2015. Том 56, № 1

Январь – февраль

C. 83 – 90

УДК 546.881:548.32

О ВЗАИМНОЙ РАСТВОРИМОСТИ В СИСТЕМАХ ММоO₄—LnVO₄, ГДЕ M = Ca, Cd, Sr, Ba, Pb, Ln = Y, Sc, Ce—Lu

В.Д. Журавлёв¹, О.Г. Резницких², В.Г. Бамбуров¹

¹Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: zhvd@ihim.uran.ru ²Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия

Статья поступила 7 октября 2013 г.

С доработки — 27 февраля 2014 г.

Выполнен анализ факторов, определяющих растворимость в системах MMoO₄ (шеелит)—LnVO₄ (циркон), где M = Ca, Cd, Sr, Ba, Pb, Ln = Y, Sc, La—Lu. Показано, что первичные твердые растворы на основе ванадатов P3Э отсутствуют вследствие высокого значения (выше 36 кДж/моль) энтальпии полиморфного перехода шеелит \rightarrow циркон. Для твердых растворов на основе молибдатов двухвалентных металлов энтальпия превращения циркон \rightarrow шеелит меньше и равна 16—22,3 кДж/моль. Различия в ионности связей анионов MoO₄²⁻ и VO₄³⁻ и межатомных расстояний в полиэдрах MO₈ и LnO₈ ограничивают взаимную растворимость исходных соединений, но не являются причиной ее асимметрии.

Ключевые слова: гетеровалентные взаимозамещения, твердые растворы, энтальпия смешения, циркон, шеелит.

введение

Соединения MMoO₄ и LnVO₄, M = Ca, Cd, Sr, Ba, Pb, Ln = Sc, Y, Ce—Lu, интересны в качестве материалов для рентгено- и фотолюминофоров, низкотемпературных детекторов излучения, твердотельных лазеров, катализаторов [1—7]. Молибдаты принадлежат структурному типу шеелита (пр. гр. $I4_1/a$) и при атмосферном давлении не имеют полиморфных переходов. Исключение — молибдат бария, претерпевающий полиморфный переход из тетрагональной структуры в кубическую при нагревании выше 1473 К [8]. Молибдаты стронция и свинца переходят в структуру фергюсонита в условиях повышенного давления, при 12,2 и 10,8—13,4 ГПа [9, 10]. Ванадаты LnVO₄, где Sc, Y, Ce—Lu, кристаллизуются в структурном типе циркона (пр. гр. $I4_1/amd$). В диапазоне от комнатной температуры до температуры плавления они не имеют полиморфных превращений. Однако при давлении выше ~5—8 ГПа при комнатной температуре ванадаты LnVO₄ трансформируются в структуру шеелита, а ванадаты церия и празеодима — в структуру монацита [11—13]. Для SmVO₄ переход происходит при давлении 6 ГПа, TbVO₄ — 6,4 ГПа, EuVO₄, LuVO₄ и ScVO₄ — около 8 ГПа [11—13].

Взаимодействия в системах MMoO₄—LnVO₄ относятся к сопряженным гетеровалентным замещениям с одновременным изменением валентности атомов в катионной и анионной подрешетках:

$$M^{2+} + Mo^{6+} = Ln^{3+} + V^{5+}.$$
 (1)

Экспериментально установлено, что в системах MMoO₄—LnVO₄, M = Ca, Cd, Pb, Ln = Ce, Nd, Eu, существуют ограниченные твердые растворы (OTP) со структурой шеелита, содержа-

[©] Журавлёв В.Д., Резницких О.Г., Бамбуров В.Г., 2015

Таблица 1

Концентрационные границы твердых растворов на основе шеелита в системах (1-х) MMoO₄—xLnVO₄ no [14]

Система	<i>х</i> , мол.%	Система	<i>х</i> , мол.%	Система	<i>х</i> , мол.%
CdMoO ₄ —NdVO ₄	35	CaMoO ₄ —EuVO ₄	22	SrMoO ₄ —EuVO ₄	0
CdMoO ₄ —EuVO ₄	25	CaMoO ₄ —CeVO ₄	15	PbMoO ₄ —EuVO ₄	10
CaMoO ₄ —NdVO ₄	20	PbMoO ₄ —NdVO ₄	15	BaMoO ₄ —EuVO ₄	0

щие при 1220—1320 К до 10—35 мол.% LnVO₄ (табл. 1), тогда как на основе ортованадатов РЗЭ твердые растворы состава $Ln_{1-x}M_xV_{1-x}Mo_xO_4$, x > 0,05 не образуются [14].

