УДК 533.6.011.55

Влияние зонда на результаты измерения полного давления в зоне присоединения сверхзвукового ламинарного отрывного течения*

В.И. Запрягаев, И.Н. Кавун, Л.П. Трубицына

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: i_k@list.ru

Рассмотрено влияние зонда полного давления на результаты измерения пристенного потока в зоне присоединения высокоскоростного сверхзвукового отрывного течения в угле сжатия. При измерении давления вблизи стенки модели наблюдается локальный максимум в области вниз по потоку за линией присоединения. Этот максимум может быть как физическим структурным элементом отрывного течения (высоконапорным слоем, полное давление в котором достигает величины 0,8–0,95 от величины давления торможения набегающего потока), так и возможной ошибкой измерения. На примере горизонтальной пластины и плоских клиньев установлено существование в пограничном слое локального максимума полного давления, появление которого связано не с наличием высоконапорного течения, а с результатом взаимодействия зонда со стенкой модели. Определено, что величина этого максимума зависит от соотношения размеров зонда и толщины пограничного слоя. Показано, что степень влияния зонда, приводящего к искажению результатов измерения, примерно на порядок меньше, чем максимальная величина измеренного полного давления в высоконапорном слое в зоне присоединения.

Ключевые слова: зонд полного давления, сверхзвуковое отрывное течение, область присоединения, пограничный слой, высоконапорный слой.

Введение

Сверхзвуковое обтекание угла сжатия сопровождается отрывом пограничного слоя на его горизонтальной поверхности и присоединением на наклонной [1 – 4]. При высокой сверхзвуковой скорости потока в зоне присоединения может сформироваться тонкий слой, полное давление в котором может достигать значения 0,8 – 0,95 от величины давления торможения набегающего потока [5].

На рис. 1*а* приведена теневая фотография ламинарного отрывного течения в угле сжатия при числе Маха набегающего потока $M_{\infty} = 6$. Здесь цифрой *1* обозначена модель, цифрой 2 — зонд измерения полного давления, также указаны скачки уплотнения: C_1 — от передней кромки модели, C_2 — скачок отрыва, C_3 — скачок присоединения; оторвавшийся пограничный слой обозначен как *SL*, область возвратного течения — *RF*, линия отрыва — *S*, линия присоединения — *R*.

^{*} Работа выполнена по теме государственного задания (№ госрегистрации 121030500158-0) и частично поддержана грантом РФФИ № 19-31-90035. Эксперименты выполнены на базе ЦКП «Механика».

[©] Запрягаев В.И., Кавун И.Н., Трубицына Л.П., 2021

Запрягаев В.И., Кавун И.Н., Трубицына Л.П.

Более детально область измерения полного давления показана на рис. 1b. Здесь можно видеть новый элемент течения — веер волн сжатия CF, формируемый в зоне присоединения сдвигового течения SL. Кружком выделена область измерения, а штриховой линией — направление перемещения приемной части зонда. Соответствующий профиль распределения измеренного полного давления (давления Пито) приведен на рис. 1с. Вдоль горизонтальной координаты отложено измеренное зондом давление Пито p_{Pt}, отнесённое к полному давлению набегающего потока $p_{0\infty}$. Давление Пито равно полному давлению, если скорость набегающего на зонд потока является дозвуковой, и полному давлению за прямым скачком уплотнения, если скорость набегающего на зонд потока сверхзвуковая. Вдоль вертикальной координаты отложено расстояние от центра торца зонда до стенки модели r (отмечено на рис. 1b пунктирной линией), отнесенное к параметру Δ , характеризующему толщину пограничного слоя в зоне измерения. На представленном профиле виден локальный пристенный максимум, обозначенный как HPL. Его появление связано с формированием в области присоединения слоя с высоким полным давлением, расположенного непосредственно над пограничным слоем. Слой формируется при прохождении набегающего на наклонную поверхность модели потока не через скачок C3, а через веер волн сжатия CF, потери полного давления в котором существенно меньше.

