УДК 537.632.5

ОПРЕДЕЛЕНИЕ ЗЕЕМАНОВСКИХ СДВИГОВ СПЕКТРАЛЬНЫХ СТРУКТУР В НЕОДНОРОДНОМ МАГНИТНОМ ПОЛЕ*

В. А. Сорокин

Институт автоматики и электрометрии СО РАН, 630090, г. Новосибирск, просп. Академика Коптюга, 1 Новосибирский государственный университет, 630090, г. Новосибирск, ул. Пирогова, 2 E-mail: Vlad_sorokin@ngs.ru

Рассмотрены закономерности изменения наблюдаемого сдвига спектральных структур, обусловленных эффектом Зеемана в пространственно неоднородном магнитном поле. Оказалось, что этот сдвиг может варьироваться при изменении ширины спектральных структур, их формы, методики и условий регистрации. Предложен способ учёта неоднородности магнитного поля для оптически тонких и толстых сред.

Ключевые слова: оптико-магнитные резонансы, эффект Зеемана, модуляционный метод производной.

DOI: 10.15372/AUT20170603

Введение. В оптических измерениях с использованием эффекта Зеемана часто возникает задача определения коэффициентов, связывающих наблюдаемое проявление этого эффекта с величиной магнитного поля (МП). Так, в астрофизике МП космических объектов измеряется по зеемановскому расщеплению спектральных линий определённых химических элементов, частотный сдвиг которых пересчитывается в МП. Например, для измерений МП Солнца часто применяются линии железа Fe-I ($\lambda = 6301,5, 6302,5, 5247,06, 5250,22$ Å), относящиеся попарно к разным мультиплетам [1]. Результаты для линий разных мультиплетов дают значимо отличающиеся величины МП [2].

Аналогичная задача возникла при нахождении положения оптико-магнитных резонансов (OMP) в излучении газоразрядной кюветы, заполненной смесью изотопов ²⁰Ne и ²²Ne, наблюдавшихся в работах [3, 4]. Эти резонансы регистрировались как резкое изменение интенсивности свечения положительного столба тлеющего разряда при определённых значениях тока в сканируемом цилиндрическом соленоиде. Положение OMP, измеренное в единицах тока и пересчитанное в эффективное МП через коэффициент пропорциональности, отождествлялось с изотопическими сдвигами спектральных линий неона [5]. Однако, как будет показано далее, в условиях пространственно неоднородного МП связь между током соленоида и эффективным МП усложняется. Соответствующий коэффициент пропорциональности перестаёт быть константой и начинает зависеть от ширины, формы и метода регистрации OMP. Игнорирование таких зависимостей приводит к заметным систематическим погрешностям при измерении положения OMP.

Цель данного исследования — анализ этих систематических погрешностей и разработка методов их коррекции.

Методика лабораторных оптико-магнитных измерений. Полагаем, что в опытах используется тонкая цилиндрическая кювета длиной L_d и радиусом капилляра $\rho_d \ll$

^{*}Работа выполнена при финансовой поддержке Совета по грантам Президента РФ ведущих научных школ РФ (грант № НШ-4447.2014.2).

 $\ll L_d$, в которой горит тлеющий разряд низкого давления. На кювету накладывается сканируемое МП H_c , создаваемое цилиндрическим соленоидом, в обмотке которого ток I_c изменяется в определённых пределах.

Из торца кюветы выходит излучение положительного столба, однородного по температуре и концентрации заряженных частиц вдоль оси кюветы (орт ez) [6]. Полный поток излучения Φ — это сумма вкладов от всех слоёв газа [7]:

$$\Phi = \int_{L_d} D(H(z))W(z)dz.$$
(1)

Здесь D(H(z)) — светимость слоя, зависящая от МП H, которое в свою очередь зависит от координаты z; W(z) — весовая функция, характеризующая оптическую толщину газа и описывающая ослабление света из-за расходимости и самопоглощения. Считаем, что W(z) от МП зависит слабо, поскольку эффект Зеемана одинаково сдвигает линии излучения и поглощения, не меняя интегрального коэффициента поглощения.