Взаимная смесимость сложных оксидов зависит от совокупности характеристик как замещающихся катионов (размер, тип связи, координация, степень окисления), так и кристаллической структуры соединений (анизотропия координационных полиэдров, изоструктурность или принадлежность к разным структурам, наличие полиморфных переходов). Точность оценки фазовых равновесий в бинарной системе зависит от того, насколько полной будет выборка факторов, определяющих взаимную растворимость.

Известно, что "поведение изоморфной смеси ... управляется термодинамическими функциями смешения — разностями термодинамических функций твердого раствора и механической смеси компонентов того же состава" [15]

$$\Delta G_{\rm cm} = \Delta H_{\rm cm} - T \Delta S_{\rm cm}.\tag{2}$$

Согласно энергетической теории изоморфной смесимости В.С. Урусова [15], с увеличением энтальпии смешения ΔH_{cm} уменьшается вероятность взаимной растворимости соединений в твердом состоянии (рис. 1).

В настоящей статье выполнен теоретический расчет энтальпий смешения и анализ факторов, определяющих фазовые равновесия в системах $MMoO_4$ (шеелит)— $LnVO_4$ (циркон), где M = Ca, Cd, Sr, Ba, Pb, Ln = Y, Sc, La—Lu.

РАСЧЕТНАЯ ЧАСТЬ

Общая энтальпия смешения ΔH_{cm} может быть представлена как сумма парциальных энтальпий смешения, связанных с характеристиками координационных полиэдров (КП) соединений [16—18]:

Рис. 1. Взаимосвязь термодинамических функций смешения с диаграммой состояния бинарной системы [15]

MMoO ₄ LnVO ₄	$\frac{R_{M}^{2+}, \text{\AA}}{R_{Ln}^{3+}, \text{\AA}}$	ε(M—O) ε(Ln—O)	$\begin{array}{c} \epsilon(R_{M}\!\!+\!\!R_{O}) \\ \epsilon(R_{Ln}\!\!+\!\!R_{O}) \end{array}$	D(M—O), Å D(Ln—O), Å	<i>D</i> (Mo—O), Å <i>D</i> (V—O), Å
Ca	1,120	0,76	1,885	2,466	1,757
Sr	1,260	0,76	1,991	2,597	1,767
Ba	1,420	0,76	2,113	2,688	1,774
Pb	1,290	0,76	2,014	2,624	1,769
Cd	1,100	0,72	1,771	2,420	1,750
Ce	1,143	0,73	1,827	2,434	1,796
Nd	1,109	0,73	1,802	2,412	1,777
Eu	1,066	0,73	1,771	2,383	1,756
Lu	0,977	0,73	1,706	2,320	1,713
Sc	0,870	0,71	1,583	2,256	1,667
Y	1,019	0,73	1,737	2,347	1,732
V	0,355	0,43			
Mo	0,410	0,35			

Ионность (є) и длина (D) связи катион—кислород в MMoO₄ и LnVO₄

$$\Delta H_{\rm cm} = \sum \Delta H_{\rm cm}^i + X_2 \Delta H_{\rm II-I}, \qquad (3)$$

где ΔH_{cM}^{i} — энтальпии образования смешанных полиэдров (M,Ln)O₈ (*i* = 1) и (Mo,V)O₄ (*i* = 2); X_2 — концентрация соединения-примеси в твердом растворе. Поскольку исходные соединения не изоструктурны, необходимо учитывать вклад энтальпии перехода соединения-примеси в структуру соединения-матрицы ΔH_{II-II} .

