2020

УДК 622.831.32

МОДЕЛИРОВАНИЕ РАЗВИТИЯ ТРЕЩИН В СЛОИСТОМ ПОРОДНОМ МАССИВЕ ПРИ ВЗРЫВЕ СКВАЖИННЫХ ЗАРЯДОВ И ГИДРОРАЗРЫВЕ

Е. Н. Шер

Институт горного дела им. Н. А. Чинакала СО РАН, E-mail: ensher@gmail.com, Красный проспект, 54, 630091, г. Новосибирск, Россия

Приведены расчетная схема и результаты расчетов развития разрушения в слоистом породном массиве при взрывных работах и гидроразрыве нефтяных пластов. Для нахождения напряженного состояния упругого породного массива с трещинами использовался метод граничных элементов в трехмерной постановке. Определено влияние прочностных свойств слоев массива на форму радиальных трещин, их размеры и площадь. Установлено, что наличие более прочной прослойки способствует уменьшению поперечного размера, развивающихся в ней трещин по сравнению с размером трещин в окружающем массиве, т. е. неравномерному разрушению массива вдоль скважины и возможному появлению негабаритов. Показана возможность корректировки формы трещин при изменении распределения взрывчатого вещества вдоль скважины. При гидроразрыве наличие ослабленной прослойки приводит к развитию трещины преимущественно вдоль нее.

Взрыв, горные породы, слоистый породный массив, скважинный заряд, радиальные трещины, гидроразрыв, форма трещин

DOI: 10.15372/FTPRPI20200604

Взрывные работы по добыче полезных ископаемых в горной промышленности проводятся в основном путем использования массовых взрывов. Во взрываемом блоке породного массива, согласно проектной сетке, предварительно пробуривается большое количество скважин. Такие параметры буровзрывных работ, как расстояние между скважинами в ряду и между рядами, распределение заряда вдоль скважины определяются размерами зон разрушения вокруг скважинных зарядов. Оценки размеров зон разрушения одиночных скважинных зарядов в однородном породном массиве приведены в [1-4]. Для более точной теоретической оценки этих размеров важно учитывать структуру взрываемого массива, так как нередко массив оказывается неоднородным по глубине и в нем могут быть более прочные или слабые пропластки. Аналогичная ситуация возникает при проведении гидроразрыва в слоистой горной породе.

РАЗВИТИЕ ТРЕЩИН ПРИ ВЗРЫВЕ УДЛИНЕННОГО ЗАРЯДА В СЛОИСТОЙ СРЕДЕ

При взрыве удлиненных шпуровых и скважинных зарядов в хрупкой монолитной горной породе основной объем разрушений приходится на зону радиальных трещин. Для оценки размеров и формы таких трещин в трехмерной постановке задачи разработана программа расчета развития системы равномерно распределенных по углу плоских радиальных трещин [5].

42

№ 6

Работа выполнена в рамках проекта ФНИ (№ гос. регистрации АААА-А17-117122090002-5).

Согласно зонной модели взрыва [6-8], после детонации заряда вглубь породы от скважины радиусом *a*₀ распространяется упругая волна сжатия и за ней фронт волны дробления. По мере ее распространения напряжения в упругой волне уменьшаются, фронт волны дробления затормаживается. При снижении скорости ее развития до максимальной скорости распространения трещин и появлении растягивающих азимутальных напряжений возможно образование радиальных трещин [3]. Фронт волны дробления останавливается и фиксируется радиальное смещение упругой среды на границе с раздробленной породой. Достигнутое на первом этапе взрыва расширение упругой среды в последующем сохраняется из-за сопротивления радиальному сжатию раздробленной породы, деформирующейся по закону сухого трения. Такое расширение способствует развитию в упругой зоне породного массива системы радиальных трещин. Так как окончательные размеры радиальных трещин при взрыве оказываются много больше радиуса зоны дробления, при моделировании предполагается, что их образование в упругой плоскости происходит с развития начальной радиальной системы N равномерно распределенных по углу трещин прямоугольной формы, начинающихся на оси удлиненного заряда и имеющих размеры, равные длине заряда L и радиальному размеру зоны дробления b. Берега начальных полосок трещин нагружены постоянным давлением p_b , обеспечивающим смещение границы упругой зоны и зоны дробления, достигнутой на первом этапе взрывного разрушения. Для нахождения формы радиальных трещин в заключительной стадии их развития, происходящей в динамическом режиме, рассматривается квазистатический процесс роста трещин при последовательном увеличении приложенного к их берегам давления до значения p_b. На каждом шаге расчета определяется напряженное состояние упругой среды вблизи фронта трещин с целью выявления возможного разрушения среды и развития трещины.

