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Рассматривается краевая задача для нелинейной модели массопереноса, обобщающей
классическое приближение Буссинеска при неоднородных граничных условиях Дирихле
для скорости и смешанных краевых условиях для концентрации вещества. Предполага-
ется, что коэффициенты вязкости и диффузии, а также сила плавучести в уравнениях
модели зависят от концентрации. Разрабатывается математический аппарат для ис-
следования рассматриваемой задачи. На его основе доказывается теорема о глобальном
существовании слабого решения, приводятся достаточные условия для данных задачи,
обеспечивающие локальную единственность слабых решений.

Ключевые слова: обобщенная модель массопереноса Буссинеска, бинарная жидкость,
неоднородные граничные условия, глобальная разрешимость, локальная единственность

Введение. В последнее время активно проводятся исследования качественных свойств
решений уравнений тепломассопереноса с переменными коэффициентами, зависящими от
температуры или концентрации растворенного вещества. Работы в этой области можно
разделить на несколько направлений: 1) развитие методов нахождения точных решений
указанных уравнений (см. [1–5]); 2) изучение качественных свойств решений уравнений
тепломассопереноса с помощью метода Ли — Овсянникова (см., например, [6–8]); 3) ана-
лиз разрешимости и единственности решений краевых задач для указанных выше уравне-
ний. Работы [9–13] посвящены теоретическому анализу краевых задач для стационарных
уравнений тепломассопереноса с переменными коэффициентами при однородных и неод-
нородных краевых условиях Дирихле для всех переменных. Настоящая работа является
продолжением работ [11, 13], в которых исследовалась разрешимость задачи Дирихле для
модели массопереноса Буссинеска с переменными коэффициентами. В отличие от [11, 13] в
данной работе изучается новая краевая задача для модели Буссинеска с переменными коэф-
фициентами, описывающая течение бинарной жидкости при смешанных краевых условиях
для концентрации. На основе разработанного математического аппарата доказываются ее
глобальная разрешимость и локальная единственность решения.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (со-
глашение № 075-02-2024-1440 от 28.02.2024 по реализации программ развития региональных научно-
образовательных математических центров).
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Геометрия области течения в случае цилиндрического канала с двумя препятствия-
ми Γ1 и Γ2 внутри него при неоднородных граничных условиях для скорости и тем-
пературы на входе Γin и выходе Γout

1. Постановка основной задачи. Функциональные пространства. Пусть Ω —
ограниченная область в пространстве R3 с липшицевой границей Γ, состоящей из двух
участков: ΓD и ΓN . Рассматривается следующая краевая задача, описывающая движение
бинарной жидкости в рамках обобщенной модели Буссинеска для массопереноса [14]:

− div (ν(ϕ)∇u) + (u · ∇)u +∇p = f + b(ϕ)ϕG, div u = 0 в Ω; (1.1)

− div (λ(ϕ)∇ϕ) + (u · ∇)ϕ = f в Ω; (1.2)

u
∣∣
Γ

= g, ϕ
∣∣
ΓD

= ψ,
∂ϕ

∂n

∣∣∣
ΓN

= χ. (1.3)

Здесь u — вектор скорости; ϕ — концентрация растворенного вещества; p = P/ρ0; P —
давление; ρ0 = const — плотность жидкости; ν = ν(ϕ) > 0 — коэффициент кинемати-
ческой (молекулярной) вязкости; λ = λ(ϕ) > 0 — коэффициент диффузии; b ≡ b(ϕ) —
коэффициент массового расширения; G = −(0, 0, G) — гравитационное ускорение; f , f —
объемные плотности внешних сил и внешних источников вещества соответственно. Ниже
задачу (1.1)–(1.3) для заданных функций ν(ϕ), λ(ϕ), b(ϕ), k, f , f , g, ψ, χ будем называть
задачей 1.

В отличие от [9, 11] в данной работе рассматриваются неоднородные граничные усло-
вия для скорости и концентрации. Это позволяет применить разрабатываемую теорию

для широкого класса физически содержательных задач, в частности для задачи о течении
бинарной жидкости в канале (см. рисунок).

При изучении задачи 1 будем использовать пространства Соболева Hs(D), s ∈ R.
При этом D означает либо область Ω, либо подмножество Q ⊂ Ω, либо границу Γ. Через
‖ · ‖s,Q, | · |s,Q и ( · , · )s,Q обозначены норма, полунорма и скалярное произведение в Hs(Q)
соответственно. Нормы и скалярное произведение в L2(Q) или в L2(Ω) обозначаются через
‖ · ‖Q, ( · , · )Q или ‖ · ‖Ω, ( · , · ). Через X∗ обозначено пространство, двойственное гиль-
бертову пространству X, запись 〈 · , · 〉 означает отношение двойственности для пары X
и X∗.

