УДК 539.43+623.562

ВЫСОКОСКОРОСТНОЕ ПРОНИКАНИЕ ПЛОСКИХ КУМУЛЯТИВНЫХ СТРУЙ В НЕЛИНЕЙНЫЕ СРЕДЫ

Г. Г. Савенков

Федеральное государственное унитарное предприятие "Научно-производственное предприятие «Краснознаменец»", 195043 Санкт-Петербург

Представлены результаты металлографического анализа образцов металла, вырезанных из преград после проникания в них плоских кумулятивных струй. Показано, что пластическая деформация в процессе проникания имеет турбулентный характер и в ряде случаев происходит в металлах с фрактальной структурой, сформированной после прохождения ударной волны, бегущей перед струей. Предложена модель проникания с учетом нелинейного поведения материала преграды и фрактальности его структуры.

Ключевые слова: высокоскоростное проникание, кумулятивные струи, фрактальные структуры.

Процесс высокоскоростного проникания плоских кумулятивных струй с начальными скоростями соударения $V_0 = 2.5 \div 3.5$ км/с сопровождается возникновением бегущей перед струей ударной волны, которая затем распадается на две волны: упругую и пластическую. Движение ударной волны приводит, в частности, к локальному перегреву материала преграды, изменению его кристаллической структуры и зеренного строения. Поэтому на большей части пути происходит внедрение струи в преграду, материал которой отличается по свойствам от исходного. Так, при изучении методами оптической, растровой и просвечивающей микроскопии ряда мишеней из стали 12Х18Н10Т и сплава XH75BMЮ после внедрения в них плоских кумулятивных струй с начальными скоростями соударения около 3,5 км/с обнаружены особенности структуры металлов, указывающие на то, что фрактальная структура образуется при прохождении ударной волны, бегущей перед струей.

Структурные изменения в сплаве показаны на панораме плоскости образца, параллельной направлению движения струи (рис. 1). Образец вырезан из преграды на половине глубины клиновидной каверны. Эти изменения различаются областями травимости, размеры и форма которых также различны. По этим признакам выделены три зоны. Первая зона (зона наибольших пластических деформаций) протяженностью $\Delta r_1 = (0.8 \pm 0.1)$ мм образована, очевидно, в процессе движения кумулятивной струи и состоит из двух областей. В первой области, размер которой не превышает размера 3–4 зерен исходного материала, примыкающей к краю каверны, происходят перемешивание материалов струи и преграды, фрагментация материала преграды и образование в нем несплошностей. Во второй области первой зоны кроме фрагментации наблюдается интенсивная пластическая деформация. Вторая зона размером $\Delta r_2 = (1,1 \pm 0,1)$ мм образуется за счет прохождения ударной волны, т. е. именно в материал с такой структурой происходило внедрение струи. Наконец, третья зона соответствует первоначальной структуре металла с зернами, размеры которых составляют (50 ± 25) мкм.

Рис. 1. Структура сплава XH75BMЮ после проникания плоской кумулятивной струи, ×200

Наиболее интересная (с точки зрения структуры материала, в который происходит внедрение струи) вторая зона представляет собой совокупность полосообразных форм, одинаково ориентированных относительно края каверны под углом $\pm 45^{\circ}$, и является, по сути, "групповым" солитоном из 7–12 "монохроматических" лент. Как известно, возникновение солитонов (уединенных стоячих волн) объясняется нелинейным поведением среды. В данном случае нелинейная среда обладает фрактальными свойствами, о чем свидетельствует увеличение длины границ зерен и областей, образованных пересечением микрополос скольжения внутри зерен полосообразных форм (рис. 2), при возрастании оптического увеличения и разрешения микроскопа. Средний размер фракталов D этих областей, определенный по методике, изложенной в [1], оказался равным 1,896.

В случае мишени из стали 12X18H10T дислокационно-дисклинационная структура образца в зоне прохождения ударной волны (рис. 3) обладает свойством геометрического самоподобия. Размеры субобластей, в которых произошла локальная переориентация, приближенно равны 0,01; 0,05; 0,26 мкм. Частные от деления в последовательности 0,01 : 0,05 и 0,05 : 0,26 практически равны 0,2 и 192, а, как известно, геометрическое самоподобие объектов является классическим признаком фракталов.

