УДК 54-36:546.924:544.726:544.723.5 DOI: 10.15372/KhUR20160109

Синтез и исследование катализаторов Pt/MgAlSnO_x дегидрирования декана

Л. Н. СТЕПАНОВА¹, О. Б. БЕЛЬСКАЯ^{1,2}, В. А. ЛИХОЛОБОВ^{1,3}

¹Институт проблем переработки углеводородов Сибирского отделения РАН, ул. Нефтезаводская, 54, Омск 644040 (Россия)

E-mail: Lchem@yandex.ru

²Омский государственный технический университет, проспект Мира, 11, Омск 644050 (Россия)

³Омский научный центр Сибирского отделения РАН, проспект Карла Маркса, 15, Омск 644024 (Россия)

Аннотация

Выполнен синтез слоистых двойных гидроксидов (СДГ) MgAlSn с соотношением Mg/(Al + Sn) = 3 и Sn/(Sn + Al), равным 1, 5, 10 и 30 %. С использованием ряда физико-химических методов (РФА, ТА-ДТГ, адсорбция CO_2) исследованы их структурные и кислотно-основные свойства, а также процесс формирования оксидной фазы. Показано, что СДГ, полученные методом соосаждения, однофазны по своему составу при Sn/(Sn + Al) < 30 %. С повышением содержания олова в носителе формируется побочная фаза Mg(Sn(OH)₆). Согласно данным адсорбции CO_2 , введение олова в слои СДГ не ухудшает их основные свойства. Олово в составе носителя способствует модифицированию свойств платиновых центров, влияя на каталитические характеристики Pt/MgAlSnO_x в реакции дегидрирования *н*-декана. Зависимость степени превращения *н*-декана от содержания олова носит экстремальный характер с максимумом при Sn/(Sn + Al) = 1 %, а максимальные выход олефинов и селективность наблюдаются для образца с Sn/ (Sn + Al) = 5 %. Каталитические характеристики образца Pt/MgAl-5 % SnO_x сопоставимы с таковыми для промышленного катализатора, испытанного в аналогичных условиях, что указывает на перспективность дальнейшего изучения систем на основе оловосодержащих СДГ.

Ключевые слова: слоистые двойные гидроксиды, платино-оловянные катализаторы, дегидрирование н-декана

введение

Платино-оловянные катализаторы широко используются во многих промышленно важных реакциях: риформинг [1, 2], дегидрирование алканов [3, 4], окисление спиртов [5] и др. При этом интерес исследователей к данным катализаторам не ослабевает. Использование биметаллических систем Pt-Sn позволяет значительно увеличить стабильность катализаторов за счет уменьшения протекания реакций гидрогенолиза и коксообразования по сравнению с платиновыми монометаллическими аналогами. Кроме того, введение олова в состав катализаторов способствует повышению их селективности по целевому продукту при сохранении высоких показателей активности [6, 7]. Точный механизм промотирования оловом до сих пор не установлен. Положительное влияние данного элемента на каталитические свойства систем Pt-Sn/носитель обычно объясняют существованием структурного (геометрического) и электронного факторов [8]. Структурный эффект связан с разбавлением платиновых ансамблей на поверхности носителя оловом,

^{*} Материалы V Семинара памяти профессора Ю. И. Ермакова "Молекулярный дизайн катализаторов для процессов переработки утлеводородов и полимеризации: от фундаментальных исследований к практическим приложениям", 5–9 июля 2015 г., Республика Алтай

вследствие чего количество смежных атомов платины уменьшается, а дисперсность активного компонента возрастает. В результате адсорбция углеводородов на металле становится менее прочной, снижается интенсивность протекания процессов гидрогенолиза и коксообразования [9]. Электронный эффект заключается в возможном перемещении электронов от олова к платине при их тесном контакте на поверхности носителя. Это ослабляет связь Pt-С и препятствует быстрому закоксовыванию катализатора [10]. Сведения о степени окисления олова в полученных системах противоречивы. Вероятно, олово в составе биметаллических катализаторов может находиться одновременно во всех степенях окисления: Sn(II), Sn(IV) и Sn(0) [11].