Далее будем анализировать лишь магнитозависимую часть Ф. Поэтому считаем, что D(H(z)) — часть светимости, определяющая оптико-магнитный контур (OMK) тонкого слоя газа. Пусть ОМК содержит резкие структуры и $D = D_p + D_r$, где D_p — слабо зависящий от МП пьедестал, а D_r — оптико-магнитный резонанс, центрированный при МП, равном H_0 для каждого слоя газа. Природа ОМР заключается в проявлении интерференционных эффектов разного рода (см., например, [8, 9]). Требуется определить положение ОМР в единицах напряжённости МП для всей кюветы.

Если $D_r(H \approx H_0)/D_p \ll 1$, то для регистрации ОМР предпочтителен метод производной, при котором происходит контрастирование D_r . Для реализации удобна модуляционная методика [10] с дополнительным соленоидом, в обмотке которого ток I_m осциллирует по гармоническому закону с частотой f_m и создаёт модулирующее МП H_m . Магнитное поле $H = H_c + H_m$ оказывает влияние на поток излучения Φ , который можно записать в виде

$$\Phi_c + \Phi_m(t) = \int_{L_d} D_r(H_c(z) + H_m(z))W(z)dz, \quad H_m(z) = H_{m0}(z)\sin(2\pi f_m t).$$

Для восстановления формы OMP удобен метод синхронного детектирования, эквивалентный усреднению по времени T произведения $\Phi_m(t)$ и синхронной гармонической функции R_q (т. е. опорным сигналом синхронного детектирования), осциллирующей с частотой qf_m (q = 1, 2, ...). Сигнал $S^{(q)}$ (гармоника от $\Phi_m(t)$ с номером q) задаётся выражением

$$S^{(q)} = \frac{1}{T} \int_{0}^{T} \Phi_m(t) R_q(t,\varphi_m) dt, \quad R_q(t,\varphi_m) = \sin(2\pi q f_m t + \varphi_m).$$
(2)

При $H_{m0} < \Gamma$ (Γ — параметр, характеризующий ширину D_r) сигнал $S^{(q)}$ можно разложить в ряд Фурье по гармоникам сигнала $\Phi_m(t)$:

$$S^{(q)} = \Psi_q \sum_{n \ge q} \Phi_c^{(n)} / 2^n \left(\frac{n-q}{2}\right)! \left(\frac{n+q}{2}\right)!,$$

$$\Phi_c^{(n)} = \int_{L_d} D^{(n)}(H_c) W(z) H_{m0}^n dz, \quad D^{(n)}(H) = \frac{d^n D(H)}{dH},$$
(3)

где $\Psi_q = (-1)^{q/2} \sin(\varphi_m)$ (n, qчётные), $\Psi_q = (-1)^{(q-1)/2} \cos(\varphi_m)$ (n, qнечётные).

Суммирование в (3) производится по n, чётность которых совпадает с чётностью q и начинается с n = q. При разной чётности n и q величина $S^{(q)} \to 0$ при $T \to \infty$. Наиболее применимы методы 1-, 2- и 3-й производных, тогда:

$$S^{(1)} \approx \frac{\Phi_c^{(1)}}{2} \cos(\varphi_m); \quad S^{(2)} \approx -\frac{\Phi_c^{(2)}}{8} \sin(\varphi_m); \quad S^{(3)} \approx -\frac{\Phi_c^{(3)}}{48} \cos(\varphi_m).$$
 (4)

При $H_{m0} < \Gamma/3$ и $H_c \sim H_0$ главный вклад в $S^{(q)}$ дают $D_r^{(q)}$. Амплитуда регистрируемых ОМР тем больше, чем у́же резонанс. Вне области локализации ОМР ($|H_c - H_0| \gg \Gamma$), где $|D_r^{(q)}| \to 0$, главный вклад в $S^{(q)}$ будут давать производные от пьедестала — $D_p^{(q)}$. Если значение D_p велико, а $D_p^{(q)}$ малы, будет происходить контрастирование узких резонансов. Фазовый сдвиг φ_m функции R_q регулирует амплитуду $S^{(q)}$ и выбирается таким, чтобы $|S^{(q)}|$ был максимален. Вклад $D_p^{(q)}$ легко устраняется математической обработкой и в дальнейшем анализе не учитывается. При $H_{m0} > \Gamma/3$ производные ОМР испытывают модуляционное уширение.

