Том 40, № 2

Март – апрель

1999

УДК 548.3+546.49

Л.М. ВОЛКОВА, С.А. МАГАРИЛЛ

ОБ ОБРАЗОВАНИИ МНОГОАТОМНЫХ КАТИОНОВ РТУТИ

Проанализировано влияние увеличения числа электронов на 6s-орбиталях ионов Hg на образование многоатомных Hg_n -катионов, их структуру и величины расстояний Hg — Hg. Показано, что определяющую роль в образовании Hg_n -катионов и их структурных характеристиках играет величина расширения 5d-атомных орбиталей Hg_n рост которой под действием увеличения числа 6s-электронов усиливается релятивистскими эффектами. Hg_n -катионов и наблюдаемых закономерностей.

ВВЕДЕНИЕ

Известно, что кристаллохимия соединений ртути резко отличается от кристаллохимии соединений ее более легких гомологов Zn и Cd. Главное отличие выражается в появлении у ртути способности к образованию многоатомных катионов Hg_n. К настоящему времени проведены многочисленные экспериментальные и теоретические исследования кристаллической и электронной структуры соединений, содержащих Hg_n-катионы, природы связи в них, а также свойств, обусловленных этими катионами. Однако не удалось до конца установить все факторы, вносящие вклад в формирование Hg_n-катионов, и понять причины варьирования их размера, геометрической формы и расстояний Hg — Hg. Решению этих вопросов посвящена данная работа. В ней представлены анализ и обсуждение экспериментальных структурных данных с привлечением расчетных данных об исследовании электронного строения, рассмотрена роль релятивистских эффектов и для объяснения образования Нg_n-катионов использована концепция образования химических соединений на основе теоремы вириала.

Кристаллоструктурная информация о соединениях ртути была взята из [1].

КРИСТАЛЛОХИМИЧЕСКИЕ ЗАКОНОМЕРНОСТИ СТРОЕНИЯ Нд"-КАТИОНОВ

Из данных предыдущих исследований [2 — 18] следует, что уменьшение усредненного формального заряда атома ртути от 1 до 0 приводит к следующим эффектам в строении Hg_n -катионов: (1) увеличению числа звеньев в цепях Hg_n вплоть до бесконечности, т.е. увеличению размера полиатомных катионов ртути, (2) увеличению n-мерности Hg_n от одномерных линейных группировок и цепей до двумерных плотноупакованных слоев и трехмерной упаковки; (3) увеличению расстояний Hg — Hg в Hg_n (однако при одинаковых значениях формального заряда эти расстояния могут варьироваться); (4) приближению свойств соединений ртути к металлическим. Например, соединения, содержащие цепочки Hg_n , при n=2–4 являются диэлектриками, а при увеличении n до бесконечности в $\mathrm{Hg}_{3-y}\mathrm{MF}_6$ ($\mathrm{M}=\mathrm{As}$,

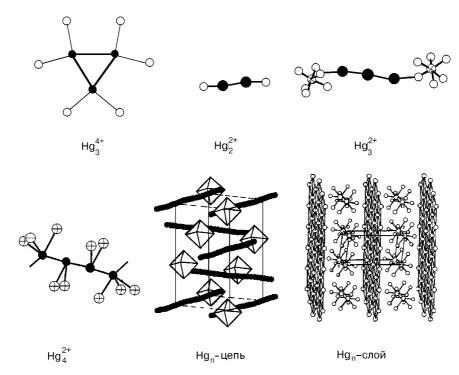


Рис. 1. Строение Нд_п-катионов

Sb, Nb и Ta) становятся проводниками. Однако температурная зависимость сопротивления у этих соединений не линейна, тогда как у соединений с плотноупакованными слоями атомов ртути (Hg_3NbF_6 и Hg_3TaF_6) эта зависимость такая же, как в метаплах

В работах [3-6] показано, что несвязанные анионы с большой электроотрицательностью, способные сильно оттягивать электронную плотность, разрушают крупные полиатомные катионы ртути.

Строгую взаимосвязь между величиной усредненного формального заряда на атоме ртути, ближайшими расстояниями Hg — X, строением Hg_n -катиона и расстояниями Hg — Hg в нем хорошо иллюстрируют структуры соединений ртути со фтором и фторидными анионами AF_6^- [2 — 18]. В табл. 1 и на рис. 1 показано, что с уменьшением значения заряда на атоме ртути от 1 до 0.33 ближайшие расстояния Hg — F увеличиваются от 2.14 (в Hg_2F_2 [18]) до 3.2 $\mathring{\triangle}$ (в Hg_3NbF_6 [6]), размер и размерность Hg_n -катиона увеличиваются, переходя стадии от Hg_2^{2+} , Hg_3^{2+} , Hg_4^{2+} приблизительно линейных групп до Hg_n бесконечной цепочки и плоскости плотноупакованных атомов ртути. Расстояния Hg — Hg в этих катионах увеличиваются от 2.51 до 2.90 $\mathring{\triangle}$.