Введем следующие функциональные пространства:

H1
div(Ω) = {v ∈ H1(Ω): div v = 0}, H1

0 (Ω) = {h ∈ H1(Ω): h
∣∣
Γ

= 0},
L2

0(Ω) = {h ∈ L2(Ω): (h, 1) = 0}, V = {v ∈ H1
0 (Ω)3: div v = 0},

T = {h ∈ H1(Ω): h
∣∣
ΓD

= 0}.
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Заметим, что каждое из пространств H1(Ω), H1
0 (Ω), T является гильбертовым по

норме ‖ · ‖1,Ω. Определим произведения пространств X = H1
0 (Ω)3 × T и W = V × T ⊂ X

с нормой ‖x‖2
X = ‖u‖2

1,Ω + ‖ϕ‖2
1,Ω для x ≡ (u, ϕ) ∈ X и обозначим через X∗ пространство

H−1(Ω)3 ×H−1(Ω), двойственное X.
Далее предполагается, что выполняются следующие условия.
1.1. Ω — ограниченная область в R3 с границей Γ ∈ C0,1, состоящей из N связных

компонент Γ(i), i = 1, 2, . . . , N , открытые участки ΓD и ΓN границы Γ удовлетворяют

условиям Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = 0, meas ΓD > 0.
1.2. f ∈ H−1(Ω)3, f ∈ T ∗, ψ ∈ H1/2(ΓD), χ ∈ L2(ΓN ).

1.3. g ∈ H1/2(Γ)3, (g,n)
Γ(i) = 0, i = 1, 2, . . . , N , g · n|ΓN

> 0.

1.4. Для любой функции ϕ ∈ H1(Ω) справедливо вложение b(ϕ) ∈ Lp(Ω), где p > 3/2 —
фиксированное число, не зависящее от ϕ, векторная функция b(ϕ) ≡ b(ϕ)G удовлетворяет

условию

‖b(ϕ)‖Lp(Ω)3 6 β̂p ∀ϕ ∈ H1(Ω), p > 3/2. (1.4)

Здесь β̂p — положительная константа, зависящая от p. Кроме того, для любой пары функ-
ций ϕ1, ϕ2 ∈ H1(Ω), принадлежащих шару Br = {ϕ ∈ H1(Ω): ‖ϕ‖1,Ω 6 r} радиусом r,
справедливо неравенство

‖b(ϕ1)− b(ϕ2)‖Lp(Ω) 6 Lb‖ϕ1 − ϕ2‖L4(Ω) ∀ϕ1, ϕ2 ∈ Br, (1.5)

где Lb — константа, которая зависит от b и r, но не зависит от ϕ1, ϕ2 ∈ Br.
1.5. ν ∈ C0(R), λ ∈ C0(R), и существуют константы νmin, νmax, λmin и λmax, такие что

0 < νmin 6 ν(τ) 6 νmax, 0 < λmin 6 λ(τ) 6 λmax ∀τ ∈ R.
Ниже используются следующие неравенства:

‖ϕ‖Ls(Ω) 6 Cs‖ϕ‖1,Ω ∀ϕ ∈ H1(Ω), 1 6 s 6 6; (1.6)

‖u‖Ls(Ω)3 6 Cs‖u‖1,Ω ∀u ∈ H1(Ω)3, 1 6 s 6 6; (1.7)

|(ϕq,v)| 6 Ĉp‖q‖Lp(Ω)‖ϕ‖1,Ω‖v‖1,Ω ∀q ∈ Lp(Ω)3, ϕ ∈ H1(Ω), v ∈ H1(Ω)3; (1.8)

|(qϕ, h)| 6 Ĉp‖q‖Lp(Ω)‖ϕ‖1,Ω‖h‖1,Ω ∀q ∈ Lp(Ω), ϕ, h ∈ H1(Ω). (1.9)

Здесь Cs — константа, зависящая от Ω; s ∈ [1, 6]; Cp — константа, зависящая от Ω и p при
p > 3/2 (см. [13]). Из оценки (1.8) и свойства (1.5) для b(ϕ) следует оценка для разности
b(ϕ1)− b(ϕ2):

|((b(ϕ1)− b(ϕ2))ϕ,v)| 6 Ĉp ‖b(ϕ1)− b(ϕ2)‖Lp(Ω) ‖ϕ‖1,Ω ‖v‖1,Ω 6

6 ĈpLb ‖ϕ1 − ϕ2‖L4(Ω) ‖ϕ‖1,Ω ‖v‖1,Ω ∀ϕ, ϕ1, ϕ2 ∈ H1(Ω), v ∈ H1
0 (Ω)3. (1.10)

Наряду с неравенствами (1.6)–(1.9) будем использовать другие важные неравенства и
свойства билинейных и трилинейных форм. Запишем их в виде следующей леммы. Дока-
зательство леммы следует из результатов, полученных в [15–17].