Пространственное распределение магнитного поля. Учёт пространственной неоднородности МП будем анализировать для случая, когда сканируемый и модулирующий соленоиды являются цилиндрическими с конечными размерами. Длины соленоидов обозначим L_{α} , внутренний и внешний радиусы цилиндров — $a_{1\alpha}$ и $a_{2\alpha}$ ($\alpha = c$ для сканируемого или $\alpha = m$ для модулирующего соленоидов). При аксиальной симметрии в цилиндрической системе координат с ортами **ez**, **ер** и **еф** отличны от нуля лишь **ez**- и **ер**-проекции H_c и H_m , зависящие от z и ρ . Внутри цилиндрического соленоида вблизи оси наибольшее значение имеет **ez**-проекция МП. При малых значениях $\rho \leq \rho_d$ ($\rho_d \ll L_{\alpha}$) **ер**-проекции МП в центре соленоида. Зависимость **ez**-компоненты МП от ρ имеет порядок малости $4\rho^2(a_{1\alpha}^2 + a_{2\alpha}^2 + a_{1\alpha}a_{2\alpha})/L_{\alpha}^4$, и приближение одномерной геометрии при $\rho_d \ll L_{\alpha}$ в формуле (1) обосновано. Магнитные поля $H_c(z)$ и $H_m(z)$ могут быть выражены через токи I_c и I_m в обмотках и геометрические параметры соленоидов [11]:

$$H_{\alpha}(z) = H_{\alpha\infty}G_{\alpha}(z), \quad H_{\alpha\infty} = (2\pi/5)v_{\alpha}I_{\alpha} = k_{0\alpha}I_{\alpha}.$$
(5)

Здесь $H_{c\infty}$ и $H_{m\infty}$ — е**г**-проекции МП для бесконечно длинных однородных сканируемого и модулирующего соленоидов; v_c и v_m — плотности намотки сканируемого и модулирующего соленоидов. Если единица измерения силы тока — ампер, а v_{α} имеет размерность число витков на сантиметр, то напряжённость $H_{\alpha\infty}$, определяемая формулами (5), будет иметь размерность гаусс. Коэффициенты $k_{0\alpha}$ можно рассматривать как коэффициенты пропорциональности нулевого приближения между током и МП. Функции G_{α} будем называть геометрическими факторами для **ег**-проекции МП. Геометрический фактор $G_{\alpha}(z)$ для однородного цилиндрического соленоида с началом координат в его центре имеет вид

$$G_{\alpha}(z) = \frac{L_{\alpha} \ln(a_{2\alpha}/a_{1\alpha}) + g_{\alpha}(z) + g_{\alpha}(-z)}{2(a_{2\alpha} - a_{1\alpha})},$$

$$g_{\alpha}(z) = (L_{\alpha}/2 + z) \ln \left[\frac{1 + u(z, a_{2\alpha}, L_{\alpha})}{1 + u(z, a_{1\alpha}, L_{\alpha})} \right], \qquad u(z, a, L) = \sqrt{1 + [(L/2 + z)/a]^2}.$$

Рис. 1. Геометрические факторы для ег-проекции МП цилиндрических соленоидов: кривая 1 — G_c ($a_{1c} = 1,6$ см, $a_{2c} = 4,96$ см, $L_c = 30,9$ см, $z_{0c} = 19$ см), кривая 2 — G_m ($a_{1m} = 0,5$ см, $a_{2m} = 1,2$ см, $L_m = 25,3$ см, $z_{0m} = 19,5$ см)

Максимум $G_{\alpha}(z)$ достигается при z = 0. В общем случае $G_{\alpha}(z) < 1$. Если соленоид достаточно длинный $(L \gg a_{2\alpha})$, то при $|z| < L_{\alpha}/2 - a_{2\alpha}$ функция $G_{\alpha}(z)$ меняется слабо. Этот интервал можно называть зоной однородного МП. При $|z| \approx L_{\alpha}/2$ функция $G_{\alpha} \approx 1/2$, при $|z| > L_{\alpha}/2$ величина $G_{\alpha}(z) \to 0$. Если соленоид смещён относительно начала координат на $z_{0\alpha}$, то $z \to z - z_{0\alpha}$ и $G_{\alpha}(z) \to G_{\alpha}(z - z_{0\alpha})$. На рис. 1 приведены графики $G_{\alpha}(z - z_{0\alpha})$ для соленоидов, применявшихся в работах [3, 4].

