УДК 532.526

# Численное исследование влияния локальной инжекции инородного газа на линейную устойчивость сжимаемого пограничного слоя<sup>\*</sup>

Морозов С.О., Лукашевич С.В., Шиплюк А.Н.

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: morozov@itam.nsc.ru

Работа посвящена численному исследованию влияния инжекции инородного газа на устойчивость сжимаемого пограничного слоя на вогнутой поверхности. Расчет устойчивости выполнен в рамках локальнопараллельной линейной теории устойчивости. Результаты расчетов для базового случая (без инжекции) показали, что вихри Гёртлера и вторая мода Мэка имеют наибольшие степени роста при исследуемых параметрах. Обнаружено, что инжекция тяжелого газа (относительно набегающего газа) приводит к увеличению степеней роста вихрей Гёртлера и второй моды Мэка, а инжекция легкого газа — к уменьшению степеней роста данных возмущений.

Ключевые слова: сжимаемый пограничный слой, ламинарно-турбулентный переход, линейная теория устойчивости, вихри Гёртлера, вторая мода Мэка.

# Введение

Ламинарно-турбулентный переход сжимаемого пограничного слоя в условиях низкого уровня пульсаций потока и малой шероховатости поверхности происходит из-за экспоненциального нарастания изначально малых возмущений. В двумерном безградиентном сжимаемом пограничном слое наиболее нарастающими являются возмущения первой и второй моды Мэка [1, 2]. Для стабилизации пограничного слоя в условиях доминирования первой моды Мэка можно использовать охлаждение поверхности [2], инжекцию тяжелого газа [3] или сублимирующее покрытие [4]; в условиях доминирования второй моды Мэка — пористое покрытие [5, 6], локальный нагрев поверхности [7] или инжекцию легкого газа [8, 9]. Для пограничного слоя на вогнутой поверхности характерно нарастание вихрей Гёртлера. В работе [10] для малых скоростей потока было найдено, что в несжимаемом пограничном слое можно стабилизировать нестационарные вихри Гёртлера путем введения стационарных ненарастающих вихрей Гёртлера. Авторами данной работы для сжимаемого пограничного слоя на вогнутой поверхности был

<sup>\*</sup> Исследование выполнено за счет гранта РНФ (проект № 21-19-00393).

<sup>©</sup> Морозов С.О., Лукашевич С.В., Шиплюк А.Н., 2023

показан стабилизирующий эффект локального нагрева поверхности [11]. В настоящей работе проводится исследование влияния локальной инжекции инородного газа на линейную устойчивость сжимаемого пограничного слоя на вогнутой поверхности.

## Постановка задачи

Исследование устойчивости сжимаемого пограничного слоя проводилось на вогнутой поверхности (рис. 1) при числе Маха набегающего потока М  $\approx$  4,8. Температура поверхности модели  $T_{\rm w} \approx 0,8T_0$  являлась постоянной. На прямом участке модели развивался ламинарный пограничный слой, в который осуществлялась локальная инжекция инородного газа с поверхности. Отношение толщины пограничного слоя на конце прямого участка к радиусу кривизны вогнутой поверхности составляло менее 0,001.

Расчет пограничного слоя идеального сжимаемого газа проводился в программе Fluent пакета Ansys. На рис. 1 цифрами 1–4 обозначены границы области расчета. На границах 1, 2 задавалось условие равномерного потока воздуха, направленного параллельно прямому участку поверхности. На границе 3 устанавливалось условие истечения в вакуум. Граница 4 соответствовала твердой поверхности с условием прилипания и постоянной температурой. Инжектируемый в пограничный слой газ (гелий Не или элегаз SF<sub>6</sub>) задавался постоянным массовым расходом на прямом участке, показанном на рис. 1.

Расчетная сетка имела в продольном направлении 2000 узлов со сгущением к передней кромке и дальнейшим переходом с места инжекции к равноудаленным узлам. На пограничный слой приходилось от 30 до 60 равноудаленных расчетных узлов в зависимости от координаты модели и случая инжекции. Расчетные узлы сетки в пограничном слое располагались ортогонально поверхности.