Значения $\Delta H^i_{\rm cm}$ в полиэдрах замещения могут быть рассчитаны по уравнению

$$\Delta H_{\rm CM}^i = A (\Delta D / D_1)^2 + B (\Delta \varepsilon)^2, \qquad (4)$$

где ΔD — разница средних межатомных расстояний М—О и Ln—O, Мо—O и V—O; D_1 — межатомное расстояние катион—кислород в полиэдрах замещения соединения-матрицы; $\Delta \varepsilon$ — разница степеней ионности связей КП, в которых происходит взаимозамещение атомов. Коэффициенты A и B рассчитаны по следующим уравнениям [15, 16]:

$$A = X_1 X_2 Cmn Z_{M(Ln,Mo,V)}^* Z_0^*,$$
(5)

$$B = 332m X_1 X_2 Z_{M(Ln,Mo,V)}^* Z_0^* \cdot \alpha,$$
(6)

где C — параметр, зависящий от ионности связи катион—кислород в КП соединений [17, 18]; m = 2; n — координационное число катиона в полиэдре; α — приведенная константа Маделунга для полиэдра замещения; X_1 и X_2 — мольные доли взаимодействующих соединений; Z_M^* и Z_O^* — эффективные заряды катионов и кислорода в КП. Правила расчета коэффициентов Aи B изложены в [16—18]. Межатомные расстояния М—О и Мо—О взяты из [17], а Ln—O и V—O (табл. 2) найдены с помощью программы ATOMS по параметрам кристаллических решеток [19].

Общая энтальпия смешения ΔH_{cM} в системах MMoO₄—LnVO₄ может быть рассчитана по уравнению (7) как сумма парциальных энтальпий смешения атомов в двух типах КП и энтальпии полиморфного перехода соединения-примеси в структуру соединения-матрицы:

$$\Delta H_{\rm cM} = \Delta H_{\rm cM}[({\rm Ln},{\rm M}){\rm O}_8]_D + \Delta H_{\rm cM}[({\rm Ln},{\rm M}){\rm O}_8]_{\epsilon} + \Delta H_{\rm cM}[({\rm Mo},{\rm V}){\rm O}_4]_D + \Delta H_{\rm cM}[({\rm Mo},{\rm V}){\rm O}_4]_{\epsilon} + \chi_2 \Delta H_{\rm II-I}.$$
(7)

Рис. 2. Зависимость изменения расстояний *D* (М—О (*1*), Ln—О (2), Мо—О (3) и V—О (4)) для шеелитов ММоО₄ и цирконов LnVO₄ от є[*R*(M,Ln) + *R*(O)]

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Возможность изоморфной смесимости двух изоструктурных соединений зависит от соразмерности полиэдров замещения ($\Delta H_{cm}[(Ln,M)O_8]_D$, $\Delta H_{cm}[(Mo,V)O_4]_D$) и ионности связей катион кислород ($\Delta H_{cm}[(Ln,M)O_8]_{\epsilon}$, $\Delta H_{cm}[(Mo,V)O_4]_{\epsilon}$). Принадлежность к разным кристаллическим структурам ограничивает взаимную растворимость соединений, увеличивая общую энтальпию смешения из-за вклада члена $X_2\Delta H_{II-I}$ в уравнение (7). В рассматриваемых парах соединений имеется только два типа анионов, MoO_4^{2-} и VO_4^{3-} , а все разнообразие фазовых равновесий создают комбинации двух- и трехвалентных катионов.

В работе [20] показано, что для сопоставления закономерностей изменения средних межатомных расстояний в КП исходных соединений удобно использовать произведение суммы ионных радиусов центрального катиона и кислорода на ионность связи катион—кислород. У шеелитов ММоО₄ (рис. 2) средний размер аниона MOO_4^{2-} остается практически постоянным при переходе от молибдата кадмия к молибдату бария, $D_{Mo-O} = 1,765\pm0,010$ Å. Напротив, длина связей V—O с увеличением радиуса катионов Ln³⁺ возрастает от 1,667 до 1,796 Å (см. табл. 2). В результате разница в размерах анионов увеличивает общую энтальпию смешения не более чем на 210 Дж/моль, и только для систем MMoO₄—ScVO₄ значение $\Delta H_{cM}[(Mo,V)O_4]_D$ достигает 680—1270 Дж/моль (табл. 3). Более существенны различия в ионности связей Мо—O и V—O, $\Delta \varepsilon = 0,08$, поэтому ΔH_{cM} [(Mo,V)O₄]_{ε} = 5,43—5,84 кДж/моль для твердых растворов со структурой циркона и несколько меньше (5,49—5,57 кДж/моль) для твердых растворов со структурой шеелита (см. табл. 3).