Однако анализ структур соединений Hg_2X_2 [1] с другими лигандами показывает, что при одном значении усредненного формального заряда на атоме ртути расстояния Hg — Hg варьируются в пределах 2,495 — 2,557 $^{\wedge}$ (рассматривались структуры, определенные с точностью R = 0,09, табл. 2). Поиск корреляций между расстояниями Hg — Hg в группировках X — Hg — Hg — X и характеристикой лигандов X позволил обнаружить следующую тенденцию: расстояния Hg — Hg увеличиваются с уменьшением возможности перетекания валентной электронной

 $\begin{tabular}{ll} T аблица & 1 \\ $\mathit{Кристаллохимические}\ \mathit{характеристикu}\ Hg_{n}\mbox{-}\mathit{капионов} \\ \end{tabular}$

Заряд Нд	Hg_n	Расстоя d(Hg—Hg)	ние, Å min <i>d</i> (Hg—X)	Постоянная Маделунга	Соединение	Источник
1,33	Hg ₃ ⁴⁺	2,703	2,23(O); 2,59(Cl)	2	Hg ₄ O ₂ Cl ₂ [(Ph ₂ P) ₂ CH ₂] ₃ Hg ₃	[19] [20]
	Треугольник	2,763—2,764	2,51(P); 2,54(O)		$(SO_4)_2 \cdot 1,5H_2O$	
1	${\rm Hg_2}^{2^+}$	2,507	2,14	1	Hg_2F_2	[18]
	Лин. группа					
0,67	$\mathrm{Hg_3}^{2+}$	2,552	2,38	Н g _{центр} : 2	$Hg_3(AsF_6)_2$	[13]
	Лин. группа			$Hg_{\text{конц}}: 1+1/2=1,5$		
0,5	$\mathrm{Hg_4}^{2+}$	2,588—2,630	2,71	$Hg_{HHTP}: 2+1/2=2,5$	$Hg_4(AsF_6)_2$	[7]
	Лин. группа			$Hg_{\text{конц}}: 1+1/2+1/3=1,83$	$Hg_4(Ta_2F_{11})_2$	[2]
0,34—0,35	Hg_n -лин. цепь	2,640—2,674	2,81—2,99	2(1+1/2+1/3+1/4+1/5+1/6+1/7)>5,19	$Hg_{2,9}MF_6$	[5, 8 — 10, 12]
					(M=As, Sb, Nb, Ta)	
0,33	Hg_n -плоскость	2,90	3,2	$6(1+1/\sqrt{3}+1/2+2/\sqrt{7}+1/3+1/2\sqrt{3}+$	Hg ₃ NF ₆ (M=Nb, Ta)	[6]
				$+2/\sqrt{13} +)>24,06$		

Таблица 2 Межатомные расстояния в группировках X—Hg—Hg—X

X	d(Hg—Hg),	<i>d</i> (Hg—X), Å					
OH^-	2,495—2,505	2,13—2,25					
$\mathrm{NO_3}^-$	2,499	2,21, 2,32					
Br^-	2,49	2,71					
$\rm H_2O$	2,495—2,511	2,13—2,20					
PO_4^{3-}	2,499—2,508	2,11—2,14					
$O^{2-}(O-Hg^{2+}, O-(Hg_2)^{2+})$	2,502—2,557	2,10—2,24					
OH^- , NO^3	2,505—2,511	2,15—2,26					
${ m ReO_4}^-$	2,506	2,243					
\mathbf{F}^-	2,507	2,14					
$\mathrm{BrO_3}^-$	2,507	2,16					
$\mathrm{NO_2}^-$	2,520	2,244					
$\mathrm{Mo_2O_7}^{2-}$	2,522	2,08, 2,14					
$\mathrm{Si_2O_7}^{6-}$	2,522—2,524	2,12—2,221					
Cl ⁻	2,526	2,43					
$\mathrm{TeO_3}^{2-}$	2,532	2,06					
$\mathrm{AsO_4}^{3-}$	2,535	2,16, 2,23					
S^{2-}, O^{2-}	2,536	2,44(S), 2,11(O)					
$\mathrm{VO_3}^-$	2,543	2,11					
$S^{2-}(S-R)$	2,55	2,47, 2,49					
$Se^{2-}(Se-Ph)$	2,55—2,56	2,65—2,70					

плотности от Hg к лиганду. Уменьшить возможность такого перетекания и тем самым увеличить расстояние Hg — Hg можно различными способами. Например, уменьшением электроотрицательности лиганда, увеличением эффективного отрицательного заряда X в случае комплексных лигандов AX_n^{m-} (путем уменьшения электроотрицательности A) или увеличением отрицательного электростатического заряда m всего аниона AX_n^{m-} .