На основании приведенных данных можно предположить, что для некоторых металлов ударная волна, образующаяся в момент соударения высокоскоростной струи с преградой и бегущая перед струей, способствует образованию фрактальных структур в материале мишени. Это обстоятельство приводит к тому, что плоская кумулятивная струя движется во фрактальной среде со специфическими нелинейными свойствами. В работе [2] установлено, что наиболее интенсивные процессы деформации и разрушения локализуются в пределах 3–4 зерен, расположенных у края каверны. Это подтверждается результатами настоящей работы. В работе [3] показано, что пластическая деформация представляет собой движение совокупности микро- или мезопотоков вещества, имеющих различную скорость. Этот вывод подтверждается также тем обстоятельством, что "групповой" солитон допускает существование на фазовой плоскости траекторий-носителей пластических мод в форме сепаратрисы — кривой, которая разделяет хаотические носители по скоростям [4].

В строгой постановке достаточно сложное решение трехмерной нестационарной задачи определения параметров движения струи в преграде еще более усложняется при описании процесса проникания в нелинейных фрактальных средах, поскольку при описании их

Рис. 2. Фрактальная граница зерна в сплаве XH75BMЮ: *а* — полосообразные структуры внутри зерен; *б* — граница полосы при возрастании оптического увеличения

упругих и других свойств классические модели механики сплошной среды неприемлемы. Так, в уравнениях движения и сохранения появляются дробные производные и дробные интегралы [5], а физические свойства фрактальных материалов определяются зависимостями плотности от их структуры, а также упругих модулей от масштаба деформации [6].

Для того чтобы учесть перечисленные выше особенности процесса высокоскоростного проникания и упростить задачу, используем модифицированную гидродинамическую модель проникания [3], а фрактальность будем учитывать с помощью эффективных параметров материала.

Основное уравнение модифицированной гидродинамической теории проникания, характеризующее баланс напряжений на контактной поверхности струи и преграды, записывается в виде

$$0.5\rho_1(V-u)^2 + H_1 = 0.5\rho_2 u^2 + H_2,$$
(1)

где ρ_1 , ρ_2 — плотности материалов струи и мишени соответственно; V — скорость струи; u — скорость проникания; H_1 — параметр, характеризующий прочность материала струи; H_2 — так называемое сопротивление материала преграды [7]. Для решения уравнения (1) и всей системы уравнений модифицированной гидродинамической модели проникания нужно знать значения параметров H_1 и H_2 . Анализ этих характеристик проводился в основном для осесимметричных струй, скорость которых $V \approx 4$ км/с, и ударников (длинных стержней и бойков), скорость которых составляет $1.5 \div 2.5$ км/с, что достаточно близко к скоростям, рассматриваемым в настоящей работе. А. Тейт рекомендовал выбирать значение H_1 равным пределу упругости Гюгонио p_E материала ударника, а значение H_2 — в 3.5 раза больше предела упругости Гюгонио материала преграды [8]. Авторы работы [9] предлагали брать значение H_1 равным динамическому пределу текучести, а значение H_2 —

Рис. 3. Тонкая структура стали 12X18H10T, ×12000

равным 2,5 p_E . В отечественной литературе под разностью $H_2 - H_1$ для кумулятивных струй в основном понимается динамическая твердость материала преграды [10], при этом считается, что прочностью струи можно пренебречь. Автор работы [11] полагает, что H_1 и H_2 близки к соответствующим пределам упругости Гюгонио, за исключением случая, когда материалы ударника и преграды одинаковы. В работах [7, 10] указано, что с точки зрения физики H_2 следует рассматривать как "диссипативное" давление, описывающее потери энергии, обусловленные упругопластическим течением, сжимаемостью, нагревом преграды и т. п. Следует отметить, что предложенные выше значения параметров H_1 и H_2 не учитывают предысторию нагружения материалов струи (ударника) и преграды (влияние действия ударной волны), и, по сути, разность $H_2 - H_1$ в этих случаях является подгоночным параметром.