Для связей М—О и Ln—О значение $\Delta \varepsilon$ равно 0,03, что приводит к незначительному, на 60—540 Дж/моль, увеличению ΔH_{cm} в бинарных системах без ScVO₄. В системах ScVO₄— MMoO₄, M = Ca, Sr, Pb, Ва разница в ионности связи достигает $\Delta \varepsilon = 0,05$, в результате этого ΔH_{cm} [M(Sc)O₈] $_{\varepsilon}$ возрастает до 1,30—1,56 кДж/моль. Относительная разница размеров полиздров LnO₈ и MO₈ при замещениях в матрице цирконов меняется от 0,3 до 19,1 %, а в матрице шеелитов — от 0,3 до 16,0 % (см. табл. 3). Соответственно ΔH_{cm} [M(Ln)O₈] $_{D}$ изменяется от 8 до 25,79 кДж/моль для замещений в шеелитах и от 8 до 33,38 кДж/моль — в цирконах (см. табл. 3).

В табл. 3 для представительных систем $MMoO_4$ —LnVO₄ приведены максимальные значения четырех из пяти (без ΔH_{II-I}) парциальных энтальпий смешения. Видно, что для одних соединений $\Sigma \Delta H_{cM}^i$ зависит в основном от размеров полиэдров MO_8 и LnO₈ (например, в системах ScVO₄—SrMoO₄, ScVO₄—BaMoO₄, CeVO₄—BaMoO₄, EuVO₄—SrMoO₄), других — от суммарного влияния размеров полиэдров замещения и характера связей Мо—O и V—O (например, в системах CeVO₄—SrMoO₄, ScVO₄—CdMoO₄).

Зависимости изменения $0.5\Sigma\Delta H_{cM}^{i}$ от состава систем CaMoO₄—NdVO₄ (*1*) и PbMoO₄— NdVO₄ (*2*) представлены на рис. 3. В системе *1* различия в расстояниях М—O₈ и Ln—O₈ минимальны, поэтому графики $0.5\Sigma\Delta H_{cM}^{i} = f(X_{NdVO_4})$ и положение максимума для матриц шеелита

Таблица З

эквимолярных твероых растворов (Дж/моль) в системах $MMOO_4$ —Ln V O_4							
MMoO ₄ —LnVO ₄	$\Delta H_{\rm cm}$ [(Ln,M)O ₈] _D	$\Delta H_{\rm CM}$ [(Ln,M)O ₈] _e	$\Delta H_{\rm cm}$ [(Mo,V)O ₄] _D	$\Delta H_{\rm cm}$ [(Mo,V)O ₄] _e	$\sum \Delta H^i_{\rm cm}$		
M L n M o V O (measure)							
CdMoQ_CeVQ	$M_{1-x}Ln_xW0_{1-x}V_x0_4$ (meeninf) $M_{0}O_4$ —CeVO ₄ 33 59 209 5568						
CdM_0O_4 $NdVO_4$	8	59	209 71	5568	5706		
CdM_0O_4 $FuVO_4$	218	59	8	5568	5853		
CdM_0O_4 —ScVO ₄	4325	59	682	5568	10634		
CaM_0O_4 $CeVO_4$	176	519	151	5547	6393		
$CaMoO_4$ $OdVO_4$	507	523	38	5547	6615		
$CaMoO_4$ —EuVO ₄	1135	523	0	5547	7205		
SrMoO ₄ —CeVO ₄	4140	494	79	5518	10231		
SrMoO ₄ —EuVO ₄	7012	494	13	5518	13037		
PbMoO ₄ —CeVO ₄	5409	490	71	5510	11480		
PbMoO ₄ —NdVO ₄	6845	490	21	5510	12866		
PbMoO ₄ —EuVO ₄	8830	490	17	5510	14847		
BaMoO ₄ —CeVO ₄	9219	477	46	5493	15235		
BaMoO ₄ —EuVO ₄	13377	477	29	5493	19376		
CaMoO ₄ —ScVO ₄	7277	1428	804	5547	15056		
SrMoO ₄ —ScVO ₄	17291	1356	967	5547	25161		
BaMoO ₄ —ScVO ₄	25790	1310	1114	5497	33711		
	Ln ₁	M.V1 .M0.O4	(пиркон)				
CeVO ₄ —CdMoO ₄	33	59	209	5426	5727		
CeVO ₄ —CaMoO ₄	176	527	138	5426	6267		
CeVO ₄ —SrMoO ₄	4685	527	79	5426	10717		
CeVO ₄ —PbMoO ₄	6343	527	71	5426	12367		
CeVO ₄ —BaMoO ₄	11283	527	42	5426	17278		
NdVO ₄ —CdMoO ₄	8	230	50	5485	5773		
NdVO ₄ —CaMoO ₄	507	531	38	5485	6561		
NdVO ₄ —PbMoO ₄	8076	531	8	5485	14100		
EuVO ₄ —CdMoO ₄	218	234	0	5485	5937		
EuVO ₄ —CaMoO ₄	1277	536	0	5652	7465		
EuVO ₄ —SrMoO ₄	8449	540	12	5652	14653		
EuVO ₄ —PbMoO ₄	10638	540	17	5552	16747		
EuVO ₄ —BaMoO ₄	17086	536	33	5552	23207		
ScVO ₄ —CdMoO ₄	4986	59	770	5845	11660		
ScVO ₄ —CaMoO ₄	7913	1562	900	5845	16220		
ScVO ₄ —SrMoO ₄	20862	1562	1109	5845	29378		
ScVO ₄ —BaMoO ₄	33377	1562	1269	5845	42053		