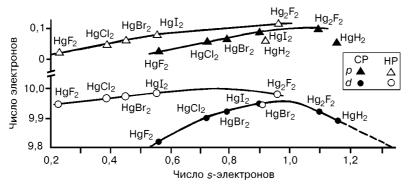
Так, самые длинные расстояния Hg - Hg (2,55—2,56 $\mit \triangle$) среди известных в линейных группировках X - Hg - Hg - X наблюдаются, когда атомы ртути связываются с атомами S или Se, электроотрицательность которых самая низкая (табл. 2). В ряду комплексных лигандов $AO_3^{n-}: NO_3^{-}: NO_3^{-}, TeO_3^{2-}$ и VO_3^{-} электроотрицательность A уменьшается от 3,07 до 1,45, и соответственно, увеличивается расстояние Hg - Hg от 2,50 до 2,54 $\mit \triangle$ в соединениях ртути с этими лигандами. В ряду лигандов ReO_4^{-} , PO_4^{3-} и AsO_4^{3-} самое короткое расстояние Hg - Hg у соединения, когда $X = ReO_4$. Это можно объяснить меньшим значением отрицательного заряда всего комплекса ReO_4^{-} и эффективного отрицательного заряда атома кислорода из-за более высокоокисленного состояния Re по сравнению с P и As. Увеличение расстояния Hg - Hg от 2,50 $\mit \triangle$ в нитрате ртути до 2,52 $\mit \triangle$ в нитрите можно также объяснить меньшей степенью окисления атома N в NO_2^{-} -группе по сравнению с NO_3^{-} -группой. Аналогичный эффект наблюдается и в соединении $Hg_8O_4Br_3$ [21]. Самое длинное расстояние Hg - Hg (2,56 $\mit \triangle$) в трехмерных Hg - O сетках наблюдается в том случае, когда координирующие атомы кислоро-

да связывают только группы $Hg_2^{2^+}$ и не входят в координацию Hg^{2^+} . Если атомы кислорода, образующие линейную группировку O - Hg - Hg - O, связывают дополнительно к двум $Hg_2^{2^+}$ группам еще и два катиона Hg^{2^+} , то расстояния Hg - Hg уменьшаются до 2,52 или 2,54 $\mathring{\triangle}$. Увеличение расстояний Hg - Hg может происходить, по-видимому, так же и из-за увеличения доли ковалентности связи Hg - X и, соответственно, большего приближения максимума плотности *s*-электронов валентной оболочки к остову атома Hg по сравнению с ионной связью. Так, в ряду Hg_2X_2 (X = F, Cl, Br) по данным работы [18] расстояние Hg - Hg в хлориде самое длинное, а разница между длиной связи Hg - X и радиусом X самая маленькая.

ЭЛЕКТРОННОЕ СТРОЕНИЕ Ндл-КАТИОНОВ

Во взглядах на электронное строение не только Нди-катионов, но даже простых соединений HgX_2 и Hg_2X_2 нет единства. Атомы этого тяжелого элемента, имеющие замкнутую электронную конфигурацию $5d^{10}6s^2$, как бы сконцентрировали в себе все трудности, стоящие перед квантовой химией при исследовании электронного строения соединений, такие как: большой атомный номер, отсутствие в атоме неспаренных электронов, заполненные валентные 5*d*- и 6*s*-орбитали, наличие высоколежащих внешних вакантных бр-орбиталей и значительное влияние релятивистских эффектов как на остовные, так и на валентные орбитали. До сих пор не решены принципиально следующие вопросы: (1) участвуют ли в образовании молекулярных орбиталей (MO) $5d^{10}$ -орбитали атома ртути или они остаются квазиатомными; (2) какова роль в образовании химических связей брорбиталей; (3) какова роль релятивистских эффектов в образовании Нд_п-катионов. В такой ситуации рискованно делать какие-либо выводы о связи электронного строения Нg_n-катионов с их структурными характеристиками. Однако мы попытаемся представить хотя бы качественно причины образования Ндл-катионов, извлекая информацию из немногих имеющихся работ по исследованию электронного строения атомарной ртути и ее соединений с учетом релятивистских поправок и соотнося ее с хорошо изученными закономерностями геометрического строения Нд,-катионов, рассмотренными выше.