Существование высоконапорного слоя *HPL* было подтверждено независимыми экспериментальным (шлирен-визуализация) и численным методами [6 – 9]. Он был зарегистрирован в диапазоне чисел Маха $M_{\infty} = 6 - 8$ и чисел Рейнольдса, вычисленных по длине *L* горизонтальной пластины, расположенной перед наклонным уступом модели угла сжатия, в диапазоне $\text{Re}_L = 0,3 - 2,9$ млн. для случая ламинарного режима отрывного течения (L = 50 мм). Однако ввиду очень малого размера слоя *HPL* (его высота над стенкой модели в эксперименте составляла порядка 0,3 - 0,4 мм, а толщина — порядка 0,2 - 0,3 мм), соизмеримого с размерами измерительного зонда (ширина приемной части зонда составляет порядка 1 мм, высота — 0,2 мм), остается неизвестной погрешность определения его газодинамических параметров.

Известно, что при внесении в пристенную область зонда, размеры которого соизмеримы с толщиной пограничного слоя, возможна перестройка течения за счет взаимодействия сдвигового течения со скачком уплотнения, формируемого торцом зонда.

На рис. 2*а* показано развитие пограничного слоя на плоской пластине вниз по потоку от острой передней кромки. Верхняя граница слоя толщиной δ обозначена штриховой линией. Здесь *u* — эпюры скорости в различных сечениях слоя. В сечении с координатой *x* изображено распределение полного давления $p_{\rm Pt}$ (эпюра приведена справа от схемы течения).

При наличии зонда полного давления (зонда Пито) структура пристенного течения меняется (рис. 2b). Формируемый приёмным торцом зонда скачок уплотнения C_p взаимодействует с пограничным слоем, образуя на поверхности пластины пространственную отрывную область Z. В рассматриваемой плоскости рисунка линия отрыва обозначена как S, линия присоединения — R. Обтекающий отрывную область пограничный слой утолщается, формируя перед зондом веер волн сжатия CF. Изэнтропическое торможение потока в этом веере приводит к уменьшению числа Маха перед зондом и уменьшению потерь полного давления за скачком C_p . В результате зонд регистрирует локальный максимум давления PI (на рис. 2b эпюра $p_{\rm Pt}$ справа от схемы). На рис. 2c показаны профили давления Пито в сечениях пограничного слоя x/L = 0,2 ($\delta \sim 4h$, где h — высота торца приёмной части зонда), x/L = 1 ($\delta \sim 8h$) и x/L = 2 ($\delta \sim 12h$) при L = 50 мм. Области локального повышения давления Пито, регистрируемые зондом, обозначены как PI. Видно, что при увеличении толщины пограничного слоя этот максимум уменьшается, и при $\delta \sim 12h$ уже незаметен.

Масло-сажевая визуализация области отрывного течения на поверхности пластины, появление которой вызвано присутствием зонда (зонд выполнен в виде трубки Пито), приведена в работе [10] для числа Маха M = 3,05. Авторами [11 - 13] было установлено, что влияние зонда проявляется не только в виде появления локального максимума давления (аналогично рис. 2c), но также и в изменении формы профиля пограничного слоя, выраженном в смещении его в сторону стенки. В работе [14] изучалось влияние зонда на результаты измерения и было показало, что чем больше трубка Пито по отношению к толщине пограничного слоя в месте измерения, тем выше влияние зонда. Помимо этого, измерения в пограничном слое при помощи трубки Пито обсуждались в работах [15] и [16]. Однако в них не уточнялось насколько влияние трубки Пито существенно по сравнению с другими возможными особенностями структуры сдвигового пристенного течения.

Цель настоящей работы заключается в исследовании структуры течения, формирующейся рядом с приёмной частью зонда Пито, который расположен вблизи стенки модели. Также планируется определить степень влияния зонда на результаты измерения и сравнить последние с результатами измерения полного давления в высоконапорном слое, наблюдаемом в зоне присоединения ламинарного отрывного течения в угле сжатия.

Рис. 2. Схема взаимодействия зонда с пограничным слоем [6].
а — структура пограничного слоя на пластине,
b — структура пристенного течения при внесении в пограничный слой измерительного зонда,
с — профили давления Пито, регистрируемые зондом в различных сечениях пограничного слоя: x/L = 0,2 (I), 1 (2), 2 (3).