Вязкость воздуха (набегающего потока) рассчитывалась по формуле Сазерленда, теплопроводность — по кинетической теории. Вязкость и теплопроводность инжектируемого газа рассчитывались по кинетической теории.

Устойчивость пограничного слоя рассматривалась в рамках линейной теории устойчивости в локально-параллельной постановке. Система линейных уравнений на возмущения решалась методом коллокаций. На поверхности модели и на достаточно большом удалении от границы пограничного слоя на возмущения накладывались нулевые граничные условия. Подробное описание системы уравнений и методики расчета приведено в работе [12]. В представленном исследовании в систему уравнений, взятых из работы [12], добавлены слагаемые, отвечающие за кривизну поверхности (как в работе [13]), а также слагаемые, отвечающие за пульсации концентрации инородного газа (как в работе [3]).

#### Результаты

При обтекании модели, изображенной на рис. 1, в месте перехода с прямой поверхности на вогнутую, а также на вогнутой поверхности пограничный слой развивается в градиентном потоке. На рис. 2 показана зависимость давления на границе пограничного



слоя P, нормированного на давление набегающего потока  $P_{\infty}$ , от продольной

Рис. 1. Схематичное изображение расчетной области. 1-4 — границы области расчета.

| Рис. 2. Зависимость давления    |
|---------------------------------|
| на границе пограничного слоя    |
| от продольной координаты модели |

координаты x, нормированной на протяженность поверхности модели L = 0,4 м. Граница пограничного слоя определялась по производной числа Маха: первая от поверхности координата, при которой производная числа Маха меньше 0,5 % от ее максимального значения в пограничном слое. В месте перехода от прямой к вогнутой форме поверхности поток поворачива-



ет около тупого угла и происходит его ускорение с одновременным уменьшением давления. На вогнутой поверхности имеет место торможение потока, при этом давление увеличивается. В такой конфигурации модели возможен отрыв пограничного слоя из-за положительного градиента давления, однако в данном случае отрыва не наблюдалось.

На рис. З приведены профили скорости и плотности инородного газа в пограничном слое на вогнутой поверхности без инжекции газа (базовый случай) и с инжекцией гелия (He) и элегаза (SF<sub>6</sub>) при x = 0,45 и 0,8. Координата y нормирована на протяженность поверхности модели L. Скорость и плотность нормированы на соответствующие значения скорости и плотности в набегающем потоке. Массовый расход инжектируемого







Рис. 4. Зависимости толщины вытеснения (δ\*) и толщины потери импульса (δ\*\*) от продольной координаты модели, а также зависимость числа Гёртлера (G) на вогнутой поверхности от продольной координаты модели. Обозначения см. на рис. 3.

газа q нормирован на расход воздуха в пограничном слое. Из рис. 3a и 3b видно, что при инжекции He профиль скорости становится более наполненным, а при инжекции SF<sub>6</sub> — менее наполненным, чем в базовом случае. Плотность поверхности модели уменьшается при инжекции He и увеличивается при инжекции SF<sub>6</sub> относительно базового случая.

На рис. 4*a* показана зависимость толщины вытеснения  $\delta^*$  и толщины потери импульса  $\delta^{**}$  от продольной координаты модели *x*. Величины  $\delta^*$  и  $\delta^{**}$  нормированы на *L*. Видно, что инжекция как гелия, так и элегаза приводит к увеличению толщины вытеснения. Толщина потери импульса в случае инжекции гелия уменьшается, а при инжекции элегаза увеличивается. Число Гёртлера, определенное по толщине потери импульса, при инжекции гелия уменьшается, а при инжекции элегаза увеличивается (рис. 4*b*).