Исходя из того, что химическое поведение элементов сильно зависит от электронного строения их атомов, кажется вполне закономерным предположение, сделанное в [22, 23], согласно которому внезапно возникшая способность к образованию Hg_n -катионов у ртути может быть обусловлена сильным увеличением релятивистских эффектов по сравнению с релятивистскими эффектами Zn и Cd. Рассмотрим влияние релятивистских эффектов на электронное строение атома ртути и ионов ртути. Согласно [22, 23] эти релятивистские эффекты пропорциональны квадрату заряда ядра, который сильнее притягивает к ядрам электроны в сферически-симметричных орбиталях (s и $p_{1/2}$). Это в свою очередь означает, что ядерный заряд более эффективно экранируется, вследствие чего допускает расширение несферических (внешних) d- и всех f-орбиталей. Таким образом, у атома ртути релятивистские эффекты вызовут релятивистское радиальное сжатие и энергетическую стабилизацию 6s-атомных орбиталей (AO) и релятивистское расширение и дестабилизацию 5d-AO. В результате у атома ртути малая величина энергетической щели 5d—6s и большая 6s—6p.


В [24] проведено сравнение нерелятивистских и скалярно-релятивистских результатов, полученных при исследовании электронного строения и зонной структуры атома ртути, которое ясно показало, что введение релятивистских поправок

приводит к углублению 6s-уровня, повышению и значительному расширению 5d-уровня. Вследствие этого s-d-слоевое разделение у атомарной ртути уменьшается в 2,2 раза, тогда как s-p-слоевое разделение увеличивается в 1,5 раза. На этом основании в [25] предлагается трактовать 5d-электроны как валентные, допуская их при образовании химических связей к гибридизации с 6s- и 6p-орбиталями.

Результаты исследований электронной структуры молекул HgX_2 (X=F, Cl, Br, I, H) [26] и Hg_2F_2 [27] показали, что в связывании участвуют в основном 6s-орбитали, 5d- и 6p-орбитали ртути играют роль поляризующих функций, поскольку максимальное уменьшение заселенности 5d-AO ртути в этих соединениях составляет 0,2 электрона, а максимальная заселенность 6p-AO составляет 0,1 электрона. При образовании атомами ртути химических связей релятивистское сжатие и стабилизация 6s-орбиталей затрудняет перенос заряда от атомов ртути к электроотрицательным лигандам [22]. В результате релятивистские эффекты значительно усиливают тенденцию к уменьшению разделения заряда с уменьшением электроотрицательности лигандов от F к I. Для HgX_2 наблюдается релятивистское уменьшение разделения заряда на 0,21 — 0,32 электрона в результате релятивистского увеличения заселенности 6s-AO орбиталей на 0,33 — 0,35 электрона при уменьшении заселенности 5d-AO всего на 0,04 — 0,12 электрона и незначительного увеличения заселенности 6p-AO на 0,004 — 0,005 электрона (рис. 2).

Замещение электроотрицательного лиганда в X — Hg — X (HgF₂) на атом Hg приводит в X — Hg — Hg — X (Hg₂F₂) к еще большей заселенности 6s-орбиталей Hg [27], т.е. уменьшению числа s электронов, участвующих в связывании. Эта тенденция усиливается, когда Hg координируется только атомами ртути в Hg_n-катионе. Так, по данным ¹⁹⁹Hg ЯМР спектроскопии [28] величина химического сдвига центрального атома ртути в Hg $^{2+}_3$ в два раза превышает величину химического сдвига концевых атомов ртути. Это объясняется более сильным экранированием 6s-электронами центрального атома по сравнению с концевыми, которые более разэкранированы из-за образования связей с AsFg . Заселенность 6s-AO в ряду HgX₂ (X= F, Cl, Br, I), Hg₂F₂ и Hg — твердое тело согласно скалярнорелятивистским расчетам равна 0,558 — 0,900 [26], 1,104 [27] и 1,327 [24] электрона соответственно.