Наблюдаемое положение ОМР при неоднородном МП. При регистрации ОМР методом 1-й производной, когда $H_{m0} < \Gamma/3$, из (4) следует

$$S^{(1)} \approx \frac{\Phi_c^{(1)}}{2} = \frac{1}{2} \int_{L_d} D_r^{(1)}(H_{c\infty}G_c(z))W(z)H_{m\infty}G_m(z)dz.$$

Если функция $D_r(H)$ центрирована при $H = H_0$ и имеет форму пика, то форма $S^{(1)}$ близка к дисперсионной. При сканировании тока I_c вблизи величины H_0/k_{0c} сигнал $S^{(1)}$ будет переходить через нулевое значение. Наблюдаемое положение OMP в единицах тока (или $H_{c\infty}$) определяется решением уравнения

$$\Phi_c^{(1)} = \int_{L_d} W(z) D_r^{(1)}(H_{c\infty} G_c(z)) H_{m\infty} G_m(z) dz = 0,$$
(6)

которое находится аналитически, если параметр Γ , характеризующий ширину OMP, велик либо $\Gamma \to 0$. Пусть $D_r(H)$ имеет достаточно большую ширину, такую что

$$\Gamma \gg H_0[G_c(0) - G_c(\pm 0.5L_m)].$$
 (7)

Условие (7) означает, что Γ (в единицах МП) заметно больше характерного изменения МП сканируемого соленоида в области, где значимо МП модулирующего соленоида. Раскладывая $D_r^{(1)}$ в ряд Тейлора по степеням $[H_{c\infty}G_c(z) - H_0]$ в окрестности H_0 , получим уравнение

$$\int_{L_d} [H_{c\infty}G_c(z) - H_0]W(z)G_m(z)dz = 0,$$
(8)

решение которого выражается через $G_c(z), G_m(z)$ и W(z) и связывает $H_{c\infty} = k_{0c}I_c$ и H_0 :

$$H_0 = k_{sw} k_{0c} I_{0sw} = k_{sw} H_{sw}, \quad k_{sw} = \int_{L_d} W(z) G_c(z) G_m(z) dz \Big/ \int_{L_d} W(z) G_m(z) dz < 1.$$
(9)

Здесь I_{0sw} — ток сканируемого соленоида, отвечающий наблюдаемому положению ОМР $(H_{\text{OMP}} = H_{sw} > H_0$ в единицах МП в нулевом приближении). Поправочный коэффициент k_{sw} для широких (w) симметричных (s) ОМР корректирует H_{sw} к H_0 .

Если $D_r(H)$ имеет достаточно малую ширину, такую что

$$\Gamma \ll H_0[G_c(0) - G_c(\pm 0.5L_m)],$$
(10a)

то интеграл в уравнении (6) следует представить в виде суммы интегралов по пути $|z| < < L_0$, где выполняется соотношение

$$\Gamma \gg H_0[G_c(0) - G_c(\pm 0.5L_0)],\tag{106}$$

и остальной части кюветы. Условие (10б) ограничивает область, где магнитное поле H_c однородно и максимально. Тогда уравнение (6) может быть записано в виде

$$\int_{L_0} D_r^{(1)}(H_{c\infty}G_c(z))W(z)H_{m\infty}G_m(z)dz + \int_{L_d\cap L_0} D_r^{(1)}(H_{c\infty}G_c(z))W(z)H_{m\infty}G_m(z)dz = 0.$$
(11)

Второе слагаемое с узкой (n) антисимметричной функцией $D_r^{(1)}(H_c)$ при $H_c \sim H_0$ обращается в нуль, так как может быть сведено к интегралу от $D_r^{(1)}(H_c)$ по H_c в бесконечных пределах, который стремится к нулю с уменьшением Г. При $\Gamma \to 0, L_0 \to 0$ решение (11) имеет вид

$$D_r^{(1)}(H_0) = D_r^{(1)}(H_{c\infty}G_c(0)) = 0 \Rightarrow H_0 = k_{sn}k_{0c}I_{0sn} = k_{sn}H_{sn}, \quad k_{sn} = G_c(0) < 1.$$
(12)