Биметаллические платино-оловянные системы традиционно получают последовательной или совместной пропиткой носителя растворами предшественников металлов, в качестве которых чаще всего применяют H₂[PtCl₆] и SnCl₂ в солянокислой среде [12-15]. Установлено, что природа растворителя и последовательность пропитки предшественниками металлов могут в значительной степени влиять на свойства получаемых катализаторов [16]. Альтернативный способ получения платино-оловянных катализаторов – их синтез с использованием комплексов Pt-Sn. В большинстве случаев закрепление комплексов на выбранном носителе осуществляется в присутствии органических растворителей, поскольку стабильность комплексов Pt-Sn в водной среде весьма ограничена [17, 18].

Растущий спрос на продукты дегидрирования высших алканов требует поиска новых катализаторов, обеспечивающих высокую селективность образования олефинов при сохранении приемлемой активности. В настоящее время для дегидрирования высших алканов в промышленности используют платиновые катализаторы на основе оксида алюминия. Замена амфотерного носителя более основным и промотирование платины оловом должны способствовать значительному увеличению стабильности катализаторов. Смешанные оксиды $M_1M_2O_x$, получаемые прокаливанием соответствующих слоистых двойных гидроксидов (СДГ), перспективны в качестве носителей для катализаторов дегидрирования благодаря своей умеренной и легко регулируемой основности и высокой удельной поверхности. Синтез и исследование катализаторов данного типа $PtSn/Mg(Al)O_x$ уже проводилось ранее в реакции дегидрирования этана [19]. Обнаружено, что добавление олова способствует увеличению селективности катализаторов и уменьшению степени их закоксовывания, а зависимость степени превращения сырья от содержания олова носит экстремальный характер и достигает максимального значения при Sn/Pt = 0.3. Введение олова в состав катализатора осуществляли методом пропитки смешанного алюмомагниевого оксида раствором тетра-n-бутил олова в декане.

Согласно литературным данным, введение олова в состав платиновых катализаторов осуществляли только путем пропитки носителя соединениями Sn. Уникальное строение СДГ позволяет ввести промотирующий металл непосредственно в структуру носителя, что обеспечит его равномерное распределение и, соответственно, более тесное взаимодействие с платиной.

Цель данной работы – синтез СДГ и соответствующих смешанных оксидов, содержащих в своей структуре олово (MgAlSnO_x), а также исследование влияния модифицирующих свойств олова в составе носителя на каталитические свойства нанесенной платины в реакции дегидрирования *n*-декана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез СДГ-MgAl(Sn)

Синтез двойных MgAl- и тройных MgAlSnслоистых гидроксидов проводили методом соосаждения. С этой целью водный раствор хлоридов выбранных металлов (MgCl₂, AlCl₃, SnCl₄) с концентрацией Mg, Al и Sn, обеспечивающей получение СДГ с необходимым соотношением Mg/(Al + Sn) и Sn/(Sn + Al), со скоростью 60 мл/мин добавляли к водному раствору карбоната натрия (С = 1 моль/л) при энергичном перемешивании. При этом поддерживали постоянными температуру синтеза ((60±3) °С) и величину pH (10±0.1) за счет добавления NaOH с C = 1 моль/л. После добавления всего объема раствора солей металлов суспензию оставляли стариться сначала при условиях синтеза (энергичное перемешивание, $T = (60\pm3)$ °C) в течение 1 ч, а затем в сушильном шкафу при той же температуре в течение 18 ч. В результате последующих стадий промывки полученного осадка дистиллированной водой до нейтральной реакции промывных вод, фильтрования и сушки при 80 °C в течение 16 ч получены СДГ с анионами CO_3^{2-} в межслоевом пространстве (СДГ- CO_3). После прокаливания СДГ при 600 °C получены смешанные оксиды. Синтезированные образцы СДГ обозначали как СДГ-MgAl-XSn, а образцы смешанных оксидов – как MgAl-XSnO_x, где X = 100 % Sn/(Sn + Al).