Следовательно, в соединениях ртути с уменьшением усредненного формального заряда на атоме ртути и уменьшением электроотрицательности лигандов уменьшается число s-электронов, отдаваемых каждым атомом ртути для образования связи (МО), т.е. увеличивается заселенность 6s-AO. Релятивистские эффекты

Рис. 2. Заселенность 5d-, 6s- и 6p-орбиталей Hg в HgX $_2$ и HgF $_2$ по данным нерелятивистских и скалярно-релятивистских расчетов [26, 27]

усиливают эту тенденцию. Отметим, что все это происходит (по крайней мере для HgX_2 и Hg_2F_2) на фоне предельно малого участия в связях 5d- и 6p-AO. Вместе с тем первый из известных многоатомных катионов ртути Hg_3^{4+} [19,20] появляется, когда усредненный формальный заряд ртути уменьшается до 1,333, а заселенность 6s-AO ртути становится равной примерно единице. Исходя из принципа изоэлектронности можно полагать, что при нахождении на 6s-AO ртути одного электрона релятивистские эффекты достигнут так называемого "золотого максимума" релятивистских эффектов (как у атома золота) [22].

Рассмотрим, какие изменения в состоянии 5d- и 6p-уровней иона ртути могут произойти при увеличении заселенности 6*s*-орбиталей от одного электрона и выше, приводящей к образованию Hg_n -катионов. Отметим, что роль внешних 6sэлектронов в экранировании 5d-электронов велика из-за узкой 5d — 6s-щели, большой связи *s*-электронов с ядром и наличия на радиальной кривой помимо внешнего максимума *s*-электронной плотности еще нескольких более низких максимумов, лежащих близко к ядру. Постепенное увеличение электронной плотности на 6s-АО ртути (что аналогично уменьшению валентной электронной плотности на дестабилизированных МО при образовании химической связи) будет повышать все энергетические атомные уровни из-за увеличения их внутреннего экранирования и взаимного отталкивания. Однако из-за противоположного действия релятивистских эффектов на s-, $p_{1/2}$ - и d-орбитали тенденция поднятия и расширения 6sи $6p_{1/2}$ -уровней будет сдерживаться, тогда как поднятие и расширение 5d-уровня, наоборот, будут усиливаться. В результате 5d - 6s-щель будет уменьшаться, приводя к переносу электронов от d к s ($d \rightarrow s$ -переносу). Кроме того, некоторое увеличение расширения 6*s*-орбиталей с увеличением их заселенности может привести к $s \rightarrow p$ -переносу электронов. На рис. 2 мы показали изменение заселенности 5d- и 6р-АО в зависимости от увеличения заселенности 6s-АО (расчетные данные с учетом и без учета релятивистских поправок взяты из работ [26, 27]).

Увеличение расстояний Hg — Hg (табл. 1) с расширением 5d-орбиталей в ответ на рост заселенности 6s-орбиталей ясно указывает на стерическую роль 5d-орбиталей. Единственное исключение, которое будет объяснено ниже, слишком длинные расстояния в Hg $_3^{4+}$.

КОНЦЕПЦИЯ ОБРАЗОВАНИЯ Нд"-КАТИОНОВ НА ОСНОВЕ ТЕОРЕМЫ ВИРИАЛА

Чтобы понять причины образования атомами ртути многоатомных Hg_n -катионов, воспользуемся теоремой вириала [29] применительно к образованию химических связей [30]. Согласно этой теореме для равновесной системы должно выполняться следующее соотношение:

$$2\overline{T} = -\overline{V} \,, \tag{1}$$

где \overline{T} и \overline{V} — средние значения кинетической и потенциальной энергий системы.

Для интерпретации экспериментальных данных возьмем приближенные значения энергий системы из N электронов и M ядер, предполагая, что вклады кинетической энергии ядер и потенциала межэлектронного отталкивания малы [31]. Тогда уравнение (1) примет вид

$$2T_e = -(V_{Ne} + V_{N}). (2)$$

Здесь T_e — кинетическая энергия электронов; $V_{\rm Ne}$ — потенциальная энергия притяжения электронов к ядрам; $V_{\rm N}$ — потенциальная энергия межъядерного отталкивания.

Поскольку теорема вириала выполняется для стационарной системы в целом, допустим, что она будет выполняться и для отдельных членов системы с учетом их

взаимодействий (т.е. для каждого иона в молекуле). Тогда для отдельного иона ртути в рассматриваемых соединениях уравнение (2) примет вид

$$2T_e = -(V_{\text{Ne}} + V_{\text{Hg-X}} + V_{\text{Hg-Hg}}). \tag{3}$$

Здесь T_e и V_{Ne} — кинетическая и потенциальная энергии электронов только AO Hg. Кинетическая и потенциальная энергии электронов MO не принимаются в расчет из-за малого вклада в изменение энергии системы (согласно [30]).