Лемма. Пусть выполняются условия 1.1, 1.4, 1.5 и u ∈ H1
div(Ω) — заданная функция.

Тогда существуют положительные константы δ0, δ1, γ1, γ
′
1, γ2, γ

′
2, γ3, зависящие от Ω,

и константа βp, зависящая от Ω, p, такие что выполняются следующие соотношения:

|(ν(ϕ)∇u,∇v)| 6 νmax ‖u‖1,Ω ‖v‖1,Ω ∀u,v ∈ H1(Ω)3, ϕ ∈ H1(Ω); (1.11)

(∇v,∇v) > δ0 ‖v‖2
1,Ω, (ν(ϕ)∇v,∇v) > ν∗ ‖v‖2

1,Ω ∀v ∈ H1
0 (Ω)3, ϕ ∈ H1(Ω); (1.12)
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|((w · ∇)u,v)| 6 γ′1 ‖w‖L4(Ω)3 ‖u‖1,Ω ‖v‖1,Ω 6 γ1 ‖w‖1,Ω ‖u‖1,Ω ‖v‖1,Ω

∀w,u,v ∈ H1(Ω)3;
(1.13)

((u · ∇)v,w) = −((u · ∇)w,v) ∀v ∈ H1
0 (Ω)3, w ∈ H1(Ω)3; (1.14)

|(λ(η)∇ϕ,∇h)| 6 λmax ‖η‖1,Ω ‖ϕ‖1,Ω ‖h‖1,Ω ∀ϕ, η, h ∈ H1(Ω); (1.15)

(∇h,∇h) > δ1 ‖h‖2
1,Ω, (λ(ϕ)∇h,∇h) > λ∗ ‖h‖2

1,Ω ∀ϕ ∈ H1(Ω), h ∈ T ; (1.16)

|(w · ∇ϕ, h)| 6 γ′2 ‖w‖L4(Ω)3 ‖ϕ‖1,Ω ‖h‖1,Ω 6 γ2 ‖w‖1,Ω ‖ϕ‖1,Ω ‖h‖1,Ω

∀w ∈ H1(Ω)3, ϕ, h ∈ H1(Ω);
(1.17)

|(u · ∇ϕ, h)| 6 ‖u‖1,Ω ‖ϕ‖L4(Ω) ‖h‖1,Ω ∀ϕ ∈ H1(Ω), h ∈ T ; (1.18)

|(b(η)ϕ,v)| 6 βp ‖ϕ‖1,Ω ‖v‖1,Ω ∀η, ϕ ∈ H1(Ω), v ∈ H1
0 (Ω)3. (1.19)

Здесь ν∗ = δ0νmin; λ∗ = δ1λmin; βp = β̂pĈ6; константы νmin, λmin определены в условии 1.5,

а константы β̂p, Ĉ6 — в (1.4), (1.9).
2. Глобальная разрешимость задачи 1. Сформулируем слабую постановку зада-

чи 1. Для этого умножим первое уравнение в (1.1) на функцию v ∈ V , уравнение (1.2) —
на h ∈ T и проинтегрируем результат по Ω, используя формулы Грина. В результате

получаем слабую формулировку задачи 1, заключающуюся в нахождении пары функций
(слабого решения) (u, ϕ) ∈ H1(Ω)3 ×H1(Ω), удовлетворяющих соотношениям

(ν(ϕ)∇u,∇v) + ((u · ∇)u,v) = 〈f ,v〉+ (b(ϕ)ϕ,v) ∀v ∈ V ; (2.1)

(λ(ϕ)∇ϕ,∇h) + (u · ∇ϕ, h) = 〈f, h〉+ (χ, h)ΓN
∀h ∈ T ; (2.2)

div u = 0 в Ω, u
∣∣
Γ

= g, ϕ
∣∣
ΓD

= ψ. (2.3)

Следует отметить, что тождества (2.1), (2.2) не содержат давление p, однако оно одно-
значно восстанавливается по известной паре (u, ϕ) ∈ H1(Ω)3×H1(Ω) с помощью теоремы
де Рама (см. [15, 16]).

Будем искать решение (u, ϕ) ∈ H1(Ω)3 ×H1(Ω) задачи (2.1)–(2.3) в виде u = u0 + ũ,
ϕ = ϕ0 + ϕ̃. Здесь ũ ∈ V , ϕ̃ ∈ T — новые искомые функции; u0 ≡ uε0 ∈ H1

div(Ω),
ϕ0 = ϕε0 ∈ H1(Ω) — значения при ε = ε0 лифтингов, т. е. надлежащих продолжений
граничных функций g и ψ внутрь Ω в виде функций uε и ϕδ, удовлетворяющих условиям

uε
∣∣
Γ

= g, ‖uε‖1,Ω 6 Cε ‖g‖1/2,Γ, |(v · ∇)uε,v)| 6 ε ‖g‖1/2,Γ ‖v‖2
1,Ω ∀v ∈ V,

ϕδ
∣∣
ΓD

= ψ, ‖ϕδ‖L4(Ω) 6 δ, ‖ϕδ‖1,Ω 6 Cψδ ≡Mδ(‖ψ‖1/2,Γ) ∀δ ∈ (0, 1],

Cε — константа, зависящая от ε и Ω;Mδ — семейство непрерывных неубывающих функций