Здесь k_{sn} и $H_{\text{OMP}} = H_{sn}$ — поправочный коэффициент и наблюдаемое положение для симметричных узких ОМР. Поскольку $G_c(0) \ge G_c(z)$, то $k_{sn} > k_{sw}$ и $H_0 < H_{sn} < H_{sw}$. Из (12) следует неожиданный результат — независимость k_{sn} от весовой функции W(z) и оптической толщины газа.

Если в (9) W(z) = const, то можно определить коэффициент k_e , связывающий I_c и эффективное МП (H_e) , задаваемое зоной на оси кюветы, где значимо модулирующее МП:

$$H_{e} = k_{e}k_{0c}I_{c} = k_{e}H_{c\infty}, \quad k_{e} = \int_{L_{d}} G_{c}(z)G_{m}(z)dz / \int_{L_{d}} G_{m}(z)dz.$$
(13)

Коэффициент k_e может быть измерен по сдвигу контура поглощения монохроматического излучения круговой поляризации, смещённого по частоте на известную величину Ω относительно центра спектральной линии с нормальным эффектом Зеемана. Сдвиг Ω удобно определять методом сканирования МП, применяя модуляционный метод 1-й производной. Интенсивность потока излучения, достигшего фотодетектора, подчиняется закону Бэра — Бугера — Ламберта:

$$J_T = J_0 \exp\Big\{-A_0 \int_{L_d} F(\Omega - \mu_{\mathrm{B}}gH_{c\infty}G_c(z) - \mu_{\mathrm{B}}gH_{m\infty}G_m(z))dz\Big\}.$$

Здесь J_0 и J_T — входящий и выходящий из кюветы потоки излучения; A_0 — коэффициент поглощения для центра спектральной линии; функция F(x) описывает симметричный контур поглощения, $F(0) = \max$; $\mu_{\rm B}$ — магнетон Бора; g — фактор Ланде. Наблюдаемый сдвиг линии подчиняется условию $dJ_T/dH_{m\infty} = 0$, из которого следует уравнение

$$\int_{L_d} F^{(1)}(\Omega - \mu_{\rm B}gH_{c\infty}G_c(z))G_m(z)dz = 0, \quad F^{(1)}(x) = dF(x)/dx, \quad F^{(1)}(0) \equiv 0.$$
(14)

Если ширина F(x) такая, что выполняется условие (7), то применим метод (8) и решение (14)

$$\Omega = \mu_{\rm B}gH_{c\infty} \int_{L_d} G_c(z)G_m(z)dz \Big/ \int_{L_d} G_m(z)dz = \mu_{\rm B}gk_{0c}I_ck_e = \mu_{\rm B}gH_e$$

даёт наблюдаемый зеемановский сдвиг широкой спектральной линии, связанный с эффективным МП. Если ширина F(x) настолько мала, что справедливо (12), то наблюдаемый сдвиг линии корректируется коэффициентом $k_{sn} > k_e$, т. е. сдвиг линии поглощения также зависит от её ширины. Для широкой и узкой линий испускания поправочные коэффициенты — k_{sw} и k_{sn} .

Когда $D_r(H)$ имеет антисимметричную дисперсионную форму и применяется метод 1-й производной, сигнал $S^{(1)} = S^{(1)}(I_c)$ при сканировании I_c вблизи H_0/k_{0c} будет достигать экстремума:

$$|\Phi_c^{(1)}| = \left| \int_{L_d} W(z) D_r^{(1)} [H_{c\infty} G_c(z)] H_{m\infty} G_m(z) dz \right| = \max.$$
(15)

Дифференцируя (15) по $H_{c\infty}$, приходим к условию для наблюдаемого положения OMP:

$$\int_{L_d} W(z) D_r^{(2)} [H_{c\infty} G_c(z)] H_{m\infty} G_m(z) G_c(z) dz = 0.$$
(16)