Потенциальная энергия притяжения электронов к ядру в ионе ртути может быть записана в виде

$$V_{\text{Ne}} = -\sum_{i=1}^{n} \frac{z_{\text{Hg}}}{r_{i\text{Hg}}},\tag{4}$$

где n — число электронов в ионе Hg; $z_{\rm Hg}$ — заряд ядра; $r_{i\rm Hg}$ — расстояние i-го электрона от ядра.

За значение $V_{\rm Hg\,-\,Hg}$ и $V_{\rm Hg\,-\,X}$ примем энергию кулоновского взаимодействия между ионами ртути и ионами ртути и X соответственно, которая принимает положительное значение при взаимодействии одноименно заряженных ионов и отрицательное при взаимодействии разноименно заряженных ионов:

$$V_{\rm Hg-Hg} = \frac{\alpha_{\rm Hg-Hg} Z_{\rm Hg} Z_{i\rm Hg} e^2}{R}, \quad V_{\rm Hg-X} = -\frac{\alpha_{\rm Hg-X} Z_{\rm Hg} Z_{\rm X} e^2}{R}.$$
 (5)

Здесь α — постоянная Маделунга; R — расстояние между ближайшими соседями; $Z_{\rm Hg}$ и $Z_{\rm X}$ — заряды ионов.

Если $2T_e < |V_{\text{Ne}} + V_{\text{Hg}}|$, то для сохранения устойчивости системы необходимо уменьшить по модулю величины V_{Ne} и $V_{\text{Hg}-X}$. (Отметим, что V_{Ne} и $V_{\text{Hg}-X}$ — отрицательные величины.) В рассматриваемых системах при уменьшении заряда катиона Нg с увеличением числа 6s-электронов происходит соответствующее уменьшение числа связей Hg — Х и/или увеличение их длины (см. табл. 1). Это согласно (5) уменьшает величину $|V_{\text{Hg}}|$. Модуль V_{Ne} также уменьшается по мере отдаления электронов от ядра (согласно (4)) с ростом числа 6s-электронов. Однако уменьшение значения модуля потенциальной энергии системы за счет уменьшения значений $|V_{\mathrm{Ne}}|$ и $|V_{\mathrm{Hg-X}}|$, по-видимому, недостаточно для выполнения условий устойчивости системы (3). Дополнительное понижение значения модуля потенциальной энергии системы достигается в результате введения $V_{
m Hg-Hg}$, величина которой положительна, т.е. введения в систему соответствующего числа катионов ртути. Причем чем больше величина разности $\Delta = |V_{\rm Ne} + V_{\rm Hg - X}| - 2T_e$, тем больше должна быть величина $V_{\rm Hg-Hg}$. В данной ситуации, когда с ростом числа 6s-электронов уменьшается заряд Нg и увеличиваются расстояния Hg — Hg из-за повышения расширения 5d-оболочки, увеличить значение $V_{
m Hg-Hg}$ можно только за счет роста $lpha_{
m Hg-Hg}$. В табл. 1 приведены значения $\alpha_{\rm Hg-Hg}$, ограниченные в случае линейной цепочки и плоскости 7 членами ряда. Действительно, во всех рассматриваемых нами многоатомных катионах ртути (кроме Hg_3^{4+}) с увеличением числа 6s-электронов растет значение α_{нд—нд}.

Отсюда следует, что образование многоатомных Hg_n -катионов, закономерные изменения числа атомов Hg и строения этих катионов с ростом числа электронов на 6s-AO Hg могут быть вызваны тем, что с увеличением числа 6s-электронов свыше единицы на AO Hg удвоенное уменьшение кинетической энергии электронов Hg будет, по-видимому, все больше опережать рост потенциальной энергии притяжения электронов к ядру т.е. $2T_e < -V_{\mathrm{Ne}}$, Опережающее уменьшение T_e , вероятно, обусловлено значительным расширением 5d-AO, содержащих 1/8 часть всех электронов ртути, поскольку и увеличение числа 6s-электронов, и релятивистские эффекты

действуют на них в одном направлении. Тогда как повышение 5d-AO, а следовательно, и увеличение $V_{\rm Ne}$ не так уж велико из-за релятивистских эффектов, сжимающих и стабилизирующих s- и $p_{1/2}$ -AO Hg, как могло бы быть в случае их отсутствия.

