УДК 532.536.24:533

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКОГО СОПРОТИВЛЕНИЯ МИКРОКАНАЛОВ

В. М. Анискин, К. В. Адаменко, А. А. Маслов

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск E-mails: aniskin@itam.nsc.ru, maslov@itam.nsc.ru

Представлены данные экспериментов по определению коэффициента гидравлического сопротивления в микроканалах. В экспериментах исследовались стеклянные микроканалы круглого сечения диаметром 34,5, 33,6 и 24,5 мкм различной длины. В качестве рабочей жидкости использовалась чистая деионизированная дегазированная вода. Диапазон значений числа Рейнольдса составлял 13 \leq Re \leq 330. Для вычисления коэффициента гидравлического сопротивления использовался метод двух каналов. Показано, что полученные результаты хорошо согласуются с теоретическими значениями для случая развитого ламинарного течения в каналах круглого сечения, однако использование метода двух каналов имеет ограничения.

Ключевые слова: ламинарное течение в микроканалах, коэффициент гидравлического сопротивления, микротечения.

Введение. При разработке и использовании микроустройств возникает необходимость изучения течения жидкости в микроканалах. Микрожидкостные устройства применяются, например, в биомедицине (химический анализ, анализ ДНК), процессах смешения и сепарации на микроуровне, а также в высокоэффективных системах охлаждения электронных компонентов. Для оптимизации микрожидкостных систем необходимо исследовать движение жидкости в микроканалах как для ламинарного режима течения, так и для турбулентного. Главный вопрос, возникающий при проектировании микрожидкостных устройств, это вопрос о применимости данных о поведении жидкости на макроуровнях для прогнозирования поведения жидкости при переходе на микроуровень. Прежде всего это относится к зависимости гидравлического сопротивления микроканалов от числа Рейнольдса. Результаты проведенных за последние 15–20 лет исследований не дают ответа на этот вопрос.

В ряде работ (см., например, [1–5]) экспериментально найденный коэффициент гидравлического сопротивления существенно отличается от его расчетного значения. В [3–5] это объясняется более ранним ламинарно-турбулентным переходом. В работах [6–15] отмечается, что экспериментально определенные значения коэффициента гидравлического сопротивления хорошо согласуются с его расчетными значениями.

Целью настоящей работы является определение коэффициента гидравлического сопротивления микроканалов диаметром 34,5, 33,6 и 24,5 мкм с использованием метода двух каналов, а также апробация данного метода на микроканалах малой длины.

Методика измерений и экспериментальная установка. Работа с микроканалами предъявляет определенные требования к изготовлению микрожидкостных устройств и к методам определения параметров течения.

Работа выполнена в рамках Интеграционного проекта СО РАН № 110.

Методика измерений. Основными характеристиками течения жидкости в микроканале являются расход жидкости и перепад давления на входе и выходе микроканала. Расход жидкости через микроканал определяется такими ее свойствами, как плотность, вязкость и др. Полный перепад давления в микроканале равен сумме падений давления на его различных участках. На входе в микроканал и на выходе из него давление существенно уменьшается, что обусловлено резким изменением площади сечения. Падение давления происходит и в области, в которой профиль течения жидкости меняется от равномерно распределенного на входе до профиля течения Пуазейля. Длина этой области (области развивающегося течения) $L_{\rm разв}$ зависит от гидравлического диаметра микроканала D_h и от числа Рейнольдса и вычисляется по формуле [16]

$$L_{\text{разв}} = 0.05 \,\text{Re} \, D_h.$$

В области, где реализуется профиль течения Пуазейля (область развитого течения жидкости), падение давления происходит только за счет вязкого трения и определяется по формуле

$$\Delta P = f\rho V^2 L/(2D_h),$$

где f — коэффициент пропорциональности между падением давления в микроканале и скоростным напором (коэффициент гидравлического сопротивления или коэффициент Дарси), зависящий от формы сечения микроканала, шероховатости и числа Рейнольдса.

Таким образом, полное падение давления жидкости в микроканале есть сумма падений давления в указанных выше областях.

Для определения коэффициента гидравлического сопротивления микроканала обычно используется два способа.

Первый способ предполагает измерение давления непосредственно в области развитого течения [4, 8, 9, 12, 14]. Однако на практике не всегда можно измерить давление непосредственно внутри микроканала.