Ψ: (0,∞) → (0,∞) с Ψ(0) = 0; Cψδ — константа, зависящая от δ и ψ. Значение ε0 для ε
выбирается таким образом, чтобы выполнялись условия

‖uε0‖1,Ω 6 Cε0 ‖g‖1/2,Γ, |((v · ∇)uε0 ,v)| 6 (ν∗/2) ‖v‖2
1,Ω ∀v ∈ V. (2.4)

Соответствующее значение δ0 параметра δ выбирается ниже. Подробное доказательство
существования гидродинамического uε либо температурного Tδ лифтинга с указанными
выше свойствами при выполнении условий g ∈ H1/2(Γ), (g,n)

Γ(i) = 0, i = 1, 2, . . . , N (см.

условие 1.3) и условия ψ ∈ H1/2(Γ) (см. условие 1.2) приведено в [16]. Следует отметить
также работу [18], в которой подробно обсуждаются вопросы, связанные с построением
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гидродинамических лифтингов, и связь этих вопросов с так называемой проблемой Лерэ
для уравнений Навье — Стокса для несжимаемой жидкости.

Подставляя введенное представление решения u в (2.1), (2.2), получаем следующие
соотношения относительно пары (ũ, ϕ̃):

(ν(ϕ0 + ϕ̃)∇ũ,∇v) + ((u0 · ∇)ũ,v) + ((ũ · ∇)u0,v) + ((ũ · ∇)ũ,v) = 〈f ,v〉 −

− (ν(ϕ0 + ϕ̃)∇u0,∇v)− ((u0 · ∇)u0,v) + (b(ϕ0 + ϕ̃)(ϕ0 + ϕ̃),v) ∀v ∈ V ; (2.5)

(λ(ϕ0 + ϕ̃)∇ϕ̃,∇h) + (u0 · ∇ϕ̃, h) + (ũ · ∇ϕ0, h) + (ũ · ∇ϕ̃, h) =

= 〈f, h〉+ (χ, h)ΓN
− (λ(ϕ0 + ϕ̃)∇ϕ0,∇h)− (u0 · ∇ϕ0, h) ∀h ∈ T . (2.6)

Для доказательства существования решения (ũ, ϕ̃) ∈ V × T задачи (2.5), (2.6) при-
меним теорему Шаудера о неподвижной точке. Для этого введем оператор F : W → W ,
действующий по формуле F (z) = y, где z = (w, η) — заданная пара переменных;
y = (ũ, ϕ̃) ∈ W — решение линейной задачи

aw,η1 (ũ,v) ≡ (ν(ϕ0 + η)∇ũ,∇v) + ((u0 · ∇)ũ,v) + ((ũ · ∇)u0,v) + ((w · ∇)ũ,v) =

= 〈f1,v〉+ (b(ϕ0 + η)(ϕ0 + ϕ̃),v) ∀v ∈ V ; (2.7)

aw,η2 (ϕ̃, h) ≡ (λ(ϕ0 + η)∇ϕ̃,∇h) + (u0 · ∇ϕ̃, h) + (w · ∇ϕ̃, h) =

= 〈f1, h〉 − (w · ∇ϕ0, h) ∀h ∈ T . (2.8)

Здесь функционалы f1: V → R и f1: T → R определяются формулами

〈f1,v〉 = 〈f ,v〉 − (ν(ϕ0 + η)∇u0,∇v)− ((u0 · ∇)u0,v); (2.9)

〈f1, h〉 = 〈f, h〉 − (λ(ϕ0 + η)∇ϕ0,∇h)− (u0 · ∇ϕ0, h). (2.10)

Используя (1.11)–(1.13), (1.15)–(1.19), (2.4), получаем

|(ν(ϕ0 + η)∇u0,∇v)| 6 νmaxCε0 ‖g‖1/2,Γ ‖v‖1,Ω ∀η ∈ T , v ∈ H1
0 (Ω)3; (2.11)

(ν(ϕ0 + η)∇v,∇v) > ν∗ ‖v‖2
1,Ω ∀η ∈ T , v ∈ V ; (2.12)