Закрепление комплексов [PtCl₆]^{2–} на выбранных носителях

Закрепление комплексов предшественника платины осуществляли по влагоемкости с использованием смешанных оксидов: навеску выбранного MgAl(Sn)O_x смешивали с раствором H₂[PtCl₆]. Содержание платины в растворе соответствовало нанесению 0.3 мас. % Pt. Полученную систему тщательно перемешивали и оставляли сушиться на воздухе. Далее образцы с нанесенными комплексами платины прокаливали в муфельной печи при 550 °C в течение 3 ч.

Определение содержания металлов в носителях и содержания Pt в катализаторах

Концентрацию магния, алюминия, олова и платины в растворах и в твердых образцах после их растворения определяли методом атомноэмиссионной спектроскопии с индуктивно связанной плазмой на приборе Varian 710-ES.

Рентгенофазовый анализ

Для исследования структурных свойств исходных СДГ и систем с закрепленными комплексами $[PtCl_6]^{2-}$ использовали метод рентгенофазового анализа (РФА). Рентгенографические исследования выполняли с использованием дифрактометра D8 Advance (Bruker) в параллельном Cu K_{α} -излучении в интервале углов 2 θ = 5–80°. Шаг сканирования равен 0.05°, время интегрирования сигнала 5 с/шаг. Фазовый состав образцов идентифицировали с использованием Международной базы дифракционных данных ICDD PDF-2.

Термический анализ

Исследование процесса термического разложения образцов СДГ проводили с использованием прибора STA-449C Jupiter (Netzch). Измерения выполняли в динамическом режиме в среде воздуха со скоростью нагрева образцов 10 °C/мин. Масса навесок составляла 10–20 мг.

Адсорбция CO₂

Для оценки кислотно-основных свойств смешанных оксидов применяли метод адсорбции углекислого газа. Адсорбционные измерения проводили на объемной вакуумной статической автоматизированной установке Sorptomatic-1900. Перед измерением образцы тренировали в вакууме (10⁻² мм рт. ст.) при 300 °С. Исходя из изотермы адсорбции диоксида углерода, полученной до P = 1 атм при температуре 30 °С, рассчитывали общую емкость образца по данному газу (физически и химически адсорбированный СО₂). Затем образец вакуумировали до 10^{-2} мм рт. ст. при этой же температуре в течение 1 ч (удаляли физически адсорбированные молекулы) и получали вторую изотерму. По разности в количестве адсорбированного СО₂ определена та его часть, что удерживалась на поверхности благодаря химической природе. Далее для оценки силы основных центров стадию вакуумирования проводили при 100 °С.

Испытание катализаторов в реакции дегидрирования н-декана

Катализаторы 0.3 % Pt/MgAl(Sn)O_x испытаны в реакции дегидрирования *н*-декана. Навеску катализатора (0.5 г) загружали в реактор проточного типа, одновременно разбавляя ее кварцем. Предобработка катализаторов включала восстановление водородом в реакторе при 400 °C в течение 1 ч. Реакцию проводили при температуре 460 °C, давлении 0.2 МПа, соотношении H_2 /сырье = 7, массо-

вой скорости подачи сырья (МСПС), равной 17 ч⁻¹. Анализ продуктов реакции проводили хроматографическим методом. Отбор проб осуществлялся каждый час на протяжении 3 ч.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование изменения структурных свойств СДГ при введении в их слои олова

Получены образцы СДГ-MgAl и СДГ-MgAlSn с соотношениями Mg/(Al + Sn) = 3 и Sn/(Sn + Al) = 1, 5, 10 и 30 %. Данные об измеренном соотношении металлов в синтезированных СДГ приведены в табл. 1.

Введение олова в состав слоев СДГ не привело к разрушению слоистой структуры, о чем свидетельствует набор базальных рефлексов для синтезированных образцов (рис. 1, *a*), характерный для фазы СДГ. При увеличении содержания олова в СДГ форма пиков практически не изменяется (при Sn/(Sn + Al) ≤ 10 %), что указывает на сохранение степени кристалличности СДГ. Образцы с соотношением Sn/(Sn + Al) ≤ 10 % однофазны по своему составу, тогда как в случае СДГ-MgAlSn с большим содержанием олова (Sn/ (Sn + Al) = 30 %) появляется дополнительная фаза гексагидроксостанната (IV) магния Mg(Sn(OH)₆), а пики, характерные для фазы СДГ, становятся сильно размытыми.