Удобным и легкореализуемым является второй способ — измерение давления в коллекторах на входе и выходе микроканала. Измеряемое таким образом давление является суммой потерь давления в различных частях микроканала. Для исключения влияния концевых эффектов, под которыми понимается падение давления на входе и выходе микроканала, а также в области развивающегося течения, используются справочные значения коэффициентов местного сопротивления [1, 2, 5, 6, 11], а также применяется метод двух каналов [3, 10, 14, 15]. Основная идея этого метода заключается в том, что влияние концевых эффектов не зависит от длины канала, а определяется только расходом жидкости. Поэтому можно предположить, что при одинаковом расходе жидкости через микроканалы одного и того же диаметра, но различной длины влияние концевых эффектов будет одинаковым для каждого микроканала. Следовательно, различие перепадов давления в микроканалах соответствует разности их длин и коэффициент гидравлического сопротивления определяется по формуле

$$f = \frac{\pi D_h^4 (\Delta P_1 - \Delta P_2)}{2 \operatorname{Re} Q \mu (L_1 - L_2)},$$
(1)

где Q — расход жидкости.

Анализ имеющихся данных показывает, что метод двух каналов используется для определения коэффициента гидравлического сопротивления микроканалов достаточно большого удлинения $(L/D_h \gg 100)$. Однако существуют перспективные технологии, позволяющие изготавливать микроканалы малого удлинения $(L/D_h < 100)$ с различными свойствами внутренней поверхности [17, 18]. Вопрос о применимости в этом случае метода двух каналов требует специального изучения.

Рис. 1. Схема эксперимента: 1 — емкость с водой, 2 — рабочий стенд, 3 — емкость для измерения расхода

В некоторых работах (см., например, [7, 13]) способ учета влияния концевых эффектов не указывается. В работе [15] предложен способ расчета коэффициента гидравлического сопротивления на основе измерения разности температур жидкости на входе и выходе микроканала.

Схема измерения. Схема измерения давления показана на рис. 1. Газ под давлением подавался в емкость с водой. Вода по силиконовым трубкам поступала к рабочему стенду, на котором располагался микроканал. Пройдя через микроканал, вода поступала в емкость для измерения расхода, который определялся по изменению положения мениска за определенное время. В ходе эксперимента измерялось давление на входе в микроканал, а также перепад давления в микроканале. Для всех микроканалов максимальное давление на входе не превышало значения P = 1 МПа, что определялось прочностью соединения силиконовых и металлических трубок.

В качестве газа, создающего давление для движения жидкости, был выбран гелий, так как он плохо растворяется в воде. Отсутствие растворенных в воде газов необходимо для правильного измерения расхода жидкости. В качестве рабочей жидкости использовалась чистая деионизированная вода объемом 0,5 л, предварительно дегазированная путем пропускания через нее в течение 30 мин небольшого количества гелия.

Микроканалы. В экспериментах использовались стеклянные микроканалы, изготовленные из капилляра путем его нагрева и вытягивания над открытым пламенем. От полученной таким образом заготовки последовательно отрезались микроканалы различной длины.

Для того чтобы определить форму и размер сечения микроканала, входное сечение первого микроканала и выходное сечение последнего исследовались с помощью электронносканирующего микроскопа. От точности определения диаметра микроканала зависит точность вычисления коэффициента гидравлического сопротивления. Электронные фотографии входных сечений микроканалов приведены на рис. 2. Анализ полученных фотографий показывает, что микроканалы диаметром $D_h = 34,5$; 25,4 мкм имеют эллиптическую форму сечения, что учитывалось при определении гидравлического диаметра. Для всех исследуемых микроканалов ($D_h = 34,5$; 33,6; 25,4 мкм) наблюдалось незначительное изменение размеров входного и выходного сечений. Средние диаметры и длины изготовленных микроканалов, а также погрешности их определения приведены в таблице.

Для определения шероховатости внутренней поверхности микроканала часть микрокапиллярной заготовки срезалась вдоль оси таким образом, чтобы открылась стенка канала, и с помощью трехмерного анализатора структуры поверхности "ZYGO NewView 6300" проводились измерения. Величина шероховатости составляла порядка 5 нм, что позволяет считать стенку абсолютно гладкой.