Оценочный расчет величин *b* и *p_b* можно провести в плоской постановке в цилиндрической системе координат (*r*, *9*) по схеме квазистатического расчета равновесного развития зоны дробления [3, 8]. В расчете учитывается адиабатическое расширение взрывных газов в полости взрыва радиуса *a*, пластическое деформирование раздробленной породы в слое a < r < bи упругое деформирование при r > b. Компоненты напряжения в зоне дробления подчиняются закону Кулона–Мора: $(1+\alpha)\sigma_g - \sigma_r - Y = 0$, где $Y = 2C\cos\varphi/(1-\sin\varphi)$, $\alpha = 2\sin\varphi/(1-\sin\varphi)$, *C* — модуль сцепления, φ — угол внутреннего трения. Аналогичный закон предлагается в качестве критерия разрушения породы в упругой зоне деформирования на границе с зоной дробления: $(1+\alpha_2)\sigma_g - \sigma_r - Y_2 = 0$ ($\alpha_2 = \sigma_c/\sigma_t - 1$, $Y_2 = \sigma_c$; σ_c , σ_t — прочность породы на сжатие и растяжение). Рассматривается квазистатическое равновесие упругой зоны и зоны дробления, расширяемой под действием давления газов в полости взрыва. При расширении зоны дробления предполагается отсутствие сжимаемости и выполнение закона сохранения массы в виде $a^2 - a_0^2 = b^2 - (b-u_b)^2$, где u_b — радиальное смещение породы на границе упругой зоны и зоны дробления.

С учетом внешнего сжатия горной породы давлением *Р* давление на границе упругой зоны и зоны дробления равно [8]:

$$p_b = \frac{Y_2 + 2(1 + \alpha_2)P}{2 + \alpha_2}.$$
 (1)

43

Относительное смещение внешней границы зоны дробления определяется как

$$\frac{u_b}{b} = \frac{1+\nu}{2+\alpha_2} [Y_2 - 2P(1-\nu(2+\alpha_2))],$$

где *v* — коэффициент Пуассона упругой среды.

Из условия сохранения массы при деформировании зоны дробления удается вычислить отношение b/a через относительный радиус полости a/a_0 :

$$\frac{b}{a} = \sqrt{\frac{1 - \left(\frac{a_0}{a}\right)^2}{k}}, \quad k = \frac{u_b}{b} \left(2 - \frac{u_b}{b}\right). \tag{2}$$

С учетом этого и условия непрерывности напряжения на границе взрывной полости получим уравнения для нахождения относительного радиуса взрывной полости $\bar{a} = a / a_0$:

$$p_0 \overline{a}^{-2\gamma} + \frac{Y}{\alpha} - \left(\frac{Y}{\alpha} + p_b\right) \left(\frac{\overline{a}^2 - 1}{\overline{a}^2 k}\right)^{m/2} = 0.$$
(3)

Здесь p_0 , γ — начальное давление газов детонации в полости взрыва и показатель их адиабаты. В расчетах принималось $\gamma = 3$, $p_0 = \rho D^2 / 8$ (ρ — плотность взрывчатого вещества, D — скорость детонации).

После вычисления \bar{a} по (3) из (2) находим относительный радиус зоны дробления:

$$\frac{b}{a_0} = \sqrt{\frac{\bar{a}^2 - 1}{k}} \,. \tag{4}$$

В [9] результаты расчетов по квазистатической схеме сравнивались с результатами расчетов задачи в динамической постановке. Отличие не превышало 20%.

Для расчетов трехмерного напряженного состояния среды в упругом пространстве с радиальной системой равномерно распределенных по углу плоских трещин, нагруженных внутренним давлением, использовался метод разрывных смещений [10, 11]. Поверхность трещин разбивалась на квадратные элементы с шагом Δ , в пределах которых раскрытие и сдвиги берегов трещины считались постоянными. Трещины представлялись набором дислокационных элементов, описываемых векторами Бюргерса, компоненты которых могут быть заранее неизвестны. Находились они из требования выполнения граничных условий в напряжениях в центрах дислокационных элементов трещины в результате решения соответствующей системы линейных уравнений относительно неизвестных компонент векторов Бюргерса. Согласно методу суперпозиции, коэффициентами влияния являются нормальные и касательные напряжения на *i*-х элементах трещины, вызванные единичными нормальными и сдвиговыми разрывами смещений *j*-х элементов. Для вычисления коэффициентов влияния использовались формулы Пича – Келлера, позволяющие рассчитать компоненты тензора напряжений в произвольной точке упругого пространства рядом с дислокационным элементом через контурные интегралы вдоль его границы [12].