1. Методика исследования

Эксперимент проводился в аэродинамической трубе периодического действия баллонного типа Т-326 Института теоретической и прикладной механики им. С.А. Христиановича СО РАН (рис. 3*a*). Описание конструкции аэродинамической трубы, характеристик поля течения в рабочей части, системы управления и сбора данных приводилось в работе [17], методики проведения эксперимента описывались в работах [6, 18]. На схеме используются следующие обозначения: *1* — сопло, *2* — исследуемая модель, *3* — наблюдательное окно, *4* — альфа-механизм, позволяющий установить модель под заданный угол атаки, *5* — перемещающийся стол, позволяющий вводить модель в набегающий поток, *6* — камера Эйфеля, *7* — устройство перемещения измерительных зондов, *8* — пилон с измерительным зондом, *9* — сверхзвуковой диффузор.

Исследуемые модели показаны на рис. 3b. Было проведено зондирование потока над поверхностью горизонтально установленной пластины (угол атаки между поверхностью гластины и набегающим потоком $\alpha = 0^{\circ}$), над поверхностью клина $\varphi = 30^{\circ}$, устанавливаемого с помощью альфа-механизма под углами $\alpha = 10$, 20 и 30° к набегающему потоку, и угла сжатия, наклонная поверхность которого имела угол $\varphi = 30^{\circ}$ (при этом измеренный по фотографии угол перед линией присоединения R между направлением потока в сдвиговом слое *SL* (см. рис. 1*a*) и наклонной поверхностью уступа составляет $\varphi = 24^{\circ}$). Все модели имели острую переднюю кромку с радиусом закругления ~ 5 – 7 мкм. Зондирование выполнялось в плоскости симметрии моделей по нормали к поверхности.

Приёмная часть зонда Пито имеет прямоугольную форму (рис. 3*c*). Ширина измерительной части вблизи торца зонда составляет 1,1 мм, высота — 0,2 мм, расстояние от торца зонда до пилона — 16 мм. Согласно исследованию [19], наклон зонда к набегающему потоку на угол менее 15 градусов существенно не сказывается на точности измерений, поэтому зонд устанавливался под углом $\theta = 9 - 14$ градусов к поверхности исследуемой модели (см. рис. 3*b*), чтобы не вносить в пристенное течение дополнительных возмущений.

Рис. 3. Схема эксперимента (а), исследуемые модели (b), фотография торца зонда Пито (c).

В ходе эксперимента зонд с помощью специального трёхосевого устройства (см. 7 на рис. 3a) перемещался из области свободного потока к поверхности модели. Во время его движения на модель и зонд подавалась разность потенциалов. При касании зондом стенки замыкается электрический контакт, который останавливает его движение. Координатное устройство обеспечивало точность позиционирования зонда в пространстве ± 20 мкм по всем трем направлениям.

Для сравнения результатов использовался параметр Δ, характеризующий толщину пограничного слоя:

$$\Delta = x / \sqrt{\operatorname{Re}_x} ,$$

где x — расстояние от передней точки модели до сечения, в котором выполнялось зондирование потока. В данной формуле для моделей клина и угла сжатия вместо координат (x - y)используются координаты (l - r) (см. схему на рис. 3b). Начало координат помещено в точку, где толщина пограничного слоя равна нулю: на пластине и клине — на передней кромке модели, на угле сжатия — на линии присоединения потока S, положение которой определялось по теневой фотографии. Также в приведенном выражении Re_x — число Рейнольдса, вычисленное по значениям параметров потока в измеряемом сечении:

$$\operatorname{Re}_{x} = \rho_{e} \cdot u_{e} \cdot x / \mu_{e},$$

здесь ρ_e — плотность воздуха, u_e — скорость, μ_e — коэффициент динамической вязкости. Индекс «е» соответствует значениям параметров потока в области над пограничным слоем, а для угла сжатия — высоконапорному слою. При вычислении числа Рейнольдса для угла сжатия параметры потока над пограничным слоем задавались из расчета параметров высоконапорного слоя, расположенного непосредственно над ним.

Все эксперименты проводились при одних и тех же параметрах набегающего потока: число Маха $M_{\infty} = 6,03$, давление в форкамере аэродинамической установки $p_{0\infty} = 9,81 \cdot 10^5$ Па, температура в форкамере $T_{0\infty} = 380 - 395$ К. Сводные данные по проведённым экспериментам представлены в таблице.