Рис. 2. Электронные фотографии входных сечений микроканалов различного диаметра:

= 1 $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$

$D_h,$	Номер микроканала	L, MM	$\frac{L}{D_h}$	$\delta D_h,$ мкм	$\delta L,$ MM
34,5	$\begin{array}{c}1\\2\\3\end{array}$	20,23 8,43 4,66	$600 \\ 250 \\ 138$	1,2 1,2 1,2	$0,06 \\ 0,03 \\ 0,03$
33,6	$\begin{array}{c}1\\2\\3\end{array}$	$11,72 \\ 5,88 \\ 2,87$	$349 \\ 175 \\ 85$	$0,5 \\ 0,5 \\ 0,5$	$0,04 \\ 0,03 \\ 0,03$
25,4	$\begin{array}{c}1\\2\\3\end{array}$	$8,74 \\ 4,12 \\ 2,25$	344 162 89	1,2 1,2 1,2 1,2	$0,03 \\ 0,03 \\ 0,03 \\ 0,03$

Параметры исследуемых микроканалов

При проведении эксперимента возникали затруднения при соединении стеклянного микроканала и металлических трубок диаметром 1,9 мм для подвода-отвода жидкости (рис. 3). Для решения этой проблемы из фотополимера были изготовлены специальные миниатюрные соединительные узлы — фитинги, к которым также с помощью фотополимера присоединялись металлические трубки. Микроканал закреплялся в фитинге с помощью эпоксидной смолы. Точность расположения торцевого среза микроканала относительно стенки коллектора составляет ±25 мкм.

На рис. 4 приведена фотография рабочего стенда. Экспериментальный стенд представляет собой пластину из оргстекла, к которой с двух сторон с помощью винтов крепятся две металлические пластины с припаянными к ним металлическими трубками. По трубкам 3 осуществлялись подвод и отвод жидкости, трубки 4 использовались для подсоединения датчиков давления. Микрокапилляр располагался в центре пластины. Для устойчивости вся конструкция крепится к металлической пластине 6.

Результаты эксперимента. Для удобства представления данных результаты проведенного экспериментального исследования приведены на рис. 5 в виде зависимости нормированного числа Пуазейля C_{*} от числа Рейнольдса:

$$C_* = (f \operatorname{Re})_{\mathfrak{H}} / (f \operatorname{Re})_{\mathfrak{H}}.$$

Данные, приведенные на рис. 5,*a*, получены с использованием метода двух каналов для микроканалов 1 и 3 различных диаметров (см. таблицу). Видно, что результаты экспериментов согласуются с теоретическими значениями в пределах погрешности. Разность

Рис. 3

Рис. 4

Рис. 3. Схема соединения стеклянного микроканала и металлической трубки для подвода-отвода жидкости:

1 — канал для измерения давления, 2 — коллектор цилиндрической формы, 3 — микроканал, 4 — эпоксидная смола, 5 — фотополимер

Рис. 4. Экспериментальный стенд:

1 — пластина из оргстекла, 2 — металлические пластины, 3 — металлические трубки, по которым осуществлялись подвод и отвод жидкости, 4 — металлические трубки для подсоединения датчиков давления, 5 — микрокапилляр, 6 — металлическая пластина-основание

Рис. 5. Зависимости нормированного числа Пуазейля от числа Рейнольдса, полученные по формуле (1) для микроканалов 1, 3 (a) и 2, 3 (δ) различного диаметра:

 $1 - D_h = 34,5$ мкм, $2 - D_h = 33,6$ мкм, $3 - D_h = 25,4$ мкм

удлинений L/D_h микроканалов 1 и 3 указанных диаметров составляет 462, 264 и 255 соответственно.

На рис. 5,6 приведены значения нормированного числа Пуазейля, полученные с использованием метода двух каналов для микроканалов 2 и 3 различных диаметров (см. таблицу). В этом случае разность удлинений L/D_h микроканалов 2 и 3 равна 112 при $D_h = 34,5$ мкм, 90 при $D_h = 33,6$ мкм и 73 при $D_h = 25,4$ мкм. На рис. 5,6 видно, что экспериментально полученные значения коэффициента гидравлического сопротивления превышают его теоретическое значение на 15–50 %.