(ν(ϕ0 + η)∇v,∇v) + ((v · ∇)u0,v) > (ν∗/2) ‖v‖2
1,Ω ∀η ∈ T , v ∈ V ; (2.13)

|(λ(ϕ0 + η)∇ϕ0,∇h)| 6 λmax ‖ϕ0‖1,Ω ‖h‖1,Ω 6 λmaxC
ψ
δ ‖h‖1,Ω ∀η, h ∈ T ; (2.14)

|(λ(ϕ0 + η)∇h,∇h)| > λ∗ ‖h‖2
1,Ω ∀η, h ∈ T ; (2.15)

|((u0 · ∇)u0,v)| 6 γ1 ‖u0‖2
1,Ω ‖v‖1,Ω 6 γ1C

2
ε0
‖g‖2

1,Γ ‖v‖V ∀v ∈ V ; (2.16)

|(u0 · ∇ϕ0, h)| 6 γ2 ‖u0‖1,Ω ‖ϕ0‖1,Ω ‖h‖1,Ω 6 γ2 ‖u0‖1,ΩC
ψ
δ ‖h‖1,Ω, h ∈ T ; (2.17)

|(w · ∇ϕ0, h)| 6 γ′2 ‖w‖1,Ω ‖ϕ0‖L4(Ω) ‖h‖1,Ω 6 γ′2δ ‖w‖1,Ω ‖h‖1,Ω ∀w ∈ V, h ∈ T ; (2.18)

|(b(ϕ0 + η)(ϕ0 + ϕ̃),v)| 6 βp ‖ϕ0 + ϕ̃‖1,Ω ‖v‖1,Ω ∀η ∈ T , v ∈ V. (2.19)

Из (2.11), (2.14), (2.16), (2.17), (2.19) следует, что f1 ∈ H−1(Ω)3, f1 ∈ T ∗ и

‖f1‖−1,Ω 6 Mf1 ≡ ‖f‖−1,Ω +Mg, Mg = νmaxCε0 ‖g‖1/2,Γ + γ1C
2
ε0
‖g‖2

1/2,Γ; (2.20)

‖f1‖T ∗ 6 Mf1 = ‖f‖T ∗ + λmaxC
ψ
δ + γ2Cε0 ‖g‖1/2,ΓC

ψ
δ + γpC

ψ
δ . (2.21)
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Кроме того, форма aw,η2 : T × T , определенная в (2.8), непрерывна и коэрцитивна с кон-
стантой λ∗, введенной в (1.16), при этом выполняются оценки

aw,η2 (h, h) > λmin(∇h,∇h) > λ∗ ‖h‖2
1,Ω ∀h ∈ T ; (2.22)

|〈f1, h〉 − (w · ∇ϕ0, h)| 6 (Mf1 + γ′2δ ‖w‖1,Ω) ‖h‖1,Ω ∀h ∈ T . (2.23)

Тогда из теоремы Лакса — Мильграма следует, что для любой пары (w, η) ∈ V × T
существует единственное решение ϕ̃ = ϕ̃w,η ∈ T задачи (2.8), причем

‖ϕ̃‖1,Ω 6 c∗γ
′
2δ ‖w‖1,Ω + c∗Mf1 , c∗ = 1/λ∗. (2.24)

Вернемся к задаче (2.7), полагая ϕ̃ = ϕ̃w,η. Из (2.19), (2.20), (2.24) следует, что для
правой части задачи, полученной из задачи (2.7), справедливы неравенства

|〈f1,v〉 − (b(ϕ0 + η)(ϕ0 + ϕ̃),v)| 6 Mf1 + βp ‖ϕ0 + ϕ̃‖1,Ω ‖v‖1,Ω 6

6 [Mf1 + βp(c∗γ
′
2δ ‖w‖1,Ω + c∗M̃f1 + Cψδ )] ‖v‖1,Ω ∀v ∈ V.

Кроме того, из оценок (2.11)–(2.13) и второго тождества в (1.14) следует, что билинейная
форма aw,η1 : V × V → R, введенная в (2.7), непрерывна и коэрцитивна с константой ν∗/2.
Вновь применяя теорему Лакса — Мильграма, можно сделать вывод, что для любой пары
(w, η) ∈ V ×T существует единственное решение ũ ∈ V задачи (2.7) и выполняется оценка

(ν∗/2) ‖ũ‖1,Ω 6 βpc∗γ
′
2δ ‖w‖1,Ω + Uδ, Uδ ≡ βpc∗Mf1 + βpC

ψ
δ +Mf1 . (2.25)

Предположим, что ν∗ 6 2βpc∗γ
′
2, и выберем значение δ0 для δ из условия

βpc∗γ
′
2δ0 = ν∗/4, δ0 = ν∗/(4β0γ

′
2c∗). (2.26)

С учетом (2.26) из (2.25), (2.24) получаем

(ν∗/2) ‖ũ‖1,Ω 6 (ν∗/4) ‖w‖1,Ω + Uδ0 , ‖ϕ̃‖1,Ω 6 (ν∗/4βp) ‖w‖1,Ω + c∗Mf1 . (2.27)

Определим выпуклое замкнутое множество K в W формулами

K = {(w, η) ∈ W : ‖w‖1,Ω 6 Mu, ‖η‖1,Ω 6 Mϕ̃}; (2.28)