Эти формулы применялись для расчета напряжений вблизи кромок трещин для определения возможного разрушения и их развития. Критерием разрушения служил критерий Новожилова, согласно которому разрушение происходит, если среднее напряжение на характерном элементе среды Δ превосходит прочность на растяжение σ_t . Критерий Новожилова применительно к развитию трещин тесно связан с критерием Ирвина. Между критическим коэффициентом интенсивности напряжений на кромке трещины и параметрами критерия Новожилова существует связь:

$$K_{IC} = \sigma_t \sqrt{\frac{\pi\Delta}{2}} \,. \tag{5}$$

В настоящей работе напряжения, которые сравнивались с σ_t , определялись в центрах дислокационных элементов, примыкающих к кромке трещины. Для расчетов развития трещин при взрыве и гидроразрыве в массиве, содержащем слои с пониженной и повышенной прочностью, разработанные программы [12, 13] модифицированы в [14]. Введен учет прочности среды в зависимости от координаты точки, где проверяется возможность разрушения. Для случая слоистой среды по значению z (ось z перпендикулярна слоям) выявлялась принадлежность точки тому или иному слою. Реализованы варианты двухслойной среды и среды с пропластком. В первом случае вводилась координата границы слоев z0. При z > z0 прочность среды σ_c определяется прочностью верхней среды на растяжение $\sigma_c = \sigma_t$, при z < z0 прочность $\sigma_c = \sigma_t \alpha$.

В случае среды с пропластком аналогичные условия принимались для внешней среды при |z| > z0 и пропластка при |z| < z0, где z0 — координата границы пропластка относительно его срединной плоскости. В данной работе, являющейся развитием [14], введен учет внешнего сжатия, вызванного горным давлением. В задачах принималось, что перпендикулярно плоскости трещин действует напряжение $\sigma_0 = \sigma_{xx} = \sigma_{yy}$.

Для квазистатических расчетов развития трещин при взрыве скважинного заряда на каждом шаге *m* рассчитывалось напряженное состояние породного массива с трещинами. После выделения поля напряжений внешнего сжатия рассматривалась задача о нагружении берегов трещин давлением.

На начальных полосках трещин с поперечным размером *b* давление независимо от координаты *z* принимало значение $p_1 = p + \sigma_0$, на остальных элементах трещин $p_1 = \sigma_0$. Здесь *p* — давление, изменяющееся от 0 по шагам до p_b — давления, соответствующего смещению границы упругой зоны и зоны дробления, достигнутому на первом этапе разрушения при взрыве скважинного заряда. Принято, что за время разрушения взрывные газы не успевают проникнуть в трещины, и их берега, кроме элементов начальных полосок, свободны от напряжения.

После определения матрицы коэффициентов влияния всех элементов трещины решение задачи строилось следующим образом. Рассматривались две задачи со своими граничными условиями. В первой на всех элементах начальных полосок трещин независимо от координаты *z* принималось нормальное напряжение $\sigma_{n1}^i = -1$, на остальных элементах $\sigma_{n1}^i = 0$. Во второй на всех элементах трещин $\sigma_{n2}^i = -1$.

Класс задач о развитии в породном массиве радиальных трещин при взрыве скважинных зарядов и плоских трещин при гидроразрыве отличается тем, что сдвиговые напряжения на берегах трещин отсутствуют и вектора разрыва смещений на элементах берегов имеет только одну компоненту, отличную от нуля — раскрытие d_n^j . В этом случае нормальные напряжения на берегах трещин определялись через раскрытия с помощью матрицы коэффициентов влияния S^{ij} следующим образом: $\sigma_n^i = S^{ij}d_n^j$, i, j = 1, ..., N (N — число элементов трещины).