Давление в форкамере и камере Эйфеля измерялось при помощи датчиков Метран-150-ТАЗ (верхний предел диапазона измерений — 25 ата) и Метран-150-ТА1 (диапазон измерений — до 0,4 ата) с основной погрешностью 0,075 % величины верхнего предела диапазона; измерение давления Пито в потоке проводилось при помощи преобразователя давления ТДМ-А-1,6 (диапазон измерений — до 1,6 ата), основная погрешность которого составляет 0,01 % от диапазона.

Для получения более детальной картины течения был проведен численный расчет пространственного течения над горизонтальной пластиной в двух вариантах: с установленным над ней на расстоянии 0,5 мм от поверхности зондом Пито и без него. Решение

Таблица

№ эксперимента	Модель	α, град	Me	<i>х</i> (или <i>l</i>), мм	$\operatorname{Re}_{x} \cdot 10^{-5}$	∆·10 ⁵ , м
1	Пластина	0	6,03	3	0,37	1,56
2	Пластина	0	6,03	10	1,23	2,86
3	Пластина	0	6,03	100	12,3	9,03
4	Клин	10	4,66	5	0,85	1,72
5	Клин	10	4,66	10	1,69	2,43
6	Клин	20	3,38	5	0,73	1,85
7	Клин	20	3,38	10	1,46	2,61
8	Клин	30	2,34	5	0,51	2,22
9	Клин	30	2,34	10	1,02	3,13
10	Угол сжатия	24	3,42	10,6	3,9	1,69

Параметры эксперимента

получено в программном пакете ANSYS Fluent. Решались трехмерные уравнения Навье– Стокса для ламинарного течения в стационарной постановке. Газодинамические параметры набегающего потока, геометрические размеры модели и зонда, а также их взаимное расположение выбирались аналогично эксперименту 1 из таблицы. Состояние газа описывается уравнением Менделеева–Клапейрона, коэффициент вязкости — формулой Сазерленда, теплопроводности — формулой Эйкена. Стенки модели и зонда считались нетеплопроводными.

Расчетная сетка включала 8,2 млн ячеек. Вблизи стенки было предусмотрено сгущение сетки по направлению поверхности модели так, чтобы на толщину пограничного слоя приходилось порядка 50 слоев ячеек.

2. Результаты

Теневые фотографии, иллюстрирующие процесс измерения профиля полного давления в пограничном слое, показаны на рис. 4*a* (измерения на пластине, $\alpha = 0^{\circ}$) и рис. 4*b* (измерения на клине, $\alpha = 30^{\circ}$). На каждой из фотографий хорошо видны: модель, пилон с установленным на нем зондом, скачок уплотнения от передней кромки модели C_1 и скачок уплотнения, формируемый приёмной частью зонда C_p .

Результаты численного расчета взаимодействия зонда Пито с пограничным слоем на пластине представлены на рис. 5. Расчет соответствует эксперименту № 1 из таблицы. Зонд располагался в сечении x = 3 мм на высоте y = 0,5 мм от поверхности пластины. На рис. 5*a* показана численная шлирен-фотография течения в плоскости симметрии течения (приведено распределение вертикального градиента плотности). Здесь изображены: пластина *l*, измерительный зонд *2*, скачок от передней кромки C_1 и скачок от зонда C_p .

На рис. 5b приведено распределение числа Маха в этой же плоскости. Кроме скачков C_1 и C_p здесь также показаны область отрыва SZ и порождаемый ею веер волн сжатия CF. Видно, что область отрыва распространяется вверх по потоку на расстояние порядка трёх – четырёх высот зонда над поверхностью пластины. Пограничный слой отрывается, образуя в зоне отрыва веер характеристик, проходящих вблизи приёмного торца зонда. В этом веере происходит изэнтропическое торможение потока, что приводит к уменьшению потерь полного давления за скачком C_p и, соответственно, увеличению давления Пито, регистрируемого зондом (аналогично схеме на рис. 2b).

Рис. 4. Шлирен-визуализация течения над пластиной (a) и клином с углом наклона поверхности 30° (b). C₁ — скачок уплотнения от передней кромки модели, C_p — скачок уплотнения на носике зонда Пито.