Согласно выполненным расчетам параметров кристаллической решетки, синтезированные образцы СДГ-MgAl и СДГ-MgAlSn обладают близкими значениями межплоскостного расстояния d_{003} и, соответственно, параметра решетки с (табл. 2). При повышении содержания олова в составе СДГ возрастает параметр решетки *а* вследствие увеличения

а

Рис. 1. Дифрактограммы образцов: $a - CД\Gamma-MgAl(Sn)-CO_3$ с различным соотношением Sn/(Sn + Al) (1 - 0 %, 2 - 5 %, 3 - 10 %, 4 - 30 %; звездочкой обозначена побочная фаза Mg(Sn(OH)₆); штрих-диаграмма соответствует фазе Mg₆Al₂CO₃(OH)₁₆ · 4H₂O); 6 – смешанные оксиды, полученные после прокаливания СДГ при 550 °C.

доли катиона с большим радиусом (радиус шестикоординированных $Al^{3+} = 0.535$ Å, Sn⁴⁺ = 0.690 Å) [20]. Также с повышением содержания олова уменьшаются размеры кристаллитов (L_a , L_c) во всех направлениях.

ТАБЛИЦА 1

Измеренное соотношение Mg/(Al + Sn) и Sn/(Sn + Al) для синтезированных образцов

Образцы	Соотношение Mg/(Al + Sn)	Соотношение Sn/(Sn + Al), $\%$	Содержание Pt, мас. %
Pt/MgAl	3.1	_	0.38
Pt/MgAl-1 % Sn	3.4	1.1	0.32
Pt/MgAl-5 % Sn	3.0	4.8	0.37
Pt/MgAl-10 % Sn	3.3	8.9	0.37
$\rm Pt/MgAl{=}30~\%~Sn$	3.3	29.9	0.42

ТАБЛИЦА 2	
-----------	--

Параметры кристаллической решетки для образцов СДГ-MgAl(Sn)-CO₃

Образцы	d_{003} , Å	<i>c</i> , Å	L_a , Å	L_c , Å	<i>a</i> , Å	
MgAl	7.84	23.52	168	119	3.066	
MgAl -5% Sn	7.81	23.42	134	82	3.070	
MgAl -10% Sn	7.83	23.48	125	78	3.074	
MgAl=30 % Sn	7.73	23.19	-	51	-	

Примечание. Прочерк означает, что определение затруднено.

Исследование процесса формирования оксидной фазы для образцов СДГ—MgAl—CO₃ и СДГ—MgAl—10 % Sn—CO₃

Термическое разложение оловосодержащих СДГ, как и разложение магний-алюминиевых образцов, протекает в два этапа: низкотемпературная область (<200 °C) соответствует удалению межслоевой воды, а высокотемпературная (~450 °C) связана с дегидроксилированием слоев и удалением межслоевых анионов (рис. 2).

На дифрактограммах оксидных фаз, образующихся при прокаливании СДГ при температуре не выше 600 °С, наблюдаются пики, относящиеся к фазе смешанного оксида. Этот факт также подтверждает отсутствие побочных фаз при формировании оловосодер-

Рис. 2. Кривые ДТГ для образцов СДГ–MgAl (1) и СДГ–MgAl–10 % Sn (2), содержащих межслоевые анионы $\mathrm{CO_3^{--}}$.

ТАБЛИЦА З

Данные рентгенофазового анализа для смешанных оксидов

Образцы	Фазовый состав	a, Å	ОКР, нм
$MgAlO_x$	Mg-AlO	4.191	3.8
MgAl=10 % SnO_x	Mg-Al-Sn-O	4.204	3.5

жащих СДГ в случае, когда соотношение Sn/ (Sn + Al) < 30 % (см. рис. 1, б, табл. 3).