В результате решения систем линейных уравнений для двух задач, приведенных выше, определялись раскрытия элементов трещин d_{n1}^i и d_{n2}^i , по которым с использованием формул Пича–Келлера суммированием по всем элементам трещин рассчитывались напряжения в элементах плоскостей, окружающих трещины и, в частности, примыкающих к их кромке σ_{n1} и σ_{n2} . Дополнительное нормальное напряжение в таких элементах:

$$\sigma_n = p\sigma_{n1} + \sigma_0 \sigma_{n2}. \tag{6}$$

Приравнивая значение данного напряжения к прочности среды на растяжение в центре примыкающего к кромке трещины элемента, вычислялось критическое давление в трещине $p = p_c$, при котором в этом элементе произойдет разрушение:

при
$$z > z0$$
: $p_c = \frac{\sigma_c - \sigma_0 \sigma_{n2}}{\sigma_{n1}}$,
при $z < z0$: $p_c = \frac{\sigma_c \alpha - \sigma_0 \sigma_{n2}}{\sigma_{n1}}$

Проведя такие расчеты для всех элементов окружения трещины, находились элементы, которые разрушатся на данном шаге расчетов развития трещин. Принималось, что разрушаются элементы, у которых $p_c^* < p_c < k p_c^*$ (p_c^* — минимальное критическое давление в трещине, вызывающее разрушение, множитель k = 1.1-1.3). Такое условие удовлетворительно с точки зрения повторяемости результатов при его варьировании и ограничения расчетного времени. При подготовке следующего шага (m+1) новые разрушенные элементы присоединялись к ранее разрушенным, рассчитывались элементы матрицы коэффициентов влияния, строилось новое окружение трещины, после этого цикл расчетов повторялся.

Пример расчета форм трещин, образующихся при взрыве удлиненного заряда в двухслойном породном массиве в безразмерном виде, приведен на рис. 1. В качестве единиц длины взяты значения размера квадратного элемента расчетной сетки Δ , принятого равным половине радиуса зоны дробления b, соответствующего заряда. Расчеты выполнялись для случая развития двух диаметрально противоположных трещин, расположенных в плоскости (x, z). Кривые 1 соответствуют начальным размерам трещин, кривые 2-7 — формам трещин, образованных при взрыве шпурового заряда аммонита радиусом $a_0 = 4.2$, 8.5, 11.5, 21.0, 33.8 и 55.0 мм. Таким зарядам соответствуют значения радиуса зоны дробления b = 11, 22, 30, 56,88 и 130 см. Расчет проводился применительно к граниту при модуле Юнга среды E = 50 ГПа, коэффициенте Пуассона v = 0.3, прочности среды на сжатие 150 МПа, трещиностойкости $K_{IC} = 2.55 \cdot 10^6$ МПа·м^{0.5}, начальном давлении взрыва заряда аммонита 1500 МПа, параметрам закона Кулона – Мора $\alpha = 4$, $\alpha_2 = 11$. По этим данным и методике квазистатического расчета развития зоны дробления вычислялся размер зоны дробления $\overline{b} = b/a_0 = 26$ и давление, раскрывающее трещины $p_b = 11.7$ МПа (формулы (1), (4)). Прочность среды на растяжение σ_t определялась по соотношению (5). Размер квадратного элемента расчетной сетки принимался $\Delta = b/2$, множитель в условии разрушения k = 1.3. 46

Рис. 1. Форма радиальных трещин: a — образующихся при взрыве в однородном массиве $\alpha = 1$; δ — в массиве с повышенной прочностью нижней его части при $\alpha = 1.7$; s — при увеличении радиуса заряда в более прочном слое массива в 2.5 раза

На рис. 16 видно, как меняется форма трещин при взрывах скважинных зарядов в зависимости от радиуса в двухслойном породном массиве разной прочности. В более прочном слое трещина развивается в меньшей степени. Такое неоднородное развитие трещин удается частично компенсировать, увеличивая радиус заряда, располагающегося в более прочной среде, в 2.5 раза (рис. 1*в*).

Результаты расчетов форм трещин, образующихся при взрыве удлиненного заряда в случае наличия пропластка в основном слое, представлены на рис. 2. Предполагалось, что пропласток располагается симметрично относительно середины заряда, поэтому формы трещин приведены в первом квадранте плоскости (*x*, *z*). На рисунке в безразмерном виде приведен пример расчетных форм трещин, возникающих при взрыве в однородном известняковом массиве и в массиве с прослойкой повышенной прочности (|z| < 20).