Рассмотрим на основе теоремы вириала образование катиона Hg_3^{4+} [19,20] и трансформацию слоев Hg_n в цепочки при нагревании [4]. Структура Hg_3^{4+} , на первый взгляд, отклоняется от общей закономерности. Это отклонение можно объяснить тем, что при самом высоком заряде ртути в этом катионе среди известных Hg_n , по-видимому, невозможно достичь необходимого значения $V_{\operatorname{Hg}-\operatorname{Hg}}$ для компенсации большой по модулю величины $V_{\operatorname{Hg}-X}$ за счет сокращения расстояний Hg — Hg до величины, меньшей, чем 2,5 Å, которая наблюдается в Hg_2X_2 из-за возрастающей величины межъядерного отталкивания. В этом случае при увеличенных расстояниях Hg — Hg (2,70 — 2,76 Å) значение $V_{\operatorname{Hg}-\operatorname{Hg}}$ повышается за счет увеличения $\alpha_{\operatorname{Hg}-\operatorname{Hg}}$ до 2 в результате увеличения числа атомов ртути в Hg_n до трех и расположения их по углам треугольника.

Трансформация слоев Нд, в линейные цепочки описана в [4]. При нагревании до 120 °C кристаллов серебристого цвета Hg₃MF₆ (M = Nb, Ta), содержащих слои ртути, происходит (в отсутствие жидкого SO2) необратимый переход в кристаллы золотистого цвета, содержащие цепочки ртути. Увеличение расстояний ${
m Hg}$ — ${
m Hg}$ при нагревании вызовет уменьшение $V_{{
m Hg} - {
m Hg}}$ (изменением $V_{{
m Ne} - {
m X}}$ можно пренебречь из-за малого значения $\alpha_{\text{Hg-X}}$) и расширение 5d-оболочки из-за уменьшения ее сжатия соседними остовами Hg. Вклад в уменьшение T_e вследствие расширения 5d-оболочки будет, по-видимому, значительнее вклада в увеличение $V_{\rm Nc}$. В результате произойдет нарушение условий стабильности системы ($2T_e < -(V_{Ne} + V_{Ne})$ $+V_{\rm Hg-X}+V_{\rm Hg-Hg}$)) и, как следствие, ее перестройка в такие ${\rm Hg}_n$ -системы, которые устойчивы при меньших значениях $V_{
m Hg-Hg}$, например цепочки. Этот переход должен сопровождаться увеличением T_e за счет передачи части 6s-электронов Hg на образование МО с атомами фтора. Обратный переход из цепочки в слой неосуществим при понижении температуры, поскольку он потребует увеличения числа электронов на 6s-оболочке, но при данном составе (F обладает большой электроотрицательностью) это невозможно. Устойчивость Hg_n -систем в виде цепочек и плоскостей при понижении температуры, как показали эксперименты [3,4], достигается за счет потери части атомов ртути при охлаждении и тем самым сохранении неизменными расстояний Hg — Hg.

выводы

Таким образом, можно считать, что определяющую роль в образовании многоатомных Hg_n -катионов и возникновении закономерных изменений числа атомов Hg в них, величин расстояний $\mathrm{Hg} - \mathrm{Hg}$ и строения этих катионов играет величина расширения 5d-AO Hg , рост которой под действием увеличения числа 6s-электронов усиливается релятивистскими эффектами.

На основании рассмотрения выполнения теоремы вириала в соединениях, содержащих Hg_n -катионы, можно предположить, что с ростом числа электронов свыше единицы на 6s-AO ионов Hg удвоенное уменьшение кинетической энергии электронов из-за релятивистского увеличения расширения 5d-AO Hg будет все больше опережать рост потенциальной энергии притяжения электронов к ядру $(2T_e < -V_{\mathrm{Ne}})$. Необходимое повышение потенциальной энергии системы (соединения) для выполнения условий равновесности системы согласно теореме вириала может быть достигнуто только за счет образования многоатомных Hg_n -катионов. Величины потенциальной энергии взаимодействия между ионами ртути в Hg_n -катионе зависят от числа ионов Hg_n величины расстояний Hg — Hg и геомет-

рического строения многоатомного катиона ртути. На основе теоремы вириала можно объяснить отклонение от общей закономерности строения катиона ${\rm Hg}_3^{4+}$ и трансформацию плотноупакованных слоев ${\rm Hg}_n$ в линейные цепочки при нагревании.

Стерическая роль 5d-AO Hg выражается в увеличении расстояний Hg — Hg с расширением 5d-орбиталей в ответ на рост заселенности 6s-орбиталей. При тождественных усредненных формальных зарядах на атоме ртути расстояния Hg — Hg в Hg_n-катионах увеличиваются с уменьшением возможности перетекания 6s-электронной плотности от Hg к лиганду.