Для широких $D_r(H)$, когда выполняется условие (7), применима формула (8). Раскладывая $D_r^{(2)}$ в ряд Тейлора по степеням $[H_{c\infty}G_c(z) - H_0]$ в окрестности H_0 и с учётом $D_r^{(2)}(H_0) \equiv 0$, получим соотношение

$$H_0 = k_{aw} k_{0c} I_{0aw} = k_{aw} H_{aw}, \quad k_{aw} = \int_{L_d} W(z) [G_c(z)]^2 G_m(z) dz \Big/ \int_{L_d} W(z) G_c(z) G_m(z) dz.$$
(17)

Здесь k_{aw} — поправочный коэффициент, а $H_{\rm OMP} = H_{aw}$ — наблюдаемое положение для антисимметричных широких OMP. Если резонанс узкий, то применима методика (11) и получаемый результат совпадает с (12): $H_0 = k_{an}k_{0c}I_{0an} = k_{an}H_{an}$, $k_{an} = G_c(0)$, где k_{an} поправочный коэффициент, а $H_{\rm OMP} = H_{an}$ — наблюдаемое положение для антисимметричных узких OMP. Поскольку $k_{sn} = k_{an}$, наблюдаемое положение узких OMP не зависит от типа их симметрии. Можно показать, что для широких OMP $k_{sw} < k_{aw}$. При регистрации OMP методами 2-й и 3-й производных поправочные коэффициенты для наблюдаемых положений широких OMP вычисляются по следующим формулам:

$$k_{sw}^{(2)} = \frac{\int_{L_d} W(z) [G_c(z)]^2 [G_m(z)]^2 dz}{\int_{L_d} W(z) G_c(z) [G_m(z)]^2 dz}; \qquad k_{aw}^{(2)} = \frac{\int_{L_d} W(z) G_c(z) [G_m(z)]^2 dz}{\int_{L_d} W(z) [G_m(z)]^2 dz};$$
(18)

$$k_{sw}^{(3)} = \frac{\int\limits_{L_d} W(z)G_c(z)[G_m(z)]^3 dz}{\int\limits_{L_d} W(z)[G_m(z)]^3 dz}; \qquad k_{aw}^{(3)} = \frac{\int\limits_{L_d} W(z)[G_c(z)]^2[G_m(z)]^3 dz}{\int\limits_{L_d} W(z)G_c(z)[G_m(z)]^3 dz}.$$

Для узких ОМР поправочные коэффициенты: $k_{sn}^{(2)} = k_{an}^{(2)} = k_{sn}^{(3)} = k_{an}^{(3)} = k_{sn} = G_c(0)$. Здесь верхние индексы указывают на порядок производной в методе регистрации, а нижние классифицируют тип симметрии ОМР и его ширину.

Все поправочные коэффициенты для широких ОМР, определяемые формулами (9), (17) и (18), в общем случае отличаются друг от друга. Они также отличаются от поправочных коэффициентов для узких ОМР. Это приводит к зависимости $H_{\rm OMP}$ от метода регистрации.

Расчёт положения ОМР для резонансных функций разных типов. Для иллюстрации полученных выше результатов были сделаны модельные численные расчёты наблюдаемых положений ОМР для системы электромагнитов, геометрические факторы G_c и G_m которых показаны на рис. 1. Оптико-магнитные резонансы рассчитывались в однородных относительно весовой функции условиях (W(z) = 1, среда в ячейке оптически тонкая) и неоднородных условиях с учётом самопоглощения (среда оптически толстая).

Расчёты проводились для четырёх разных резонансных функций D_{rj} (j = 1, 2, 3) (дополнительный индекс кодирует тип резонансной функции):

$$D_{r1} = \frac{1}{1 + (x/u_1)^2}, \quad D_{r2} = \exp\left[-\left(\frac{x}{u_2}\right)^2\right], \quad D_{r3} = \sin\left(\frac{x}{u_3}\right) / \left(\frac{x}{u_3}\right), \quad D_{r4} = \frac{x/u_4}{1 + (x/u_4)^2},$$

$$x = [x_c + x_m \sin(2\pi f_m t) - x_0], \quad x_c = H_c/\Gamma, \quad x_0 = H_0/\Gamma, \quad x_m = H_{m0}/\Gamma,$$