Расчетные формы трещин, образующиеся при взрыве при разном радиусе шпурового заряда аммонита в однородном массиве известняка, приведены на рис. 2a, в массиве с прослойкой, повышенной в 1.5 раза прочностью — на рис. 2b, при коррекции радиуса заряда в более прочном слое массива за счет увеличения радиуса заряда в 2 раза — на рис. 2b. Кривые *1* соответствуют начальным полоскам трещин, кривые 2-b — формам трещин, образующихся при взрыве шпурового заряда аммонита радиусом $a_0 = 16.3$, 23.0, 31.8, 45.9 и 59 мм соответственно. Размеры зон дробления *b* и максимальных поперечных размеров трещин X_{max} приведены в таблице. Из рис. 2a, *b* видно значительное (до 2 раз) уменьшение координат вдоль оси *x* фронта трещин в прослойке по сравнению с основным массивом. Для получения однородного развития трещин вдоль скважины такое различие удается в некоторой степени скорректировать, увеличивая в 2 раза радиус заряда, находящегося в прослойке (рис. 2b).

Рис. 2. Форма радиальных трещин: a — образующихся при взрыве в однородном массиве $\alpha = 1$; δ — в массиве с прослойкой при |z| < 20 повышенной прочности $\alpha = 1.5$; e — при увеличении радиуса заряда в более прочном слое в 2 раза

Для расчетов развития трещины в известняке использовались следующие прочностные и деформационные данные [6]: модуль Юнга E = 50 ГПа, коэффициент Пуассона v = 0.3, прочность среды на сжатие 70 МПа, коэффициент интенсивности напряжений 2.55 МПа·м^{1/2}, начальное давление взрыва заряда аммонита 1500 МПа, параметры закона Кулона – Мора $\alpha = 4$, $\alpha_2 = 11$. По этим данным по методике квазистатического расчета развития зоны дробления рассчитывался размер зоны дробления $\overline{b} = b/a_0 = 38.1$ и давление, раскрывающее трещины $p_b = 5.6$ МПа (формулы (4), (1)). Размер квадратного элемента расчетной сетки принимался $\Delta = b/2$, множитель в условии разрушения k = 1.3.

Размеры зон дробления b, максимальные поперечные размеры трещин X_{\max} и равновесный размер трещины l_p

Параметр	Кривая на рис. 2				
	2	3	4	5	6
Радиус заряда, мм	16.30	23.90	31.80	45.90	59.00
Радиус зоны дробления b , м	0.62	0.91	1.21	1.75	2.22
<i>X</i> _{max} , м	2.79	5.90	10.30	20.10	31.10
l_p , M	2.40	5.10	9.00	19.00	30.30

Учитывая, что длина заряда в расчетах, результаты которых приведены на рис. 2a, значительно больше поперечного размера трещин, для приближенного определения такого размера воспользуемся решением задачи о равновесном состоянии трещины, нагружаемой постоянным давлением p_b в ее центре на интервале |x| < b, в плоской постановке теории упругости. Согласно решению данной задачи, равновесный размер l_p трещины определяется из уравнения

$$K_{IC} = \frac{2p_b \sqrt{l_p}}{\sqrt{\pi}} \arcsin\left(\frac{r_b}{l_p}\right).$$
(7)

48

Результаты расчетов l_p по (7) отражены в таблице. Сравнение l_p с X_{max} показало их удовлетворительное согласие, что подтверждает работоспособность предложенной расчетной схемы.

Результаты расчетов форм трещин приведенных задач при сохранении геометрического подобия и постоянства безразмерных параметров можно распространить на другие породы и удлиненные заряды. Рассматриваемая задача о равновесной форме трещины, образующейся при взрыве удлиненного заряда в плоской постановке, определялась набором размерных параметров (p_b , Δ , b, L, K_{IC}) и безразмерных (v, m, k, α , β). Отметим, что модуль Юнга не входил в число параметров, так как задача о расчете формы трещин решалась как первая краевая задача о нахождении напряжений, не зависящая от модуля Юнга. Из размерных параметров, принимая за основные p_b и b, имеем следующие безразмерные: $p_b \sqrt{b}/K_{IC}$, Δ/b , b/L. Сохраняя значения этих параметров вместе со всеми безразмерными, можно получить искомые величины для другого набора размерных параметров. Из соотношения $p_b \sqrt{b}/K_{IC}$ = const следует выражение для нового значения радиуса зоны дробления b^n при взрыве шпурового заряда в породе с трещиностойкостью K_{IC}^n и давлением расширения упругой зоны после остановки развития зоны дробления p_b^n :

$$b^{n} = b \left(\frac{K_{IC}^{n}}{K_{IC}}\right)^{2} \left(\frac{p_{b}}{p_{b}^{n}}\right)^{2}.$$