Рис. 5. Результаты численного моделирования взаимодействия зонда с пограничным слоем. а — распределение вертикального градиента плотности в плоскости симметрии течения, b — распределение числа Маха вблизи пластины с установленным над поверхностью зондом Пито.

На рис. 6 представлены экспериментальные и расчетные (при отсутствии зонда) профили давления Пито в пограничном слое на пластине в сечении, отстоящем от передней кромки на расстояние x = 10 мм (эксперимент № 2 из таблицы). Видно, что влияние зонда проявляется на профиле давления Пито в виде области повышенного измеренного полного давления *PI* вблизи внешней границы пограничного слоя, что соответствует литературным данным [11, 12]. Также в данном сечении наблюдается скачок уплотнения C_1 , генерируемый передней кромкой модели, и пограничный слой *BL*. Наблюдается соответствие расчетного и измеренного профилей давления Пито, за исключением обсуждаемой особенности в виде локального максимума *PI*. Перепад давления, определяемый как разность между максимальным значением давления *PI* и давлением за скачком уплотнения C_1 , составляет $A = 0,003 p_{\rm Pt}/p_{0\infty}$.

На рис. 7*а* представлены расчетное (1) и измеренное (2) распределения давления Пито в пограничном слое на пластине в сечении x = 3 мм (вариант 1 из таблицы), на рис. 7*b* и 7*c* — аналогичные распределения для сечений x = 10 и 100 мм соответственно (варианты 2 и 3 из таблицы). Толщина пограничного слоя, отнесенная к высоте зонда, в этих трех сечениях составляет соответственно $\delta/h \sim 3$, 5 и 13. Видно, что при удалении от передней кромки влияние зонда (в виде локального максимума *PI*, $A \sim (0,003 - 0,004) p_{Pt}/p_0)$ уменьшается и на расстоянии x = 100 мм исчезает. Рис. 7*c* иллюстрирует влияние зонда в виде смещения профиля полного давления к стенке модели.

На рис. 8 показаны распределения давления Пито в течении на клине с углом наклонной поверхности к набегающему потоку $\alpha = 10^\circ$, 20° и 30° (эксперименты $N \ge 4 - 9$). Измерения проводились в сечениях l = 5 мм (рис. 8a) и l = 10 мм (рис. 8b) от передней кромки моделей.

Существенное локальное повышение давления, наблюдаемое в виде острого пика *PSI* сразу за фронтом скачка C_1 , возникает из-за взаимодействия скачка уплотнения на зонде C_p со скачком C_1 . В результате этого взаимодействия образуется высокоэнтальпийная струйка с высоким полным давлением,

ная струика с высоким полным давлением, что регистрируется приёмником полного давления [20, 21]. Также видно, что влияние зонда Пито на внешней границе пограничного слоя (максимум давления *PI*) максимально для угла $\alpha = 20^{\circ}$, а для угла $\alpha = 30^{\circ}$ оно вновь уменьшается.

Рис. 6. Численное (1) и экспериментальное (2) распределения давления Пито в пограничном слое над пластиной в сечении x = 10 мм от передней кромки.

Рис. 7. Распределения давления Пито в пограничном слое на пластине в сечениях x = 3 (a), 10 (b), 100 (c) мм от передней кромки:
численный расчет (1) и эксперимент (2) и для случая обтекания пластины без зонда.

Рис. 8. Распределение давления Пито для клина с углом наклонной поверхности к набегающему потоку $\alpha = 10^{\circ}$ (*1*), 20° (*2*) и 30° (*3*) в сечениях l = 5 (*a*) и 10 (*b*) мм от передней кромки модели.