Mu = (4/ν∗)Uδ0 , Mϕ̂ = β−1
p Uδ0 + c0Mf1 . (2.29)

Введенный выше оператор F отображает множество K в себя. Следовательно, для любой
пары (w, η) ∈ K решение (ũ, ϕ̃) задачи (2.7), (2.8) удовлетворяет оценкам

‖ũ‖1,Ω 6 Mũ, ‖ϕ̃‖1,Ω 6 Mϕ̃, ‖ϕ0 + ϕ̃‖1,Ω 6 Mϕ ≡Mϕ̃ + Cψδ0
. (2.30)

Осталось доказать, что оператор F является непрерывным и компактным на введен-
ном множестве K. Для этого обозначим через zn = (wn, ηn), n = 1, 2, . . . произвольную
последовательность из K. Полагая yn ≡ (ũn, ϕ̃n) = F (zn), n = 1, 2, . . ., покажем, что из
последовательности yn можно выделить подпоследовательность, сходящуюся по норме X
к некоторому элементу y ∈ K.

В силу компактности вложений H1(Ω) ⊂ L4(Ω) и H1(Ω)3 ⊂ L4(Ω)3 существует подпо-
следовательность последовательности {zn} = {(wn, ηn)}, которую вновь обозначим через
{zn}, а также переменная z = (w, η) ∈ K, такие что

wn → w слабо в H1(Ω)3 и сильно в L4(Ω)3 при n→∞; (2.31)

ηn → η слабо в H1(Ω) и сильно в L4(Ω) при n→∞. (2.32)
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Пусть y ≡ (ũ, ϕ̃) = F (z). По построению, элемент y ∈ W является решением задачи

(2.7), (2.8), а элемент yn ≡ (ũn, ϕ̃n) ∈ W — решением задачи

awn,ηn
1 (ũn,v) ≡ (ν(ϕ0 + ηn)∇ũn,∇v) + ((u0 · ∇)ũn,v) + ((ũn · ∇)u0,v) +

+ ((wn · ∇)ũn,v) = 〈f ,v〉 − (ν(ϕ0 + ηn)∇u0,∇v)− ((u0 · ∇)u0,v) +

+ (b(ϕ0 + ηn)(ϕ0 + ϕ̃n),v) ∀v ∈ V ; (2.33)

awnηn
2 (ϕn, h) ≡ (λ(ϕ0 + ηn)∇ϕ̃n,∇h) + (u0 · ∇ϕ̃n, h) + (wn · ∇ϕ̃n, h) =

= 〈f, h〉 − (λ(ϕ0 + ηn)∇ϕ0,∇h)− (u0 · ∇ϕ0, h)− (wn · ∇ϕ0, h) ∀h ∈ T . (2.34)

Покажем, что ϕ̃n → ϕ̃ в H1(Ω) и ũn → ũ в H1(Ω)3 при n → ∞. Для этого вычтем
(2.7), (2.8) из (2.33), (2.34). После ряда преобразований получаем

awn,ηn
2 (ϕ̃n − ϕ̃, h) ≡ (λ(ϕ0 + ηn)∇(ϕ̃n − ϕ̃),∇h) + (wn · ∇(ϕ̃n − ϕ̃), h) +

+ (u0 · ∇(ϕ̃n − ϕ̃), h) = −((λ(ϕ0 + ηn)− λ(ϕ0 + η))∇(ϕ0 + ϕ̃),∇h)−

− ((wn −w) · ∇(ϕ0 + ϕ̃), h) ∀h ∈ T ; (2.35)

awn,ηn
1 (ũn − ũ,v) ≡ (ν(ϕ0 + ηn)∇(ũn − ũ),∇v) + (u0 · ∇)(ũn − u,v) +

+ (((ũn − ũ) · ∇)u0,v) + (((wn · ∇)(ũn − ũn),v)) =

= −((ν(ϕ0 + ηn)− ν(ϕ0 + η))∇(u0 + ũ),∇v)− (((wn −w) · ∇)ũ,v) +

+ (b(ϕ0 + ηn)(ϕ̃n − ϕ̃),v) + ((b(ϕ0 + ηn)− b(ϕ0 + η))(ϕ0 + ϕ̃),v) ∀v ∈ V. (2.36)

Используя (1.17), оценку в (2.30) для ‖ϕ0 + ϕ̃‖1,Ω и (2.31), находим

‖((wn −w) · ∇(ϕ0 + ϕ̃), h)‖ 6 γ′2 ‖wn −w‖L4(Ω) ‖ϕ0 + ϕ̃‖1,Ω ‖h‖1,Ω 6

6 γ′2Mϕ ‖wn −w‖L4(Ω)3 ‖h‖1,Ω → 0 при n→∞ ∀h ∈ T . (2.37)

Кроме того, из леммы Лебега о мажорантной сходимости следует

((λ(ϕ0 + ηn)− λ(ϕ0 + η))∇(ϕ0 + ϕ̃),∇h) ≡

≡
∫
Ω

(λ(ϕ0 + ηn)− λ(ϕ0 + η))∇(ϕ0 + ϕ̃) · ∇h dx→ 0 при n→∞ ∀h ∈ T . (2.38)

В этом случае из теоремы Лакса—Мильграма, примененной к задаче (2.35), в силу (2.37),
(2.38) следует, что ϕ̃n → ϕ̃ при n→∞. По аналогичной схеме доказывается, что ũn → ũ
при n→∞.

