S4 представлены в коорди-

натах P , ρ на рис. 12. Там же показаны рас-
четные кривая равновесия жидкость — газ и

критическая точка. Кривая равновесия опреде-
лена на основе правила площадей Максвелла,
параметры критической точки — из условий(∂P

∂V

)
T

=
(∂2P
∂V 2

)
T

= 0.

Модельные параметры критической точки со-
ставляют TC = 4 334 K, PC = 0.101 ГПа,
ρC = 2.28 г/см3. По оценке [23] они равны
TC = 4 500 ± 500 K, PC = 0.135 ± 0.015 ГПа,
ρC = 2.66±0.2 г/см3. Изоэнтропа S1 на рис. 12
является докритической (при ее пересечении
кривой испарения значение ρ > ρC), изоэнтро-
пы S2–S4 — закритическими (к тому же типу
относятся изоэнтропы S5, S6 на рис. 11). По
расчету давление на основной (m = 1) ударной
адиабате Bi, при изоэнтропической разгрузке
из которого вещество попадает в критическую

точку, составляет 218 ГПа.
Согласно настоящему УРС при P = 1 атм

температура испарения равна 1 862 K, энталь-
пия испарения — 0.847 кДж/г. Они близки к
значениям 1 831 К и 0.856 кДж/г [23], опре-
деленным на основе экспериментальных дан-
ных. Расчетные значения ударного давления

при m = 1, отвечающие началу и концу испа-
рения при изоэнтропической разгрузке до P =
1 атм (T = 1 862 К), равны 52.3 и 1 118 ГПа
соответственно.

ЗАКЛЮЧЕНИЕ

В работе построено полуэмпирическое

УРС висмута, отражающее свойства пяти

твердых фаз, жидкости и газа. Выполнено
сопоставление результатов модельных расче-
тов с данными опытов по изотермическому

и ударному сжатию и изоэнтропической раз-
грузке в области состояний от нормальных

условий до давлений ≈ 1 ТПа и температур

≈105 К. Описание экспериментальных резуль-
татов, как правило, находится на уровне точно-
сти измерений. При малых плотностях модель-
ное уравнение переходит в УРС идеального га-
за по Саха. Разработанное УРС может быть ис-
пользовано при моделировании поведения вис-
мута в твердом, жидком и газообразном состо-
яниях.
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