Работа выполнена при содействии Российского фонда фундаментальных исследований (грант № 98-05-65223).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Магарилл С.А., Пальчик Н.А., Первухина Н.В.* и др. Кристаллоструктурные характеристики неорганических соединений ртути, содержащих Hg _n-группы. Ч. 1. Минералы. Ч. 2. Неорганические соединения. Рукопись деп. в ВИНИТИ РАН, N1857 В96, N1858 В96.
- 2. Brown I.D., Gillespie R.J., Morgan K.R. et al. // Inorg. Chem. 1987. 26. P. 689 693.
- 3. Tun Z., Brown I.D. // Acta Crystallogr. 1986. **B42**. P. 209 213.
- 4. Brown I.D., Datars W.R., Gillespie R.J. et al. // J. Sol. St. Chem. 1985. 57. P. 34 42.
- 5. Tun Z., Brown I.D., Ummat P.K. // Acta Crystallogr. 1984. C40. P. 1301 1303.
- 6. Brown I.D., Gillespie R.J., Morgan K.R. et al. // Inorg. Chem. 1984. 23. P. 4506 4508.
- 7. *Cutforth B.D., Gillespie R.J., Ireland P. et al.* // Ibid. 1983. **22**. P. 1344 1347.
- 8. Tun Z., Brown I.D. // Acta Crystallogr. 1982. **B38**. P. 2321 2324.
- 9. Schultz A. J., Williams J.M., Miro N.D. et al. // Inorg. Chem. 1978. 17. P. 647 649.
- 10. Chiang C.K., Spal R., Denenstein A., Helger A.J. // Sol. St. Com. 1977. 22. P. 293 298.
- 11. Hastings J.M., Pouget J.P., Shirane G. et al. // Phys. Rev. Lett. 1977. 39. P. 1484 1487.
- 12. Brown I.D., Cutforth B.D., Davies C.G. et al. // Can. J. Chem. 1974. 52 P. 791 793.
- 13. Cutforth B.D., Davies C.G., Dean P.A.W. et al. // Inorg. Chem. 1973. 12. P. 1343 1347.
- 14. Cutforth B.D., Gillespie R.J., Ireland P.R. et al. // J. Chem. Soc. Chem. Com. –1973. P. 723.
- 15. Ellison R.D., Levy Ĥ.A., Fung K.W. // Inorg. Chem. 1972. 11. P. 833 836.
- 16. Kertesz M., Guloy A.M. // Ibid. 1987. **26**. P. 2852 2857.
- 17. *King R.B.* // Polyhedron. 1988. 7. P. 1813 1817.
- 18. *Dorm E.* // J. Chem. Soc. Chem. Com. 1971. P. 466 467.
- 19. Brodersen K., Göbel G., Liehr G. // Z. Anorg. Allg. Chem. 1989. 575. P. 145 153.
- 20. Hammerle B., Muller E.P., Wilkinson D.L. et al. // J. Chem. Soc., Chem. Com. 1989. P. 1527.
- 21. Stelhandske C. // Acta. Chem. Scand. 1987. A41. P. 576 578.
- 22. Pyykkö P. // Chem. Rev. 1988. **88**. P. 563 594.
- 23. Pyykkö P., Desclaux J.P. // Acc. Chem. Res. 1979. 12. P. 276 281.
- 24. Singh P.P. // Phys. Rev. 1994. **B49**. P. 4954 4958.
- 25. Singh P.P. // Phys. Rev. Lett. 1994. 72. P. 2446 2449.
- 26. Kaupp M., Schnering H.G. // Inorg. Chem. 1994. 33. P. 2555 2564.
- 27. Kaupp M., Schnering H.G. // Ibid. P. 4179 4185.
- 28. Gillespie R.J., Granger P., Morgan K.R., Schrobilgen G.J. // Ibid. 1984. 23. P. 887 891.
- 29. Ландау Л.Д. Лифииц Е.М. Теоретическая физика. Т. 1. Механика. М.: Наука, 1973.
- Корольков Д.В. Электронное строение и свойства соединений непереходных элементов. СПб.: Химия, СПб отд-е, 1992.
- 31. Уилсон С. Электронные корреляции в молекулах. М.: Мир, 1987.

Институт химии ДВО РАН
690022 Владивосток
пр. Столетия Владивостока, 159
E-mail: chemi@online.ru
Институт неорганической химии СО РАН
630090 Новосибирск
пр. Акад. Лаврентьева, 3

Статья поступила 9 февраля 1998 г.