Парциальные энтальпии смешения при образовании эквимолярных твердых растворов (Дж/моль) в системах MMoO₄—LnVO₄

и циркона практически совпадают. На рис. 3, *а* кривая *1* для шеелита экстраполирована в область твердых растворов со структурой циркона и видно, что расчетные значения $0.5 \sum \Delta H_{cM}^i$ для циркона (черные кружки) очень близки к ней. Но для системы 2 ветви графиков $0.5 \sum \Delta H_{cM}^i = f(X_{NdVO_4})$ расходятся, значения $0.5 \sum \Delta H_{cM}^i$ для твердых растворов на основе ванадата неодима выше, чем для твердых растворов на основе молибдата кальция.

Puc. 3. Изменение $0.5 \sum \Delta H_{cM}^i$ (1 на рис. *a* и 1, 2 на рис. *б*) и теоретические границы твердых растворов (2, 3 на рис. *a* и 3, 4 на рис. *б*) от состава систем CaMoO₄—NdVO₄ и PbMoO₄—NdVO₄

Данные по максимуму энтальпии смешения в энергетической теории изоморфных замещений используют для расчета максимальных температур распада твердых растворов $T_{\rm max}$ и теоретического расчета границ первичных твердых растворов. Для изоструктурных соединений с близким характером связей существует корреляция [15, с.78] между $T_{\rm max}$ и энтальпией смешения:

$$T_{\rm max} = \frac{K}{4} \left[Cmn Z_{\rm M}^* Z_{\rm O}^* \left(\frac{\Delta D}{D} \right)^2 \right], \ {\rm K}.$$
(8)

Коэффициент пропорциональности K равен 1, если энтальпию смешения выражать в калориях. С учетом уравнений (3)—(6) в системах с неизоструктурными соединениями T_{max} связана с энтальпией смешения уравнением

$$T_{\text{max}} = K \cdot (\sum \Delta H_{\text{cM}}^{i} + X_2 \Delta H_{\text{II}-\text{I}}) / L \cdot 4X_1 X_2, \text{ K}, \tag{9}$$

где L — количество типов КП, в которых идет замещение. Для исследуемых систем L = 2 и $X_1 \sim X_2 \sim 0.5$.

На рис. 3 представлены также границы первичных областей гомогенности, найденные без учета $X_2\Delta H_{II-I}$ (линии 2, 3 на рис. *а* и 3, 4 на рис. *б*). Для системы CaMoO₄—NdVO₄ они симметричны, а для системы PbMoO₄—NdVO₄ при одинаковых температурах область гомогенности на основе ванадата неодима несколько у́же, чем на основе молибдата свинца. То есть ни размеры, ни ионность связи КП исходных соединений не препятствуют растворимости молибдатов кальция и свинца в ванадате неодима. Кроме того, температурные области существования твердых растворов, найденные без учета $X_2\Delta H_{II-I}$, судя по T^*_{max} , К (табл. 4), указывают на завышенную по сравнению с экспериментальной растворимость ванадата неодима в молибдатах кальция и свинца.