В [12] при определении прочностных параметров струи для меди марки M-2 получено значение $H_1 = 400 \div 700$ МПа (среднее значение $H_1 = 470$ МПа), для стали марки Ст.3 среднее значение $H_1 = 520$ МПа, для алюминия марки A-6 $H_1 = 210$ МПа. Полученные значения H_1 близки к соответствующим пределам упругости Гюгонио и не являются пренебрежимо малыми. При определении H_2 будем учитывать все описанные выше физические особенности процесса проникания струй в металлические преграды, т. е. будем рассматривать этот параметр как сопротивление металла преграды внедрению струи, обусловленное вязким трением между мезопотоками и внутри них, турбулентным движением частиц среды в промежуточном подслое и вращательным движением зерен и их фрагментов. О вращении элементов среды свидетельствует размытие текстуры металла преграды в зоне наибольших пластических деформаций (первой зоне) [3, 13]. Следует отметить, что вращение элементов среды, как и собственно их движение (скольжение), является в основном аккомодационным процессом, способствующим сохранению сплошности материала.

С учетом сказанного выше выражение для H_2 запишется в виде

$$H_2 = S_1 + S_2 + S_3 + S_4 + S_0, (2)$$

где S_1 — напряжение трения между мезопотоками; S_2 — напряжение, обусловленное вязким трением элементов среды внутри мезопотока; S_3 — турбулентное напряжение; S_4 поворотное напряжение; S_0 — исходная (с учетом прохождения ударной волны) прочность материала преграды.

Напряжение трения между мезопотоками S₁ определяется по соотношению

$$S_1 = \mu_1 \dot{\varepsilon}_1,\tag{3}$$

где μ_1 — динамическая вязкость материала между мезопотоками; $\dot{\varepsilon}_1$ — скорость деформации между мезопотоками.

Коэффициент μ_1 находится из следующего выражения [14]:

$$\mu_1 = \rho_2 \,\Delta u \,\Delta h.$$

Здесь Δu — ширина распределения мезопотоков частиц по скоростям (в терминах турбулентной гидродинамики "пульсационная" скорость, т. е. изменение скорости по сравнению со средним значением); Δh — ширина мезопотока. Скорость деформации между мезопотоками $\dot{\varepsilon}_1 = \Delta u / \Delta h$. Подставляя выражения для μ_1 и $\dot{\varepsilon}_1$ в (3), получим

$$S_1 = \rho_2 (\Delta u)^2. \tag{4}$$

Напряжение S_2 внутри мезопотока обусловлено вязким торможением элементарных носителей пластической деформации (дислокаций). Аналогично S_1 его можно определить в виде

$$S_2 = \mu_2 \dot{\varepsilon}_2,\tag{5}$$

где μ_2 — динамическая вязкость материала внутри мезопотока; $\dot{\varepsilon}_2$ — скорость деформации внутри мезопотока. Коэффициент μ_2 определим из соотношения [14]

$$\mu_2 = \alpha B / (b^2 N_m),$$

а скорость деформации $\dot{\varepsilon}_2$ — из выражения

$$\dot{\varepsilon}_2 = u/h \approx u/h_1.$$

Здесь $\alpha < 1$ — коэффициент; B — коэффициент вязкого торможения дислокаций; b — вектор Бюргерса; N_m — плотность подвижных дислокаций; h — ширина зоны пластических деформаций; h_1 — ширина плоской кумулятивной струи. Подставляя выражения для μ_2 , $\dot{\varepsilon}_2$ в (5), получим

$$S_2 = \alpha B u / (h_1 b^2 N_m). \tag{6}$$

Турбулентное (S_3) и вращательное (S_4) напряжения являются наиболее трудноопределимыми параметрами. Формально можно записать

$$S_3 = \mu_3 \dot{\varepsilon}_3,\tag{7}$$

где μ_3 — турбулентная вязкость; $\dot{\varepsilon}_3$ — скорость деформации внутри вихревой зоны. Коэффициент μ_3 находится по зависимости, определенной в [15] в виде

$$\mu_3 = \lambda \rho_2 u d$$

 $(\lambda$ — эмпирический коэффициент согласования). Размер вихревой зоны dопределяется из соотношения