На рис. 9 для сравнения приведены профили давления Пито для клина $\alpha = 20$ и 30° (эксперименты № 7 и 9) и аналогичный профиль для течения в угле сжатия ($\alpha = 24^\circ$, эксперимент № 10), в котором присутствует высоконапорный слой [9]. Модель угла сжатия размещалась так, чтобы передняя пластина располагалась горизонтально, при этом угол наклонной поверхности по отношению к пластине был $\varphi = 30^\circ$. Устанавливалось ламинарное отрывное течение, при котором пограничный слой отрывался от пластины под углом 6 градусов (обозначен как *SL* на рис. 1*a*). В зоне присоединения (обозначена точ-

кой *R* на рис. 1*a*) угол между направлением потока и поверхностью наклонного уступа составлял $\alpha = 24^{\circ}$. Измерения для модели угла сжатия проводились на расстоянии 20,8 мм

Рис. 9. Распределение давления Пито для клина с углом наклонной поверхности $\alpha = 20^{\circ}$ (1) и 30° (2) и для модели угла сжатия с углом $\alpha = 24^{\circ}$ (3); расчетные значения давления p_{Pt} за скачком C_1 на клине (4, 5), за скачком C_3 на угле сжатия (6), в высоконапорном слое (7).

 r/Δ

от линии стыка пластины с наклонным уступом. По фотографии было найдено, что расстояние от линии присоединения (l = 0) до линии стыка равно 10,2 мм. В этом случае расстояние от линии присоединения до измеряемого сечения составляет l = 10,6 мм, что близко к сечению l = 10 мм для сравниваемой с углом сжатия моделью клина. В данном эксперименте модель угла сжатия имела длину горизонтальной пластины L = 60 мм. Линиями 1 и 2 на рисунке обозначено распределение давления Пито на модели клина при $\alpha = 20^{\circ}$ и 30° соответственно, линией 3 — для угла сжатия. Линии 4 и 5 соответствуют расчетному полному давлению за прямым скачком уплотнения $p_{\rm Pt}/p_{0\infty}$ в области за скачком C_1 для клина с углами $\alpha = 20^\circ$ и 30°, линия 6 — аналогичному распределению за скачком С3 на наклонной поверхности угла сжатия, линия 7 — расчетному давлению Пито в высоконапорном слое при условии изэнтропического сжатия потока SL в веере волн CF (рис. 1b). На линиях 1 и 2 наблюдается локальный максимум PI, вызванный взаимодействием зонда с поверхностью модели, на линии 3 — локальный максимум HPL, который трактуется как высоконапорный слой, прошедший через веер волн сжатия СF. Заметное различие в величине максимума HPL ($p_{Pt}/p_{0\infty} = 0,177$) и положении линии 7 $(p_{\rm Pt}/p_{0\infty} = 0.21)$ связано как с влиянием вязкости на слой SL, так и с неизоэнтропичностью веера CF. Видно, что локальный максимум давления HPL по величине (находится как разница между максимальным значением HPL и давлением за скачком C₃ аналогично максимуму А на рис. 7) превышает максимум PI (является разницей между максимальным значением PI и давлением за скачком C_1) примерно в 7 – 8 раз ($A = 0.053 p_{\rm Pt}/p_{0\infty}$ и $(0,006 - 0,007) p_{\text{Pt}}/p_{0\infty}$ соответственно). Такое существенное превышение позволяет, во-первых, считать подтвержденным фактом наличие высоконапорного слоя в области присоединения, а во-вторых, отметить, что само значение измеренного полного давления $p_{\rm Pt}$ в данной области существенно выше, чем в случае присоединения потока без формирования этого слоя.

Заключение

Показано влияние зонда полного давления на результаты измерения в сверхзвуковом пограничном слое. Оно может проявляться как в виде смещения профиля пограничного слоя к стенке, так и в виде появления локального максимума полного давления в верхней области профиля. Во втором случае локальный максимум заметен при толщине пограничного слоя порядка трех – пяти высот зонда, а при десяти и выше высот он уже не наблюдается. Это обстоятельство следует учитывать при постановке эксперимента и при трактовке результатов в областях с тонким пограничным слоем, таких как передняя кромка модели или зона присоединения потока. При измерении высоконапорного слоя, формирующегося в зоне присоединения сверхзвукового ламинарного отрывного течения, разница измеренного полного давления между максимумом в слое и величиной за скачком присоединения примерно в 7-8 раз выше, чем ошибка измерения, вызванная внесением зонда в пограничный слой.