Исследование влияния введения олова в состав СДГ на кислотно-осно́вные свойства их прокаленных форм

Основность носителя играет важную роль при получении катализаторов дегидрирования, поскольку снижает интенсивность протекания реакций коксообразования и тем самым препятствует быстрой дезактивации образцов. В этой связи необходимо убедиться, что введение олова не приводит к уменьшению основности образующихся при прокаливании СДГ смешанных оксидов - носителей для платиновых катализаторов. Кислотноосновные свойства смешанных оксидов оценивали путем определения адсорбционной емкости по СО₂ при разных температурах. По разности изотерм адсорбции CO₂, полученных при повышенной и комнатной температурах, определяли количество газа, недесорбированного образцом. Считается, что, чем больше

Рис. 3. Адсорбционная емкость по СО $_2$ для образцов MgAlO $_x$ (1) и MgAl=10 % SnO $_x$ (2).

CO₂ удерживается образцом, тем более основными свойствами он обладает.

Согласно полученным данным (рис. 3), введение олова при синтезе СДГ-MgAlSn не привело к уменьшению основности смешанных оксидов. Более того, присутствие Sn в слоях СДГ улучшает основные свойства получаемых носителей и способствует увеличению силы основных центров. На это указывает большее количество недесорбированного CO_2 , как при низкой (30 °C), так и при повышенной (100 °C) температурах.

Исследование образцов в реакции дегидрирования н-декана

Влияние модифицирования платины оловом в составе носителя на каталитические свойства платиновых центров исследовано в реакции дегидрирования *и*-декана с использованием образцов Pt/MgAlSnO_x. Содержание платины в катализаторе составляло 0.3 мас. %, а условия предобработки и испытания были близки к промышленным.

Как следует из данных рис. 4, введение олова в состав носителя в значительной мере определяет дегидрирующие свойства платиновых центров. Конверсия *н*-декана экстремально зависит от содержания олова в носителе, достигая максимума при соотношении Sn/(Sn + Al) = 1%.

Помимо конверсии *н*-декана, другим важнейшим показателем служит выход основных и побочных продуктов. В этом отношении наиболее эффективен образец с содержанием олова 5 % (рис. 5, *a*), который характеризуется максимальным выходом олефинов и минималь-

Рис. 4. Зависимость степени превращения n-декана от соотношения Sn/(Sn + Al) в слоях СДГ.

Рис. 5. Диаграммы зависимости выхода продуктов дегидрирования *н*-декана: *a* – образцы Pt/MgAlSnO_x с различным содержанием олова в носителе Sn/(Sn + Al) (1 – 0 %, 2 – 1 %, 3 – 5 %, 4 – 10 %, 5 – 30 %); б – промышленный катализатор DEH-11 и синтезированный Pt/MgAl=5 % SnO_x.

ным выходом продуктов крекинга и изомеризации. При дальнейшем увеличении содержания олова в составе носителя активность катализатора и выход олефинов снижаются.

Каталитические характеристики образца 0.3 Pt/MgAl=5 % Sn сопоставлены с соответствующими показателями промышленного катализатора дегидрировании высших алканов DEH-11, испытанного в тех же условиях (см. рис. 5, б). Видно, что полученный нами катализатор сопоставим с промышленным образцом по выходу олефинов, но значительно превосходит его по селективности, так как характеризуется существенно меньшим выходом побочных продуктов крекинга и изомеризации.

ЗАКЛЮЧЕНИЕ

В работе синтезированы слоистые гидроксиды СДГ-MgAlSn с соотношением Sn/(Sn + Al) =1, 5, 10 и 30 %. С помощью методов рентгенофазового и термического анализа доказано отсутствие побочных фаз в составе полученных образцов, вплоть до соотношения Sn/(Sn + Al) = 30 %. Согласно данным по адсорбции СО2, введение олова в состав носителя не привело к уменьшению его основных свойств. Олово в составе слоев СДГ оказывает значительное модифицирующее действие на платиновые центры. Зависимость конверсии н-декана от содержания олова в носителе имеет экстремальный характер с максимумом при Sn/(Sn + Al) = 1%, тогда как максимальные выход олефинов и селективность характерны для образца с Sn/(Sn + Al) = 5 %. Сравнительный анализ каталитических характеристик образца Pt/MgAl-5 % SnO_r и промышленного катализатора DEH-11, испытанного в тех же условиях, указывает на перспективность использования данных систем для реакции дегидрирования высших алканов. В дальнейшем мы планируем оптимизировать состав образцов Pt/MgAlSnO_r, изучить влияние дисперсности платины на ее электронное