$$d = 0.5\beta f(\rho_{21}/\rho_{22})|u_1 - u_2|t_3, \tag{8}$$

где β — эмпирическая постоянная; $f(\rho_{21}/\rho_{22})$ — безразмерная функция, зависящая в общем случае от перепада плотности вне и внутри вихревой зоны и нормированная условием f(1) = 1; t_3 — время взаимодействия мезопотоков. Разность скоростей двух соседних мезопотоков $|u_1 - u_2|$ можно определить с помощью лазерной интерферометрии по срыву биений на интерферограмме [16]: $|u_1 - u_2| \approx \delta u$. Пусть $\dot{\varepsilon}_3 \approx 1/t_3$, тогда зависимость (7) с учетом (8) примет вид

$$S_3 = \gamma \rho_2 u \,\delta u,\tag{9}$$

где $\gamma = 0.5\lambda\beta$.

Следует учитывать, что Δu и δu являются функциями скорости проникания u, при этом $\Delta u = f(0) = 0$, $\delta u = f(0) = 0$.

Напряжение S_4 , обусловленное вращением зерен и их фрагментов, формально можно определить аналогично (7):

$$S_4 = \mu_4 \dot{\varepsilon}_4$$

Учитывая, что в этом случае динамическая вязкость μ_4 определяется по соотношению, предложенному в [14]:

$$\mu_4 = \left[(0, 1\rho_2 E)^{0,5} \omega d_0 - \sigma_0 \right] / \dot{\varepsilon}_4,$$

где E — модуль Юнга; ω — угловая скорость вращения зерна (фрагмента) со средним размером d_0 ; σ_0 — предел текучести, получим

$$S_4 = (0, 1\rho_2 E)^{0,5} \omega d_0 - \sigma_0. \tag{10}$$

Угловую скорость вращения зерна (фрагмента) можно найти с учетом допущения о том, что вращательный момент создается вследствие разброса скоростей поступательного движения зерен (фрагментов). Тогда при условии, что разброс скоростей равен $\delta u/2$, имеем

$$\omega \approx \delta u/(0,4r),\tag{11}$$

где r — средний радиус зерна (фрагмента), имеющего шарообразную форму (чем объясняется значение коэффициента, равное 0,4).

Подставляя (11) в (10), окончательно получим

$$S_4 \approx 0.8 (\rho_2 E)^{0.5} \,\delta u - \sigma_0.$$
 (12)

В качестве S_0 примем значение напряжения, при котором материал преграды со сформированной после прохождения ударной волны структурой переходит в пластическое состояние (предел упругости Гюгонио):

$$S_0 = \frac{1 - \nu}{1 - 2\nu} \,\sigma_0 \tag{13}$$

(*ν* — коэффициент Пуассона).

Коэффициент ν определим из связи между модулем Юнга E и модулем всестороннего сжатия K:

$$\nu = 0.5 - E/(6K). \tag{14}$$

Для фрактальных материалов упругие константы зависят от масштаба деформации [6], и эти зависимости выражаются следующим образом:

$$E = E_0 \lambda_1^{-m}, \qquad K = K_0 \lambda_1^{-m_1}.$$
(15)

Здесь λ_1 — масштабный множитель; m, m_1 — геометрические показатели упругости. (Масштабную зависимость модуля Юнга необходимо учитывать и в соотношении (12).)

Подставив (15) в (14), для фрактальных материалов получим

$$\nu_{\Phi} = 0.5 - E_0 \lambda_1^{m_1 - m} / (6K_0). \tag{16}$$

Поскольку из общих соображений следует, что $m_1 > m$ [6], а $\lambda_1 < 1$ (хотя это не очевидно), для фрактальных материалов $\nu_{\phi} > \nu$ и согласно (13) значение S_0 для них больше, чем для обычных материалов.