На рис. 5 показаны зависимости степени роста ( $-\alpha_i^{**}$ ) стационарных вихрей Гёртлера от поперечного волнового числа ( $\beta^{**}$ ). Оба параметра обезразмерены по толщине потери импульса  $\delta^{**}$ . В случае инжекции легкого газа (Не) максимальная степень роста вихрей Гёртлера уменьшается при увеличении расхода до q = 0,28, а область поперечных волновых чисел неустойчивых возмущений уменьшается. При x = 0,45 максимальная



*Рис. 5.* Зависимость степени роста вихрей Гёртлера от поперечного волнового числа при x = 0.45 (*a*) и 0.8 (*b*).

1 — без инжекции, 2, 3 — с инжекцией гелия с q = 0,09 и 0,28 соответственно, 4, 5 — с инжекцией элегаза с q = 2,3 и 4,6 соответственно.



Обозначения см. на рис. 5.

степень роста меньше примерно в 1,2 и 1,8 раза, при x = 0,8 — в 1,05 и 1,2 раза при q = 0,09 и 0,28 соответственно. Инжекция тяжелого газа (SF<sub>6</sub>) приводит к увеличению максимальной степени роста при x = 0,45 примерно в 1,5 и 2,1 раза, а при x = 0,8 — в 1,2 и 1,4 раза при q = 2,3 и 4,6 соответственно.

На рис. 6 представлены зависимости степени роста двумерных возмущений ( $\beta^{**} = 0$ ) от частоты  $\omega^{**}$ , где  $\omega^{**} = 2\pi \delta^{**}/(U_e f)$  — безразмерная частота,  $U_e$  — скорость на границе пограничного слоя, f — размерная частота. В базовом случае сильнее всего нарастают двумерные возмущения в частотных диапазонах  $\omega^{**} \approx 0,07-0,105$  и  $\omega^{**} \approx 0,09-0,13$  при x = 0,45 и 0,8 соответственно. Данные возмущения имеют акустическую природу и относятся к так называемой второй моде по классификации Мэка. В случае инжекции тяжелого газа (SF<sub>6</sub>) степень роста второй моды при x = 0,45 увеличивается примерно в 2 и 2,9 раза, а при x = 0,8 — в 1,4 и 1,8 раза при q = 2,3 и 4,6 соответственно. Частотный диапазон неустойчивых возмущений при этом расширяется. Также при x = 0,45 в случае инжекции SF<sub>6</sub> появляются неустойчивые возмущения в область частот  $\omega^{**} = 0,2-0,22$ . Инжекция легкого газа (He) приводит к практически полной стабилизации двумерных возмущений при x = 0,45 и к уменьшению максимальной степени роста при x = 0,8 примерно в 1,35 и 2,6 раза при q = 0,09 и 0,28 соответственно. Частотный диапазон неустойчивых возмущений сужается.

### Выводы

Проведено численное исследование влияния инжекции инородного газа на устойчивость сжимаемого ламинарного пограничного слоя на вогнутой поверхности при числе Маха ≈ 4,8. Ламинарный пограничный слой определен с помощью численного моделирования двумерных уравнений Навье–Стокса для идеального газа в программе Fluent. Показано, что инжекция инородного более легкого газа, чем набегающий поток воздуха, влечет за собой увеличение толщины вытеснения ламинарного пограничного слоя и уменьшение толщины потери импульса. Инжекция более тяжелого газа приводит к незначительному увеличению толщины вытеснения и к существенному увеличению толщины потери импульса при рассматриваемых значениях инжекции.

Расчет устойчивости полученного ламинарного пограничного слоя выполнен в рамках линейной теории устойчивости. Показано, что при исследуемых параметрах локальная инжекция легкого газа приводит к уменьшению степеней роста вихрей Гёртлера и второй моды Мэка. Области неустойчивых длин волн вихрей Гёртлера и частот второй моды Мэка существенно сужаются при инжекции легкого газа. Инжекция тяжелого газа приводит к увеличению степеней роста вихрей Гёртлера и второй моды Мэка, а также к расширению диапазона неустойчивых длин волн и частот.