Что же является причиной асимметрии растворимости в системах MMoO₄—LnVO₄? Авторы полагают, что отсутствие твердых растворов на основе LnVO₄ связано с тем, что энтальпия перехода ванадата РЗЭ в кристаллическую структуру шеелита превышает энтальпию перехода молибдатов двухвалентных металлов в структуру циркона.

Значение ΔH_{II-I} можно рассчитать, если известно положение границы твердого раствора при определенной температуре [15]. Данные по растворимости в системах CdMoO₄—NdVO₄, CdMoO₄—EuVO₄, CaMoO₄—NdVO₄, CaMoO₄—EuVO₄, CaMoO₄—CeVO₄ авторами [14] отнесены к $T \sim 1320$ К. Необходимую для расчетов максимальную температуру распада непрерывных твердых растворов находили по соотношению T/T_{max} для систем с $D/D_1 < 0.05$. В табл. 4 приведены значения T_{max} , полученные с использованием уравнения (9). Для ванадатов CeVO₄, NdVO₄ и EuVO₄ были получены значения ΔH_{II-I} , равные 15,9, 12,2 и 11,6±1,0 кДж/моль соот-

Таблица 4

Матрица—шеелит			Матрица—циркон				
M/Ln	$\Delta D'/D, \%$	$T_{\rm max}^*, {\rm K}$	$T_{\rm max}$, K	M/Ln	$\Delta D'/D, \%$	$T_{\rm max}^*, {\rm K}$	$T_{\rm max}$, K
Cd/Nd	0,3	680	1410	Nd/Cd	0,3	690	2930
Cd/Ce	0,6	690	1640	Ce/Cd	0,6	685	2925
Ca/Ce	1,3	700	1650	Ce/Ca	1,3	750	2900
Cd/Eu	1,5	700	1390	Eu/Cd	1,5	710	2950
Ca/Nd	2,2	790	1520	Nd/Ca	2,2	780	2930
Ca/Eu	3,3	860	1550	Eu/Ca	3,5	890	3040
Sr/Ce	6,3	1220	2170	Ce/Sr	6,7	1280	
Cd/Sc	6,8	1270		Sc/Cd	7,3	1390	
Pb/Ce	7,2	1370		Ce/Pb	7,8	1480	
Pb/Nd	8,1	1535		Nd/Pb	8,8	1680	
Sr/Eu	8,2	1540		Eu/Sr	9,0	1750	
Pb/Eu	9,2	1770		Sc/Ca	9,3	1940	
Ba/Ce	9,4	1820		Eu/Pb	10,1	2000	
Ca/Sc	8,5	1800		Ce/Ba	10,4	2060	
Ba/Eu	11,3	2315		Eu/Ba	12,8	2770	
Sr/Sc	13,1	3005		Sc/Sr	15,1	3510	
Ba/Sc	16,0	4025		Sc/Ba	19,1	5020	

Максимальная температура распада НТР в системах ММоО₄—LnVO₄

ветственно. Отсутствие твердых растворов на базе ванадатов РЗЭ позволяет примерно оценить ΔH_{I-II} шеелитов-молибдатов в структуру циркона для молибдатов кальция ($\Delta H_{I-II} \sim 36 \pm \pm 1,0$ кДж/моль) и кадмия ($\Delta H_{I-II} \sim 37,5\pm 1,0$ кДж/моль). В этом случае при 1320 К растворимость на основе ванадатов РЗЭ в системах ММоО₄—LnVO₄ отсутствует.

