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1. Введение

Одними из наиболее часто моделируемых в стохастических “генераторах погоды” ме-
теорологических характеристик являются минимальная и максимальная за сутки тем-
пературы воздуха [1–3]. Согласно [4], в большинстве генераторов погоды, в том числе в
USCLIMATE, WXGEN, LARS-WG, CLIMGEN и CLIGEN, использовано предположение
о том, что одномерные распределения минимальной и максимальной температур явля-
ются нормальными. Однако использование этого предположения не всегда оправдано —
часто одномерные распределения оказываются асимметричными [4]. В качестве иллю-
страции на рисунке приведена гистограмма одномерного распределения максимальной
за сутки температуры в Мамакане (Иркутская область, Россия). Для того, чтобы учесть
негауссовость распределений вышеуказанных метеохарактеристик, в работе [5] предло-
жено использовать алгоритм моделирования случайных величин с двумерным косонор-
мальным распределением.

Рис. Гистограмма распределения максимальной за сутки температуры в Мамакане (Иркутская
область, Россия), построенная с использованием данных реальных метеонаблюдений в период с
1 по 10 декабря с 1991 по 2021 гг.

Проверка гипотез о виде одномерных и двумерных распределений минимальной и
максимальной за сутки температур воздуха на метеостанциях, расположенных на Бай-
кальской природной территории и в прилегающих к ней районах, позволяет предполо-
жить, что эти распределения представляют собой смеси двух гауссовских распределений.
В связи с этим в данной работе мы предлагаем алгоритм моделирования случайных век-
торов ~ξ = (ξ1, . . . , ξN ), у которых одномерное распределение компонент ξi, i = 1, 2, . . . , N ,
и двумерное распределение пар (ξi, ξi+1) , i = 1, 2, . . . , N−1, суть смеси двух не зависящих
от i одномерных и двумерных нормальных распределений соответственно.
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2. Алгоритм моделирования

Введем следующие обозначения. Пусть ~x = (x1, x2)>,

f (x1, x2) = p f1 (x1, x2) + (1− p) f2 (x1, x2)

= p
1

2π
√∣∣Σ1

∣∣ e− 1
2

(~x−~µ1)>Σ−1
1 (~x−~µ1) + (1− p) 1

2π
√∣∣Σ2

∣∣ e− 1
2

(~x−~µ2)>Σ−1
2 (~x−~µ2)

есть плотность двумерного распределения, имеющая вид смеси двух нормальных рас-
пределений с параметрами:

~µk =

(
µk1

µk2

)
, Σk =

(
σ2
k1 ck

ck σ2
k2

)
, k = 1, 2.

Здесь p, 0 6 p 6 1, — вес, определяющий смесь, |Σk| — определитель ковариацион-
ной матрицы Σk. Для того, чтобы вектор ~ξ с двумерным распределением f (x1, x2) пар
(ξi, ξi+1) , i = 1, 2, . . . , N −1, был стационарен в широком смысле необходимо выполнение
следующих условий:

µk1 = µk2 = mk, σk1 = σk2 = sk, k = 1, 2.

В этом случае параметры нормальных распределений принимают вид

~µk =

(
mk

mk

)
, Σk =

(
s2
k ck

ck s2
k

)
, k = 1, 2.

Сформулируем алгоритм моделирования вектора ~ξ.

Алгоритм.

1. Моделируем реализацию (η̃1, η̃2)> случайного вектора (η1, η2)> с плотностью дву-
мерного распределения f (x1, x2). Полагаем ξ1 = η̃1, ξ2 = η̃2.

2. Независимо от ξ1, ξ2 моделируем реализации (η̃2, η̃3)> вектора (η2, η3)> с плотно-
стью двумерного распределения f (x1, x2) до тех пор, пока не выполнится условие
|ξ2 − η̃2| < ε, где ε > 0 — предварительно заданное произвольное достаточно малое
число. При выполнении условия |ξ2 − η̃2| < ε полагаем ξ3 = η̃3.

3. Последовательно для всех i, i < N , повторяем процедуру из пункта 2 данного
алгоритма, моделируя реализации (η̃i−1, η̃i)

> векторов (ηi−1, ηi)
>и полагая ξi = η̃i

при выполнении условия |ξi−1 − η̃i−1| < ε.

В данном алгоритме моделирование векторов с плотностью f (x1, x2) целесообразно
проводить, используя метод дискретной суперпозиции (см. [6, раздел 1.6.2 ]) вместе с
известной техникой компьютерного моделирования двумерного гауссовского случайно-
го вектора с заданными корреляционными характеристиками (см. [6, раздел 1.10.4 ]).
Поскольку аналитическое выражение для плотности fηi (u | ηi−1 = v) условного распре-
деления компоненты ηi вектора (ηi−1, ηi)

> при фиксированном значении компоненты
ηi−1 неизвестно, то в пунктах 2 и 3 алгоритма происходит отбор значений ηi−1, удо-
влетворяющих неравенству v − ε < ηi−1 < v + ε, на основании допредельной версии
fηi (u | v − ε < ηi−1 < v + ε) ≈ fηi (u | ηi−1 = v) известного равенства fηi (u | ηi−1 = v) =
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fηi (u | ηi−1 ∈ dv) (см. [7, гл. 4, § 9 ]), где dv — бесконечно малая окрестность точки v.
О точности моделирования и ее зависимости от ε можно судить, например, по различию
между моментами распределения с плотностью f (x1, x2) и соответствующими выбороч-
ными значениями моментов, оцененных по модельным реализациям.