Предел текучести σ_0 также зависит от сформировавшейся после прохождения ударной волны структуры материала, и его определение затруднено из-за малых размеров зоны "свидетеля" материала. В настоящей работе проведем оценку только влияния фрактальности (нелинейности) среды на глубину проникания струи. С этой целью рассмотрим известное соотношение Холла — Петча (или ему подобное для фрагментированной среды), связывающее предел текучести поликристалла и размеры зерна (фрагмента):

$$\sigma_0 = \sigma_i + K_* d_0^{-0.5} \tag{17}$$

(σ_i, K_{*} — константы). Согласно модели Ли [17]

$$K_* = \alpha_1 N^{0,5}.$$
 (18)

Здесь α_1 — коэффициент пропорциональности; N — количество выступов на фрактальной границе зерна:

$$N = \alpha_2 L^D, \tag{19}$$

 α_2 — коэффициент согласования; L — средняя длина границы зерна.

Подставив (16)–(19) в (13), с учетом $L \approx \pi d_0$ окончательно получим

$$S_0 = \frac{0.5 + a\lambda_1^{m_1 - m}}{2a\lambda_1^{m_1 - m}} \left(\sigma_i + \varphi \pi^{0.5D} d_0^{D - 0.5}\right)$$
(20)

 $(a = E_0/(6K_0); \varphi = \alpha_1 \alpha_2^{0,5})$. Тогда соотношение (2), определяющее сопротивление H_2 , с учетом (4), (6), (9), (12) и (20) примет вид

$$H_2 = \rho_2(\Delta u)^2 + \frac{\alpha B}{h_1 N_m b^2} u + \rho_2 \gamma u \,\delta u + 0.8(\rho_2 E)^{0.5} \delta u + \frac{0.5 - a\lambda_1^{m_1 - m}}{2a\lambda_1^{m_1 - m}} \,(\sigma_i + \varphi \pi^{0.5D} d_0^{0.5(D-1)}).$$

Процесс высокоскоростного проникания имеет несколько этапов [18]. Так как на первом, нестационарном этапе внедрение струи происходит без заметной пластической деформации в преграде [2], первым, третьим и четвертым членами в полученном соотношении для H_2 можно пренебречь, а в пятом положить $\lambda_1 = 1$, D = 0. На третьем, также нестационарном этапе при торможении струи $\Delta u \approx 0$, $\delta u \approx 0$, и, таким образом, первый, третий и четвертый члены равны нулю.

Материал преграды	$ ho_2 \cdot 10^{-3}, \ {}_{\mathrm{KG}/\mathrm{M}^3}$	$E_0, \Gamma \Pi \mathbf{a}$	$K_0,$ ГПа	$\sigma_i,$ МПа	$K_*,$ M Π a · MM ^{0,5}	D	<i>d</i> ₀ , мкм	$arphi \cdot 10^{-2}$
ХН75ВМЮ 12Х18Н10Т	$^{8,10}_{7,71}$	$\frac{184}{146}$	112 124	$390 \\ 255$	$\frac{110}{25}$	$1,896 \\ 1,810$	50 75	8 2

Примечание 1. Для обоих материалов $m_1 = 1,9318, m = 0,9675, \lambda_1 = 0,2.$

Примечание 2. Модулю Юнга E_0 и модулю всестороннего сжатия K_0 соответствует температура T = 400 °C.

С учетом выражения для H_2 из уравнения (1) найдем критическую скорость струи $V_{\rm kp}$, при которой прекращается ее внедрение в преграду (u = 0). В результате получим

$$V_{\rm kp} = \sqrt{\frac{2}{\rho_1} \left(\frac{0.5 - a\lambda_1^{m_1 - m}}{2a\lambda_1^{m_1 - m}} \left(\sigma_i + \varphi \pi^{0.5D} d_0^{0.5(D-1)}\right) - H_1\right)}.$$

При расчете $V_{\rm kp}$ и H_2 необходимо также учитывать температурную зависимость упругих модулей E_0 , K_0 , поскольку для большинства металлов уже при температуре свыше 350 °C значения этих характеристик существенно уменьшаются, а нагрев преграды за счет прохождения ударной волны на втором и третьем этапах проникания струи составляет не менее 400 °C.