# Список литературы

- 1. Mack L.M. Linear stability theory and the problem of supersonic boundary layer transition // AIAA. J. 1975. Vol. 13, No. 3. P. 278–289.
- 2. Гапонов С.А., Маслов А.А. Развитие возмущений в сжимаемых потоках. Новосибирск: Наука, 1980. 144 с.
- 3. Гапонов С.А., Ермолаев Ю.Г., Зубков Н.Н., Косинов А.Д., Лысенко В.И., Смородский Б.В., Яцких А.А. Исследование влияния вдува тяжелого газа в сверхзвуковой пограничный слой на его ламинарнотурбулентный переход // Изв. РАН. Механика жидкости и газа. 2017. № 6. С. 61–69.
- 4. Гапонов С.А., Смородский Б.В. Устойчивость сверхзвукового пограничного слоя на поверхности с сублимирующим покрытием // Теплофизика и аэромеханика. 2020. Т. 27, № 2. С. 213–226.
- 5. Фомин В.М., Федоров А.В., Козлов В.Ф., Шиплюк А.Н., Маслов А.А., Буров Е.В., Малмут Н.Д. Стабилизация гиперзвукового пограничного слоя поглощающими ультразвук покрытиями с регулярной микроструктурой // Докл. РАН. 2004. Т. 399, № 5. С. 633–637.
- 6. Морозов С.О., Лукашевич С.В., Судаков В.Г., Шиплюк А.Н. Экспериментальное исследование влияния малых углов атаки и затупления носика конуса на стабилизацию гиперзвукового пограничного слоя пассивным пористым покрытием // Теплофизика и аэромеханика. 2018. Т. 25, № 6. С. 825–832.
- Fedorov A.V., Soudakov V., Egorov I., Sidorenko A.A., Gromyko Y.V., Bountin D.A., Polivanov P.A., Maslov A.A. High-speed boundary-layer stability on a cone with localized wall heating or cooling // AIAA J. 2015. Vol. 53, No. 9. P. 2512–2524.
- Miró Miró F., Pinna F. Injection-gas-composition effects on hypersonic boundary-layer transition // J. Fluid Mech. 2020. Vol. 890. P. 1–14.
- **9. Морозов С.О., Смородский Б.В., Шиплюк А.Н.** Устойчивость пограничного слоя на пластине при числе *m* = 5,4 с локальной инжекцией легкого газа // Динамика многофазных сред: XVII Всерос. семинар с междунар. участием (Новосибирск, 27 авг. – 4 сент. 2021 г.): тез. докл. Новосибирск: ИТПМ СО РАН, 2021. С. 91.
- 10. Бородулин В.И., Иванов А.В., Качанов Ю.С., Мищенко Д.А. Систематическое исследование механизма управления развитием нестационарных гёртлеровских мод с помощью стационарных вихрей Гёртлера // XII Всеросс. съезд по фундаментальным проблемам теоретической и прикладной механики. Уфа, 19–24 авг. 2019 г.): сб. тр. в 4 т. Т. 2. Механика жидкости и газа. Уфа.: РИЦ БашГУ, 2019. С. 514–515.
- 11. Морозов С.О., Шиплюк А.Н. Исследование влияния локального изменения температуры поверхности на устойчивость ламинарного пограничного слоя в гиперзвуковом сопле // Теплофизика и аэромеханика. 2020. Т. 27, № 5. С. 665–674.
- Boiko A.V., Demyanko K.V., Nechepurenko Y.M. On computing the location of laminar-turbulent transition in compressible boundary layers // Russ. J. Numerical Analysis and Mathematical Modelling. 2017. Vol. 32, No. 1. P. 1–12.
- Spall R.E., Malik M.R. Goertler vortices in supersonic and hypersonic boundary layers // Physics of Fluids A. 1989. Vol. 1, No. 11. P. 1822–1835.

Статья поступила в редакцию 27 октября 2022 г., после доработки — 15 ноября 2022 г., принята к публикации 8 декабря 2022 г.