3. Моделирование временных рядов
максимальной за сутки температуры воздуха

В этом пункте приведен пример применения вышеприведенного алгоритма для чис-
ленного моделирования временных рядов ~ξ = (ξ1, . . . , ξ10) максимальной за сутки темпе-
ратуры воздуха на 10-дневном интервале.

В качестве реальных данных использованы данные наблюдений с 1991 по 2021 гг. на
метеостанциях, расположенных на Байкальской природной территории и в прилегающих
к ней районах [8]. Оценка параметров плотности двумерного распределения f (x1, x2),
т. е. параметров p, ~µk, Σk, k = 1, 2, проводилась с помощью EM-алгоритма [9]. Напом-
ним, что EM-алгоритм применяется для получения оценок максимального правдоподо-
бия неизвестных параметров статистических моделей и часто используется для разде-
ления смесей распределений. На каждой итерации EM-алгоритма чередуются два шага:
E-шаг и M-шаг. На E-шаге формируется функция Q (Θ) — математическое ожидание
логарифма функции правдоподобия, вычисленное на основе текущих оценок множества
параметров Θ. На M-шаге определяются параметры Θmax, максимизирующие Q (Θ). В
нашем случае Θ = {p,m1, s1, c1,m2, s2, c2}.

Входными параметрами предложенной модели являются величины p, m1, s1, c1, m2,
s2, c2, оцениваемые по реальным данным. Как было указано выше, о точности моделиро-
вания можно судить по различию между моментами распределения f (x1, x2), вычислен-
ными уже по определенным значениям p, m1, s1, c1, m2, s2, c2, и соответствующими вы-
борочными значениями моментов, оцененных по модельным реализациям. Иными слова-
ми, сравнение моментов теоретического и выборочного двумерных распределений можно
использовать для проверки качества модели. В качестве иллюстрации в таблицах 1 и 2
приведены оценки математического ожидания и среднеквадратического отклонения век-
тора ~ξ, полученные по реальным данным и оцененные по модельным траекториям. Для
оценок по реальным данным приведены также значения соответствующих статистиче-
ских погрешностей σ.

Таблица 1. Оценки математического ожидания Eξi компонент вектора ~ξ по реальным данным,
собранным c 1 по 10 декабря 1991–2021 гг., и по 104 модельным траекториям

Метеостанция Оценка по реальным данным, Eξi ± σ Оценка по модельным данным
Червянка −16.24± 1.40 −16.19
Мамакан −24.04± 1.41 −23.96

Таблица 2. Оценки среднеквадратического отклонения
√
Dξi компонент вектора ~ξ по реальным

данным, собранным c 1 по 10 декабря 1991–2021 гг., и по 104 модельным траекториям

Метеостанция Оценка по реальным данным,
√
Dξi ± σ Оценка по модельным данным

Червянка 10.61± 0.55 10.61

Мамакан 9.58± 0.71 9.50
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Очевидно, что в общем случае корреляционные функции реального и модельного про-
цессов не совпадают. По построению должны быть близкими только значения коэффици-
ентов корреляции corr (ξi, ξi+1). В табл. 3 приведены оценки коэффициентов корреляции
corr (ξi, ξi+1) по реальным и модельным данным.

Таблица 3. Оценки коэффициентов корреляции corr (ξi, ξi+1) по реальным данным, собранным
c 1 по 10 декабря 1991–2021 гг., и модельным траекториям

Метеостанция Оценка по реальным данным, corr (ξi, ξi+1)± σ Оценка по модельным траекториям

Червянка 0.72± 0.05 0.76

Мамакан 0.78± 0.04 0.85

Во всех проведенных численных экспериментах разница между оценками математи-
ческого ожидания, среднеквадратического отклонения и коэффициента корреляции по
реальным и модельным данным не превышала соответствующих значений 2σ при ε = 0.1.
Такое значение ε позволяет, с одной стороны, с достаточной точностью воспроизводить
основные характеристики временного ряда, а с другой — иметь приемлемое время его
моделирования.

4. Заключение

В работе представлен приближенный алгоритм моделирования стационарного дис-
кретного случайного процесса с одномерными и двумерными распределениями его по-
следовательных состояний в виде смеси двух гауссовских распределений. Алгоритм осно-
ван на комбинации метода дискретной суперпозиции, технологии компьютерного моде-
лирования двумерного гауссовского случайного вектора с заданными корреляционными
характеристиками и специального отбора пар соседних состояний с нужной условной
плотностью распределения. Приведен пример применения алгоритма для моделирова-
ния временных рядов максимальной за сутки температуры воздуха.

Предложенный в работе алгоритм допускает обобщение на случай моделирования
векторных рядов с аналогичными свойствами двумерных распределений. В частности,
он может быть применен для моделирования совместных временных рядов минимальной
и максимальной температур воздуха. В этом случае применение отбора для моделиро-
вания необходимых условных реализаций требует существенно больших компьютерных
затрат, но, тем не менее, алгоритм может быть реализован за приемлемое время. Для
сокращения времени моделирования при численной реализации алгоритма можно также
использовать технологии параллельного программирования.
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