По величине $\overline{b}^n = b^n / a_0^n$, определяемой из решения (1)–(3) квазистатической задачи о развитии зоны дробления, находится радиус удлиненного заряда a_0^n и его длина $L^n = Lb^n / b$. Взрыв такого заряда приводит к образованию в породном массиве трещины, форма которой рассчитана в исходной задаче.

МОДЕЛИРОВАНИЕ РАЗВИТИЯ ТРЕЩИН ПРИ ГИДРОРАЗРЫВЕ В СЛОИСТОЙ СРЕДЕ

Вопрос моделирования развития трещин при гидроразрыве достаточно хорошо изучен. Кроме классических одномерных моделей [15, 16], существуют двумерные и трехмерные. Последние отличаются большой сложностью их реализации, поэтому в инженерной практике используются приближенные псевдотрехмерные модели [17–20]. Актуальность таких исследований для горного дела показана в [21].

Разработанная в настоящей работе программа позволяет рассчитывать формы трещин гидроразрыва в слоистом пласте, когда разрыв осуществляется маловязкой жидкостью. Считается, что берега трещин нагружены постоянным по их поверхности давлением. Напряжение в элементе вне трещины рассчитывается по формуле, аналогичной (6). С учетом того, что решения двух вспомогательных задач в случае гидроразрыва однородного по напряжениям внешнего поля совпадают и $\sigma_{n1} = \sigma_{n2}$, имеем, что дополнительное напряжение на элементах вне трещины $\sigma_n = (p + \sigma_{01})\sigma_{n1}$. Отсюда критическое давление в трещине для каждого элемента в ее окружении находится в зависимости от координаты элемента. Если z > z0, то $p_c + \sigma_{01} = \sigma_c / \sigma_{n1}$, при z < z0: $p_c + \sigma_{01} = \alpha \sigma_c / \sigma_{n1}$. Минимальное значение вычисленных таким образом p_c для всех элементов на кромке трещины определяет сумму $p_c^* + \sigma_{01}$ и давление в трещине p_c^* , при котором начинается ее подрастание. Оно обусловлено минимальным значением σ_c / σ_{n1} и $\alpha \sigma_c / \sigma_{n1}$ в зависимости от координаты *z* элемента. Так как эти величины не связаны с напряжением внешнего сжатия, такое же минимальное критическое напряжение p_{c0}^* в трещине будет определяться в задаче о напряженном состоянии трещины гидроразрыва при $\sigma_{01} = 0$. Отсюда $p_c^* = p_{c0}^* - \sigma_{01}$ на каждом шаге решения. Форма трещины, ее площадь и объем, полученные в задаче, решенной с условием $\sigma_{01} = 0$, будут являться решением и для задачи с $\sigma_{01} \neq 0$.

Пример расчета развития трещины гидроразрыва в среде, содержащей при |z| < 20 прослойку с пониженной трещиностойкостью, приведен на рис. 3. На рис. За представлены в безразмерном виде в первом квадранте плоскости (*xz*) расчетные формы равновесных плоских трещин гидроразрыва, образующихся в однородном массиве. За единицу длины принят размер квадратного элемента расчетной сетки Δ . Кривые *1* соответствуют начальным полоскам роста трещин, кривые 2-6 — формам их развития при равновесных давлениях 0.310, 0.200, 0.165, 0.146 и 0.132 МПа. На рис. Зб показаны формы трещин гидроразрыва, образующихся в случае уменьшения K_{IC} в прослойке на 10%, по сравнению с окружающим массивом. Формы трещин (кривые 2-6) соответствуют давлениям 0.180, 0.144, 0.123, 0.111 и 0.103 МПа.