Из сделанного анализа следует, что энтальпия полиморфного перехода молибдатов-шеелитов в структуру циркона в 2—3 раза превышает энтальпию перехода ванадатов РЗЭ в структуру шеелита, что является первопричиной односторонней растворимости в системах $MMoO_4$ — $LnVO_4$, где M = Ca, Cd, Pb, Sr, Ba и Ln—Y, Sc, La—Lu. Большая разница в энергетике перехода косвенно подтверждается и тем, что ванадаты РЗЭ переходят в структуру шеелита при ~5—8 ГПа, тогда как молибдаты-шеелиты трансформируются в структуру фергюсонита при давлениях 10,8—13,4 ГПа [9, 10].

выводы

Проанализированы факторы, определяющие взаимную растворимость в системах $MMoO_4$ — $LnVO_4$, где M = Ca, Cd, Pb, Sr, Ba и Ln—Y, Sc, La—Lu. Модельными расчетами энтальпии смешения установлено, что

1. Отсутствие первичных твердых растворов на основе ванадатов РЗЭ является следствием более высокого значения (выше 36 кДж/моль) энтальпии полиморфного перехода молибдатовшеелитов в структуру циркона по сравнению с энтальпией превращения ванадатов РЗЭ в структуру шеелита (16—22,3 кДж/моль).

2. Различия в ионности связей катион—кислород анионов MoO_4^{2-} и VO_4^{3-} и размеры координационных полиэдров замещения не определяют полярность взаимной растворимости в исследованных системах.

Исследование поддержано программой фундаментальных исследований Отделения химии и наук о материалах РАН (проект 12-Т-3-1003).

СПИСОК ЛИТЕРАТУРЫ

- 1. Zhen L., Wang W.S., Xu C.Y. et al. // Scripta Mater. 2008. 58. P. 461.
- 2. Mikhailik V.B., Kraus H. // J. Phys. D: Appl. Phys. 2006. 39. P. 1181.
- 3. *Mikhrin S.B., Mishin A.N., Potapov A.S. et al.* // Nuclear Instruments and Methods in Physics. Sec. A. 2002. **486**. P. 295.
- 4. Xu Li, Zhiping Yang, Li Guan, Qinglin Guo. // Mater. Lett. 2009. 63. P. 1096.
- 5. *Rhanna A., Dutta P.S.* // J. Sol. State Chem. 2013. 198. P. 93.
- 6. Ruo-Tseng Li, Zen-Hai Chi // Appl. Catalysis A: General. 2001. 206, N 2. P. 197.
- 7. Watanabe A. // J. Sol. State Chem. 2000. 153. P. 174.
- 8. Basiev T.T., Sobol A.A., Voronko Yu.K. et al. // Optical Materials. 2000. 15. P. 205.
- 9. Vilaplana R., Gomis O., Manjon F.J. et al. // J. Appl. Phys. 2012. 112, N 10. Art. 103510.
- 10. Errandonea D., Kumar R.S., Ma X.H. et al. // J. Sol. State Chem. 2008. 181, N 2. P. 355.
- 11. Errandonea D., Achary S.N., Pellicer-Porres J. et al. // Inorgan. Chem. 2013. 52, N 9. P. 5464.
- 12. Errandonea D., Kumar R.S. Achary S.N. et al. // Phys. Rev. B. 2011. 84, N 22. Art. 224121.
- 13. Errandonea D., Lacomba-Perales R., Ruiz-Fuertes J. et al. // Phys. Rev. B. 2009. 79, N 18. Art. 184104.
- 14. Журавлев В.Д., Великодный Ю.А., Ходос М.Я. // Журн. неорган. химии. 1990. 35, № 2. С. 474.
- 15. Урусов В.С. Теория изоморфной смесимости. М.: Наука, 1977.
- 16. Журавлев В.Д., Резницких О.Г. // Журн. структур. химии. 2012. 53, № 1. С. 88.
- 17. Zhuravlev V.D., Reznitskikh O.G., Velikodnyi Yu.A. et al. //. J. Sol. State Chem. 2011. 184. P. 2785.
- 18. Журавлев В.Д., Патрушева Т.А., Резницких О.Г. и др. // Журн. неорган. химии. 2009. **54**, № 9. С. 1489.
- 19. Гетьман Е.И. Изоморфные замещения в вольфраматных и молибдатных системах. М.: Наука, 1985.
- 20. Журавлев В.Д., Бамбуров В.Г., Ермакова Л.В. и др. // Журн. неорган. химии. 2011. 56, № 5. С. 805.