Список литературы

- 1. Чжен П. Отрывные течения. М.: Мир, 1972. В 3 т. Т. 1, 299 с., Т. 2, 280 с., Т. 3, 333 с.
- **2. Боровой В.Я.** Течение газа и теплообмен в зонах взаимодействия ударных волн с пограничным слоем. М.: Машиностроение, 1983. 144 с.
- Marini M. Analysis of hypersonic compression ramp laminar flows under sharp leading edge conditions // Aerospace Sci. and Technology. 2001. Vol. 5, No. 4. P. 257–271.
- Markelov G., Kudryavtsev A., Ivanov M. Continuum and kinetic simulation of laminar separated flow at hypersonic speeds // J. Spacecraft and Rockets. 2000. Vol. 37, No. 4. P. 499–506.
- 5. Запрягаев В.И., Кавун И.Н., Липатов И.И. Возникновение высоконапорного слоя в угле сжатия при сверхзвуковой скорости потока // Изв. РАН. Механика жидкости и газа. 2014. № 6. Р. 135–144.
- 6. Zapryagaev V.I., Kavun I.N., Trubitsyna L.P. Dynamic layer formation in the reattachment zone for a supersonic laminar separated flow // Proc. Inst. of Mechanical Engineers, Part G. J. Aerospace Engng. 2019. P. 1–13.

- Zapryagaev V.I., Kavun I.N., Trubitsyna L.P. Reattachment of a laminar separated flow at a hypersonic velocity of the flow // J. Applied Mechanics and Technical Physics. 2020. Vol. 61, No. 5. P. 710–716.
- Chetverushkin B.N., Khankhasaeva Y.V., Lutskii A.E. Compact quasi-gas-dynamic system and high performance computing // J. Computational and Applied Mathematics. 2020. Vol. 375. P. 1–9.
- Kavun I.N., Lipatov I.I., Zapryagaev V.I. Flow effects in the reattachment region of supersonic laminar separated flow // Intern. J. Heat and Mass Transfer. 2019. Vol. 129. P. 997–1009.
- Morkovin M.V., Bradfield W.S. Probe interference in measurements in supersonic laminar boundary layers // J. Aeronautical Sci. 1954. Vol. 21, No. 11. P. 785–787.
- Monaghan R.J. The use of pitot tubes in the measurement of laminar boundary layers in supersonic flow // RAE Technical Note No. Aero 2369. Ministry of Supply, Royal Aircraft Establishment, RAE Farnborough, 1955. 23 p.
- 12. Chue S.H. Pressure probes for fluid measurement // Progress in Aerospace Sci. 1975. Vol. 16, No. 2. P. 147-223.
- 13. Горлин С.М., Слезингер И.И. Аэромеханические измерения: методы и приборы. М.: Наука, 1964. 720 с.
- 14. Allen J.M. Pitot-probe displacement in a supersonic turbulent boundary layer // AIAA J. 1972. Vol. 10, No.4. P. 555–557.
- 15. Повх И.Л. Аэродинамический эксперимент в машиностроении. Л.: Машиностроение, 1974. 480 с.
- 16. Харитонов А.М. Техника и методы аэрофизического эксперимента. Новосибирск: НГТУ, 2011. 642 с.
- 17. Запрягаев В.И., Кавун И.Н., Певзнер А.С., Тютин А.А., Яковлева Н.В. Автоматизированное рабочее место оператора гиперзвуковой аэродинамической трубы Т-326 // Информационные и математические технологии в науке и управлении. 2017. № 2 (6). С. 132–142.
- 18. Волков К.Н., Емельянов В.Н., Кавун И.Н., Тетерина И.В. Визуализация данных физического и математического моделирования в газовой динамике. М.: Физматлит, 2018. 274 с.
- **19.** Петунин А.Н. Методы и техника измерений параметров газового потока: (приёмники давления и скоростного напора). М.: Машиностроение, 1972. 168 с.
- 20. Шустов В.И. Определение поля давления с помощью трубки Пито в сверхзвуковых потоках с ударными волнами // Уч. записки ЦАГИ. 1974. Т. 5, № 3. С. 123–126.
- Edney B.E. Effects of shock impingement on the heat transfer around blunt bodies // AIAA J. 1968. Vol. 6, No. 1. P. 15–21.

Статья поступила в редакцию 20 августа 2021 г., после доработки — 11 октября 2021 г., принята к публикации 20 октября 2021 г.