Рис. 3. Форма трещин гидроразрыва, образующихся в однородном массиве (*a*) и массиве с прослойкой при |z| < 20 с пониженной на 10% трещиностойкостью (δ)

Расчеты проведены при внешнем сжатии $\sigma_{01} = 0$ и следующих параметрах среды: модуль Юнга E = 50 ГПа, коэффициент Пуассона 0.3, трещинностойкость основного массива $K_{IC} = 1$ МПа·м^{1/2} и $K_{IC} = 0.9$ МПа·м^{1/2} в прослойке. Принятые параметры расчетной схемы: размер элемента $\Delta = 1$ м, поперечный размер начальной трещины b = 2 м, множитель k = 1.3в условии разрушения. Небольшое уменьшение трещиностойкости в прослойке приводит к существенному изменению формы трещины гидроразрыва (рис. 3). Ее развитие привязано к опережающему распространению вдоль ослабленной прослойки. В качестве контролирующего фактора степени развития гидроразрыва взят объем раскрытия трещины. На рис. 4 в безразмерном виде приведены зависимости максимального удаления кромки трещины от скважины $X = X_{max} / \Delta$ (кривые I, 2) и площади трещины $S = s / \Delta^2$ (кривые 3, 4) для расчетов роста трещины в однородном массиве и массиве с ослабленной прослойкой соответственно от безразмерного объема трещины $V = vE / (\Delta^{5/2} K_{IC})$.

Рис. 4. Зависимости поперечного размера трещин от их объема (1, 2) и площади трещин (3, 4) для случаев распространения трещин в однородном массиве и массиве с ослабленной прослойкой

Из рис. 4 видно, что площадь трещин слабо зависит от наличия ослабленной прослойки, в то время как дальность распространения трещины от скважины при наличии прослойки значительно больше при одинаковом объеме трещины и закаченной жидкости. Последнее следствие явления преимущественного развития трещины при гидроразрыве в сторону наименьшего сопротивления, особенно если разрыв осуществляется маловязкой жидкостью [22, 23]. При начальном развитии гидроразрыва от скважины, когда распространение трещины невелико, можно оценить равновесное давление в ней в зависимости от поперечного размера трещины x. Такое давление p_t определяется условием равновесного состояния плоской изолированной трещины длиной 2x: $K_{IC} = p_t \sqrt{\pi x}$. В безразмерном виде отсюда следует: $P_t = p_t \sqrt{\Delta} / K_{IC} = 1/\sqrt{\pi X}$, $X = x/\Delta$.

Графики расчетных зависимостей $P(X) = p_c \sqrt{\Delta} / K_{IC}$ и $P_1(X) = p_{c1} \sqrt{\Delta} / K_{IC}$, соответствующие вариантам *a* и *б* (рис. 3), и $P_t(X)$ приведены на рис. 5. В диапазоне поперечного размера трещины от 10 до 40*a* при полудлине скважины 80*a* теоретическая оценка достаточно хорошо описывает расчетные значения давления, что подтверждает работоспособность расчетной модели определения формы трещин при гидроразрыве в слоистом породном массиве.

Рис. 5. Зависимости равновесного давления жидкости в трещине, развивающейся от скважины, при гидроразрыве от ее поперечного размера. Треугольные маркеры соответствуют трещинам, формы которых приведены на рис. За, круглые — рис. Зб, точки — теоретической оценке

выводы

Разработана расчетная схема определения формы и размеров радиальных трещин, образующихся при взрыве скважиных зарядов в слоистом породном массиве. Для равномерного разрушения породы вдоль скважины необходимо корректировать погонное распределение заряда взрывчатого вещества с учетом прочности пород слоистого массива.

Приведены примеры расчетов формы и размеров трещины гидроразрыва, образуемой в слоистом породном массиве. Сравнение результатов расчетов равновесного давления при гидроразрыве с теоретической оценкой подтверждает работоспособность расчетной схемы. Наличие даже небольшого снижения трещиностойкости в слое на 10% приводит к преимущественному развитию трещины гидроразрыва в нем.