Заключение. Установлено, что для стеклянных микроканалов круглого сечения диаметром 34,5, 33,6 и 25,4 мкм экспериментальные значения коэффициента гидравлического сопротивления хорошо согласуются с теоретическими в диапазоне значений числа Рейнольдса 13 \leq Re \leq 330.

Проведенные эксперименты показали ограниченность применения метода двух каналов. Для корректного использования данного метода необходимо, чтобы длина короткого микроканала составляла не менее 150 калибров (диаметров), а разность длин двух микроканалов — не менее 150–170 калибров. Для коротких (менее 100–120 калибров) микроканалов применение метода двух каналов некорректно.

ЛИТЕРАТУРА

- Weilin Q., Mala Gh. M., Dongqing L. Pressure-driven water fows in trapezoidal silicon microchannels // Intern. J. Heat Mass Transfer. 2000. V. 43. P. 353–364.
- 2. Chen Y. T., Kang S. W., Tuh W.-C., Hsiao T.-H. Experimental investigation of fluid flow and heat transfer in microchannels // Tamkang J. Sci. Engng. 2004. V. 7, N 1. P. 11–16.
- Mala Gh. M., Li D. Flow characteristics of water in microtubes // Intern. J. Heat Fluid Flow. 1999. V. 20. P. 142–148.
- Kandlikar S. G., Joshi S., Tian S. Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes // Heat Transfer Engng. 2003. V. 24, N 3. P. 4–16.
- Hsieh S.-S., Lin Ch.-Y., Huang Ch.-F., Tsai H.-H. Liquid flow in a micro-channel // J. Micromech. Microengng. 2004. V. 14. P. 436–445.
- Judy J., Maynes D., Webb B. W. Characterization of frictional pressure drop for liquid flows through microchannels // Intern. J. Heat Mass Transfer. 2002. V. 45. P. 3477–3489.
- Celata G. P., Cumo M., Guglielmi M., Zummo G. Experimental investigation of hydraulic and single-phase heat transfer in 0.130-mm capillary tube // Microscale Thermophys. Engng. 2002. N 6. P. 85–97.
- Kohl M. J., Abdel-Khalik S. I., Jeter S. M., Sadowski D. L. An experimental investigation of microchannel flow with internal pressure measurements // Intern. J. Heat Mass Transfer. 2005. V. 48. P. 1518–1533.
- Costaschuk D., Elsnab J., Petersen S., at al. Axial static pressure measurements of water flow in a rectangular microchannel // Exp. Fluids. 2007. V. 43. P. 907–916.
- Celata G. P., Cumo M., McPhail S., Zummo G. Characterization of fluid dynamic behaviour and channel wall effects in microtube // Intern. J. Heat Fluid Flow. 2006. V. 27. P. 135–143.
- 11. Li Z., He Y.-L., Tang G.-H., Tao W.-Q. Experimental and numerical studies of liquid flow and heat transfer in microtubes // Intern. J. Heat Mass Transfer. 2007. V. 50. P. 3447–3460.
- Dutkowski K. Experimental investigations of Poiseuille number laminar flow of water and air in minichannels // Intern. J. Heat Mass Transfer. 2008. V. 51. P. 5983–5990.

- 13. Cui H., Silber-Li Z., Zhu S. Flow characteristics of liquids in microtubes driven by a high pressure // Phys. Fluids. 2004. V. 16, N 5. P. 1803–1810.
- Baviere R., Ayela F. Micromachined strain gauges for the determination of liquid flow friction coefficients in microchannels // Measuarement Sci. Technol. 2004. V. 15, N 2. P. 377–383.
- Celata G. P., Morini G. L., Marconi V., et al. Using viscous heating to determine the friction factor in microchannels: An experimental validation // Exp. Thermal Fluid Sci. 2006. V. 30. P. 725–731.
- Steinke M. E., Kandlikar S. G. Single-phase liquid friction factors in microchannels // Intern. J. Thermal Sci. 2006. V. 45. P. 1073–1083.
- 17. Prinz V. Ya., Seleznev V. A., Gutakovsky A. K., et al. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays // Physica E. 2000. V. 6. P. 829–831.
- 18. Романов С. И., Пышный Д. В., Вандышева Н. В. и др. Кремниевая микроканальная матрица для биочиповых технологий // Нано- и микросистемная техника. 2007. № 9. С. 55–61.

Поступила в редакцию 30/XI 2009 г.