которые симметричны относительно x = 0, а D_{r4} (j = 4) антисимметрична. Параметр u_j — масштабный множитель, зависящий от типа функции D_{rj} , который выбирается таким образом, чтобы расстояние по оси абсцисс между главными максимумом и минимумом производной $D_{rj}^{(1)}(x)$ (j = 1-3) было одинаковым и равнялось 2Г. Для функции D_{r4} такое же условие задано для её второй производной $D_{r4}^{(2)}(x)$. Значения масштабных множителей следующие: $u_1 = \sqrt{3}$, $u_2 = \sqrt{2}$, $u_3 = 0.480015$, $u_4 = (\sqrt{2} - 1)^{-1}$. Форма ОМР вычислялась по формуле (3) с пределами интегрирования: $0 \le t \le 1/f_m$, $0 \le z \le z_{max} = 42$ см (по длине разрядного промежутка кюветы L_d в [3, 4]), $1 \le \Gamma \le 1200$, $H_{m0} = 0.1/u_j \ll \Gamma$ $(x_m \ll 1)$.

Наблюдаемое положение ОМР (H_{OMP}) находилось численным решением уравнений (6) и (16) для симметричных D_{rj} и дисперсионного D_{r4} . На рис. 2 приведены графики зависимости H_{OMP} от величины Г при $H_0 = 1200$ и W(z) = 1. Поправочные коэффициенты, вычисленные по формулам (9), (13) при W(z) = 1, следующие: $k_{sn} = k_{an} = 0.977$, $k_{sw} = 0.941$, $k_{aw} = 0.945$. Для всех D_{rj} при заданных G_c и G_m основное изменение H_{OMP}

Рис. 2. Изменение положения H_{OMP} для резонансных функций разных типов в зависимости от их ширины: кривые 1 — $H_{\text{OMP}}(\Gamma)$ для D_{r1} , D_{r2} , D_{r3} ($H_0/k_{sn} < H_{\text{OMP}} < (H_0/k_{sw})$; 2 — $H_{\text{OMP}}(\Gamma)$ для D_{r4} ($H_0/k_{an} < H_{\text{OMP}} < H_0/k_{aw}$). Рост H_{OMP} для D_{rj} (j = 1–3) практически одинаков, для D_{r4} заметно меньше из-за сужения ОМР при дифференцировании

происходит, когда Γ меняется в пределах от 1 до 200, что находится в согласии с условиями (7), (10a) и (10б).

В общем случае функция $W(z) \neq \text{const}$ и зависит от настройки оптической схемы регистрации, силы перехода и концентрации атомов. Для разделения влияния разных факторов W(z) может быть выбрана в виде [7, 12]

$$W(z) = V(z) \exp[-B(z_{\max} - z)].$$
(19)

Здесь V(z) — функция согласования фазового объёма светящегося слоя газа с фазовым объёмом фотодетектора (см. формулу (8) в [12]); параметр *В* определяет оптическую толщину. На рис. 3 показаны графики, демонстрирующие изменчивость коэффициентов k_{sw}

Рис. 3. Изменение поправочных коэффициентов с увеличением оптической плотности B слоя газа для различных видов функций V(z): k_{sw} (a) и k_{aw} (b). Кривые 1–3 соответствуют кривым 3–5 на рис. 2 в работе [12]. Горизонтальные линии — это значения k_{sw} и k_{aw} для весовой функции W(z) = 1

(рис. 3, *a*) и k_{aw} (рис. 3, *b*). Оба коэффициента уменьшаются с ростом самопоглощения из-за роста вклада зоны кюветы, близкой к z_{max} , где G_c уменьшается. Соответственно H_{OMP} растёт. При $\Gamma \to 0$ весовая функция (19) на H_{OMP} не влияет и H_{OMP} определяется областью разряда вблизи середины соленоида z_{0c} , а $W(z_{0c})$ воздействует лишь на амплитуду ОМР.