СПИСОК ЛИТЕРАТУРЫ

- **1. Мосинец В. Н.** Дробящее и сейсмическое действие взрыва в горных породах. М.: Недра, 1976. 272 с.
- **2.** Кутузов Б. Н., Андриевский А. П. Новая теория и новые технологии разрушения горных пород удлиненными зарядами взрывчатых веществ. Новосибирск: Наука, 2002. 96 с.
- 3. Александрова Н. И., Шер Е. Н. Учет дилатансии при описании разрушения горных пород взрывом цилиндрического заряда // ФТПРПИ. 1999. № 4. С. 400-408.
- **4.** Вохмин С. А., Курчин Г. С., Кирсанов А. К., Грибанова Д. А. Обзор существующих методик расчета параметров зон разрушения породного массива // Современные проблемы науки и образования. 2015. Ч. 1. № 1. 401 с.
- 5. Шер Е. Н., Черников А. Г. Расчет параметров радиальной системы трещин, образующейся при взрыве удлиненного заряда в хрупких горных породах // Фундаментальные и прикладные вопросы горных наук. — 2015. — № 2. — С. 299–303.
- **6.** Григорян С. С. Некоторые вопросы математической теории деформирования и разрушения твердых горных пород // ПММ. 1967. Т. 31. Вып. 4. С. 643–669.
- **7.** Механический эффект подземного взрыва / В. Н. Родионов, В. В. Адушкин, А. Н. Ромашев и др. М.: Недра, 1971. 221 с.
- **8. Чедвик П., Кокс А., Гопкинсон Г.** Механика глубинных подземных взрывов. М.: Мир, 1966. 126 с.
- **9. Шер Е. Н., Александрова Н. И.** Динамика развития зоны дробления в упругопластической среде при камуфлетном взрыве шнурового заряда // ФТПРПИ. 1997. № 6. С. 43–49.
- **10. Крауч С., Старфилд А.** Методы граничных элементов в механике твердого тела. М.: Мир, 1987. 326 с.
- 11. Peach M. and Koehler J. S. The forces exerted on dislocations and the stress fields produced by them, Phys. Rev., 1950, Vol. 80, No. 3. P. 436–440.
- Михайлов А. М. Расчет напряжений вокруг трещины в трехмерном случае // ФТПРПИ. 2000. № 5. С. 445–451.
- **13.** Шер Е. Н., Черников А. Г. Расчет параметров радиальной системы трещин, образующихся при взрыве удлиненного заряда в хрупких горных породах // Фундаментальные и прикладные вопросы горных наук. 2015. № 2. С. 299–303.
- 14. Шер Е. Н. Определение формы и размеров радиальных трещин в слоистом породном массиве, образующихся при взрыве скважинных зарядов и гидроразрыве // Фундаментальные и прикладные вопросы горных наук. 2019. Т. 6. С. 266–271.

- **15.** Kristianovich S. A. and Zheltov Y. P. Formation of vertical fractures by means of highly viscous fluids, 4th World Petroleum Congress, 6–15 June, Rome, Italy, 1955.
- Perkins T. K. and Kern L. R. Widths of hydraulic fractures, J. of Petroleum Technol., 1961, Vol. 13, No. 9. — P. 937–949.
- Geertsma J. Chapter 4. Two-dimensional fracture propagation models, Resent Advances in Hydraulic Fracturing, Monograph Series, Eds. Gigley J., Holditch S., Veatch D. N. R., Richardson TX, PE, 1989. — P. 81–94.
- Adachi J. I., Detournay E., and Peirce A. P. An analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers, J. Rock Mech. and Min. Sci., 2010, Vol. 47, Issue 4. P. 625–639.
- **19.** Zhang X., Wu B., Jeffrey R. G., Connell L. D., and Zhang G. A pseudo-3D model for hydraulic fracture growth in a layered rock, Int. J. of Solids and Structures, 2017, Vol. 115, 116. P. 208–223.
- **20.** Xu B., Liu Y., Wang Y., Yang G., Yu Q., and Wang F. A new method and application of full 3D numerical simulation for hydraulic fracturing horizontal fracture, Energies, 2019, Vol. 12, Issue 1 (48).
- 21. Сердюков С. В., Патутин А. В., Шилова Т. В., Азаров А. В., Рыбалкин Л. А. Технологии повышения эффективности разработки твердых полезных ископаемых с использованием гидроразрыва горных пород // ФТПРПИ. — 2019. — № 4. —С. 90–97.
- **22.** Алексеенко О. П., Вайсман А. М. Несимметричный рост трещины гидроразрыва // МТТ. 1996. № 1. С. 107–113.
- 23. Колыхалов И. В., Панов А. В., Скулкин А. А. Влияние свойств рабочего флюида на симметричность формы поперечной к скважине трещины гидроразрыва // Фундаментальные и прикладные вопросы горных наук. 2019. Т. 6. № 3. С. 77-81.

Поступила в редакцию 10/VIII 2020 После доработки 15/X 2020 Принята к публикации 03/XI 2020