катализаторах на основе оловосодержащих СДГ, что должно определять стабильность исследуемых катализаторов в реакции дегидрирования высших алканов.

Авторы статьи выражают глубокую благодарность сотруднику лаборатории синтеза моторных топлив Д. В. Голинскому за помощь в проведении каталитических испытаний, а также сотрудникам лаборатории аналитических и физико-химических методов исследования Н. В. Антоничевой, Н. Н. Леонтьевой и Г. Г. Савельевой за помощь в охарактеризовании образцов. В работе использовано оборудование Омского регионального ЦКП СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1 Zhou Y., Davis S. M. // Catal. Lett. 1992. Vol. 15. P. 51–55.
- 2 Srinivasan R., Davis B. H. // Platinum Metals Rev. 1992. Vol. 36(3). P. 151–163.
- 3 Cortright R. D., Dumesic J. A. // J. Catal. 1994. Vol. 148. P. 771–778.
- 4 Cortright R. D., Dumesic J. A. // J. Catal. 1995. Vol. 157. P. 576–583.
- 5 Jiang L., Sun G., Sun S., Liu J., Tang S., Li H., Zhou B., Xin Q. // Electochim. Acta. 2005. Vol. 50. P. 5384–5389.
- 6 Sahebdelfar S., Ravanchi M. T., Zangeneh F. T., Mehrazma S., Rajabi S. // Chem. Eng. Res. Des. 2012. Vol. 90. P. 1090-1097.
- 7 Zangeneh F. T., Mehrazma S., Sahebdelfar S. // Fuel Process. Technol. 2013. Vol. 109. P. 118–123.
- 8 Nawaz Z., Tang X., Zhang Q., Wang D., Fei W. // Catal. Commun. 2009. Vol. 10. P. 1925–1930.
- 9 Carvalho L. S., Reyes P., Pecchi G., Figoli N., Pieck C. L., Rangel M. C. // Ind. Eng. Chem. Res. 2001. Vol. 40. P. 5557–5563.
- 10 Burch R., Garla L. C. // J. Catal. 1981. Vol. 71. P. 360–372.
- 11 Burch R. // J. Catal. 1981. Vol. 71. P. 348-359.
- 12 Yu C., Ge Q., Xu H., Li W. // Appl. Catal. A. Gen. 2006. Vol. 315. P. 58–67.
- 13 Corro G., Fierro J. L. G., Romero F. B. // Catal. Commun. 2006. Vol. 7. P. 867–874.
- 14 Balakrishnan K., Schwank J. // J. Catal 1992. Vol. 138. P. 491–499.
- 15 Balakrishnan K., Schwank J. // J. Catal 1991. Vol. 127. P. 287–306.
- 16 Baronetti G. T., Miguel S. R., Scelza O. A., Fritzler M. A., Castro A. A. // Appl. Catal. 1985. Vol. 19. P. 77–85.
- 17 Антонов П. Г., Кукушкин Ю. Н., Штреле В. Г., Костиков Ю. П., Егоров Ф. К. // Журн. неорган. хим. 1982. Т. 27, Вып. 12. С. 3130–3136.
- 18 Muller A. C., Engelhard P. A., Weisang J. E. // J. Catal. 1979. Vol. 56. P. 65–72.
- 19 Galvita V., Siddiqi G., Sun P., Bell A. T. // J. Catal. 2010. Vol. 271. P. 209–219.
- 20 Shannon R. D. // Acta Cryst. 1976. A32. P. 751-767.