Таким образом, показано, что оператор F : W → W непрерывен и компактен на K.
В данном случае из теоремы Шаудера следует, что оператор F имеет неподвижную точку
y ≡ (ũ, ϕ̃) = F (z) ∈ K. Это означает, что пара u = u0 + ũ, ϕ = ϕ0 + ϕ̃ является решением
задачи (2.1)–(2.3) и справедливы оценки

‖u‖1,Ω 6 Mu ≡Mũ + Cε0 ‖g‖1/2,Γ, ‖ϕ‖1,Ω 6 Mϕ ≡Mϕ̃ + Cψδ0
. (2.39)

Случай, когда выполняется условие ν∗ > 2βpc∗γ
′
2, исследуется по аналогичной схеме.

Сформулируем полученные результаты в виде теоремы.
Теорема 1. Пусть выполняются условия 1.1–1.5. Тогда существует хотя бы одно

слабое решение (u, ϕ) ∈ H1(Ω)3 × H1(Ω) задачи (2.1)–(2.3), для которого справедливы
оценки (2.39).
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3. Условная единственность решения задачи. Докажем условную единствен-
ность слабого решения (u, ϕ) задачи 1 при условии, что компонента ϕ обладает дополни-
тельным свойством гладкости, а именно ϕ ∈ H2(Ω). Предположим в дополнение к усло-
вию 1.5, что для коэффициентов ν( · ) и λ( · ) выполняются следующие условия:

3.1. λ( · ) принадлежит C1(R) и 0 < λ′min 6 λ′(s) 6 λ′max ∀s ∈ R.
3.2. Функции ν, λ, λ′ непрерывны по Липшицу на R с константами Липшица Lν , Lλ,

L′
λ соответственно.

3.3. Γ ∈ C1,1, ΓD ∩ ΓN = ∅, f ∈ L2(Ω), ψ ∈ H3/2(ΓD), χ = 0.
Предварительно рассмотрим смешанную краевую задачу

∆ϕ = −f в Ω, ϕ
∣∣
ΓD

= 0,
∂ϕ

∂n

∣∣∣
ΓN

= 0, f ∈ L2(Ω). (3.1)

Известно, что при выполнении условий 1.1, 3.3 решение ϕ ∈ H2(Ω) задачи (3.1)
существует, единственно и для него справедлива оценка ‖ϕ‖2,Ω 6 CΩ ‖f‖Ω с констан-
той CΩ, не зависящей от f [19]. Отсюда следует, что норма ‖ϕ‖2,Ω в подпространстве

H̃2(Ω) = {ϕ ∈ H2(Ω): ϕ|ΓD
= 0, ∂ϕ/∂n|ΓN

= 0} эквивалентна норме ‖∆ϕ‖Ω, т. е. справед-
ливы следующие оценки:

‖∆h‖Ω 6 C̃1 ‖h‖2,Ω, ‖h‖2,Ω 6 C̃2 ‖∆h‖Ω ∀h ∈ H̃2(Ω). (3.2)

Здесь C̃i, i = 1, 2, . . . — положительные константы, зависящие от Ω.
Теорема 2. Пусть выполняются условия 1.1–1.5 и 3.1–3.3. Если существует сла-

бое решение (u, ϕ) ∈ H1(Ω)3 ∩ H2(Ω) задачи 1, удовлетворяющее условиям ‖u‖1,Ω < ε,
‖ϕ‖2,Ω < ε, то существует число ε > 0, такое что это решение единственно.
Доказательство. Предположим, что существует два слабых решения (ui, ϕi) ∈

H1(Ω)3 × H2(Ω), i = 1, 2 задачи (2.1)–(2.3). Тогда разности u ≡ u1 − u2 ∈ H1(Ω)3,
ϕ = ϕ1 − ϕ2 ∈ H̃2(Ω) удовлетворяют соотношениям

(ν(ϕ2)∇u,∇v) + ((u2 · ∇)u,v) = −((ν(ϕ1)− ν(ϕ2))∇u1,∇v) +

+ (b(ϕ2)ϕ,v) + (b(ϕ1)− b(ϕ2), ϕ1v)− ((u · ∇)u1,v) ∀v ∈ V ; (3.3)