Из оценочных расчетов, проведенных для преград из сплава XH75BMЮ и стали 12X18H10T (значения параметров приведены в таблице) и медной струи ($\rho_1 = 8.9 \times 10^3 \text{ кг/m}^3$, $H_1 = 470 \text{ MIa}$), следует, что $V_{\rm kp} = 875 \text{ м/c}$ для сплава XH75BMЮ и $V_{\rm kp} = 675 \text{ м/c}$ для стали 12X18H10T.

Полученные значения $V_{\rm kp}$ не противоречат известным данным, находятся в реальном диапазоне скоростей и близки к значениям $V_{\rm kp}$, найденным в [3]. В целом, несмотря на большое количество подлежащих определению коэффициентов, это свидетельствует о том, что с помощью предлагаемой модели может быть описан процесс высокоскоростного проникания плоских кумулятивных струй.

ЛИТЕРАТУРА

- 1. Барахтин Б. К., Чашников В. Ф. Программа ЭВМ для мультифрактального анализа изображений структур металлов и сплавов // Вопр. материаловедения. 2001. № 4. С. 10–13.
- Барахтин Б. К., Прус А. А., Савенков Г. Г. Микроструктурные особенности деформирования преград при высокоскоростном внедрении плоских струй // ПМТФ. 1989. № 5. С. 155–158.
- Барахтин Б. К., Мещеряков Ю. И., Савенков Г. Г. Микроструктура материалов и модель высокоскоростного проникания плоских кумулятивных струй // Журн. техн. физики. 1991. Т. 61, вып. 6. С. 8–12.
- Заславский Г. М., Сагдеев Р. З. Введение в нелинейную физику: от маятника до турбулентности и хаоса. М.: Наука, 1988.
- 5. Олемской А. И., Флат А. Я. Использование концепции фрактала в физике конденсированной среды // Успехи физ. наук. 1993. Т. 163, № 12. С. 1–50.
- Зосимов В. В., Лямшев Л. М. Фракталы в волновых процессах // Успехи физ. наук. 1995. Т. 165, № 4. С. 361–401.
- 7. Физика взрыва / Под ред. Л. П. Орленко. М.: Физматлит, 2002. Т. 2.
- Тейт А. Теория торможения длины стержней после удара по мишени // Механика. 1968. № 5. С. 125–137.

- 9. Chou P. C., Flis W. Recent developments in shaped charge technology // Propellants, Explosives, Pyrotechnics. 1984. N 4. P. 99–114.
- 10. Кинеловский С. А., Тришин Ю. А. Физические аспекты кумуляции // Физика горения и взрыва. 1980. Т. 16, № 5. С. 26–40.
- 11. Уляков П. И. Аналитическая оценка глубины внедрения тонкого стержня в полупространство // Журн. техн. физики. 1981. Т. 51, вып. 1. С. 157–163.
- 12. Савенков Г. Г., Васильев Н. Н. Пластичность и прочность меди при высокоскоростной деформации // Пробл. прочности. 1993. № 10. С. 47–52.
- Барахтин Б. К., Савенков Г. Г. Исследование особенностей деформации преград при внедрении в них высокоскоростных плоских струй методом рентгеновского микропучка // Прикладная рентгенография металлов: Тез. докл. I Всесоюз. науч.-техн. конф., Ленинград, 25–27 нояб. 1986 г. Л.: Ленингр. политехн. ин-т, 1986. С. 49.
- 14. Савенков Г. Г., Мещеряков Ю. И. Структурная вязкость твердых тел // Физика горения и взрыва. 2002. Т. 38, № 3. С. 113–118.
- 15. **Лаврентьев М. А., Шабат Б. В.** Проблемы гидродинамики и их математические модели. Новосибирск: Наука. Сиб. отд-ние, 1977.
- Мещеряков Ю. И., Диваков А. К. Интерференционный метод регистрации скоростной неоднородности частиц в упругопластических волнах нагрузки в твердых телах. Л., 1989. (Препр. / Ленингр. ин-т проблем машиноведения; № 25).
- Li J. C. M. Generation of dislocations with grain boundary joins and petch-hall relations // Trans. AIME. 1961. V. 227, N 2. P. 210–224.
- 18. Сагоманян А. Я. Проникание. М.: Изд-во Моск. ун-та, 1974.

Поступила в редакцию 24/II 2003 г.