Заключение. Общие формулы и иллюстративные расчёты наглядно демонстрируют заметные изменения $H_{\rm OMP}$ в зависимости от симметрии OMP, ширины и условий регистрации. На наблюдаемое положение широких OMP сильно влияют оптическая толщина слоя газа и настройка оптической схемы регистрации. Рост оптической толщины сопровождается увеличением $H_{\rm OMP}$ при симметричном расположении соленоидов и газовой кюветы. Уменьшение ширины $D_r(H)$ смещает наблюдаемое положение OMP всех типов к единому предельному минимальному значению, которое от оптической толщины газа не зависит. Аналогичные закономерности имеют место при наблюдении зеемановского сдвига спектральных линий поглощения и испускания. Они могут быть причиной нестыковки результатов измерений магнитных полей астрофизических объектов. Наблюдаемый зеемановский сдвиг разных спектральных линий одного и того же химического элемента в неоднородных условиях и должен быть разным в силу зависимости доплеровского уширения от частоты перехода.

В лабораторных условиях, когда известно распределение МП, результаты измерений H_{OMP} могут быть скорректированы с помощью поправочных коэффициентов. Формулы (9), (18) и (12) дают их асимптотические значения для двух предельных случаев широких и узких $D_r(H)$. В промежуточном случае также возможно определение поправочных коэффициентов по формулам (9) и (18) с надлежащим выбором пределов интегрирования по z.

Подавление эффекта вариации H_{OMP} возможно при симметричном расположении модулирующего соленоида внутри сканируемого с $L_m < L_c$ и $a_{m2} \ll L_m$. Уменьшение L_m устраняет влияние продольной неоднородности H_c . Этот вывод следует из формул поправочных коэффициентов для широких $D_r(H)$, значения которых будут стремиться к $G_c(0)$ при $L_m \to 0$.

Следует отметить, что если модуляция магнитного поля не может считаться слабой, то модуляционное уширение OMP будет приводить к их дополнительному наблюдаемому смещению в сторону бо́льших значений H_{OMP} .

СПИСОК ЛИТЕРАТУРЫ

- Demidov M. L., Zhigalov V. V., Peshcherov V. S., Grigoryev V. M. An investigation of the sun-as-a-star magnetic field through spectropolarimetric measurements // Solar Phys. 2002. 209, N 2. P. 217–232.
- Rezaei R., Schlichenmaier R., Schmidt W., Steiner O. Opposite magnetic polarity of two photospheric lines in single spectrum of the quiet Sun // Astron. and Astrophys. 2007. 469, N 1. P. L9–L12.
- 3. Сапрыкин Э. Г., Сорокин В. А., Шалагин А. М. Эмиссионные аномальные оптикомагнитные резонансы в смеси чётных изотопов неона // ЖЭТФ. 2013. 143, вып. 4. С. 622–633.
- Сапрыкин Э. Г., Сорокин В. А., Шалагин А. М. Наблюдение узких изотопических оптико-магнитных резонансов в излучении на отдельных спектральных линиях неона // Квантовая электроника. 2015. 45, № 7. С. 672–679.
- Сапрыкин Э. Г., Сорокин В. А. Идентификация аномальных оптико-магнитных резонансов в интегральном излучении смеси изотопов неона // Оптика и спектроскопия. 2014. 117, № 1. С. 20–31.

- 6. Райзер Ю. П. Физика газового разряда. М.: Наука, 1992. С. 12.
- Преображенский Н. Г. Спектроскопия оптически плотной плазмы. Новосибирск: Наука, 1971. С. 85.
- 8. Александров Е. Б. Оптические проявления интерференции невырожденных атомных состояний // УФН. 1972. 107, вып. 4. С. 595–622.
- 9. Ильичев Л. В. Квантовое состояние пары изотопов при их совместных спонтанных фотоиспусканиях в магнитном поле // ЖЭТФ. 2007. 131, вып. 1. С. 30–36.
- Макс Ж. Методы и техника обработки электрических сигналов при физических измерениях. М.: Мир, 1983. Т. 2. С. 15.
- 11. Случановский А. Магнитное поле цилиндрического соленоида // Тр. Физ.-матем. ин-та им. В. А. Стеклова. Л.: Изд-во АН СССР, 1934. Т. 5. С. 359–370.
- 12. Сапрыкин Э. Г., Сорокин В. А. Деформация магнитооптических структур в излучении протяженных источников // Оптика и спектроскопия. 2010. **109**, № 4. С. 573–580.

Поступила в редакцию 24 марта 2017 г.