−(λ(ϕ1)∆ϕ, h) = (λ′(ϕ1)∇ϕ1 · ∇ϕ, h)− (k(ϕ1)ϕ, h)− (u2 · ∇ϕ, h) +

+ (((λ′(ϕ1)− λ′(ϕ2))∇ϕ1 + λ′(ϕ2)∇ϕ) · ∇ϕ2, h) + ((λ(ϕ1)− λ(ϕ2))∆ϕ2, h)−

− (k(ϕ1)− k(ϕ2), ϕ2h)− (u · ∇ϕ1, h) ∀h ∈ L2(Ω). (3.4)

Полагая h = ∆ϕ в (3.4) и v = u в (3.3), получаем

−(λ(ϕ1)∆ϕ,∆ϕ) = (λ′(ϕ1)∇ϕ1 · ∇ϕ,∆ϕ)− (k(ϕ1)ϕ,∆ϕ)− (u2 · ∇ϕ,∆ϕ) +

+ (((λ′(ϕ1)− λ′(ϕ2))∇ϕ1 + λ′(ϕ2)∇ϕ) · ∇ϕ2,∆ϕ) +

+ ((λ(ϕ1)− λ(ϕ2))∆ϕ2,∆ϕ)− (k(ϕ1)− k(ϕ2), ϕ2∆ϕ)− (u · ∇ϕ1,∆ϕ); (3.5)

(ν(ϕ2)∇u,∇u) = −((ν(ϕ1)− ν(ϕ2))∇u1,∇u) +

+ (b(ϕ2)ϕ,u) + (b(ϕ1)− b(ϕ2), ϕ1u)− ((u · ∇)u1,u). (3.6)

Используя стандартные рассуждения, основанные на оценках каждого слагаемого в
(3.5), (3.6), с помощью неравенств, приведенных в п. 2, и оценок (3.2) находим следующие
неравенства:

ν∗ ‖u‖2
1,Ω 6 γ1 ‖u1‖1,Ω ‖u‖2

1,Ω + LνC̃2C̃4 ‖u1‖1,Ω ‖u‖1,Ω ‖∆ϕ‖Ω +

+ βpC̃2 ‖u‖1,Ω ‖∆ϕ‖Ω + LbĈpC̃2C̃4 ‖ϕ1‖2,Ω ‖∆ϕ‖1,Ω ‖u‖1,Ω; (3.7)
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λmin ‖∆ϕ‖2
Ω 6 a ‖∆ϕ‖2

Ω + C4C̃5 ‖ϕ1‖2,Ω ‖u‖1,Ω ‖∆ϕ‖Ω. (3.8)

Здесь константа a, зависящая от ϕ1, ϕ2, u2, определяется формулой

a = λ′maxC̃5C6 ‖ϕ1‖2,Ω + C4C̃5 ‖u2‖1,Ω + L′
λC̃2C̃4C̃

2
5 ‖ϕ1‖2,Ω ‖ϕ2‖2,Ω +

+ λ′maxC̃5C̃6 ‖ϕ2‖2,Ω + LλC̃2C̃4 ‖∆ϕ2‖Ω. (3.9)

Предположим, что константа a мала в том смысле, что a 6 (1/2)λmin. Тогда из (3.7), (3.8)
получаем последовательно неравенства

‖∆ϕ‖Ω 6 2λ−1
minC4C̃5 ‖ϕ1‖2,Ω ‖u‖1,Ω, ν∗ ‖u‖2

1,Ω 6 b ‖u‖2
1,Ω. (3.10)

Здесь константа b, зависящая от u1 и ϕ1, определяется формулой

b = γ1 ‖u1‖1,Ω + 2λ−1
minC4C̃5 ‖ϕ1‖2,Ω (LνC̃2C̃4 ‖u1‖1,Ω + βpC̃2 + LbĈpC̃2C̃4 ‖ϕ1‖2,Ω). (3.11)

Предположим в дополнение к условию a 6 λmin/2, что b < ν∗. Тогда из (3.2), (3.10)
получаем u = 0, ∆ϕ = 0 и ϕ = 0. Поскольку в силу (3.9), (3.11) условия a 6 λmin/2 и
b < ν∗ заведомо выполняются, если ‖ϕ‖2,Ω < ε и ‖u‖1,Ω < ε при некотором достаточно
малом ε > 0, теорема доказана.

Заключение. В работе исследована неоднородная краевая задача для стационарной
модели массопереноса Буссинеска в предположении, что коэффициенты ν, λ, b модели за-
висят от концентрации вещества. Установлены условия для указанных коэффициентов

и другие данные, обеспечивающие глобальную разрешимость задачи. Доказана условная
единственность слабого решения с дополнительным свойством гладкости для концентра-
ции.

Авторы выражают благодарность В. В. Пухначеву за ценные консультации по про-
блематике работы и полезные обсуждения полученных результатов.
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