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Разработан и апробирован экономичный метод численного моделирования самовозбуждения ко-
лебаний газа в малоэмиссионных камерах сгорания газотурбинных установок. Метод основан
на использовании модели турбулентности SAS SST k–ω и модели турбулентного горения с мо-
дифицированным уравнением для переменной степени завершенности горения. Для моделирова-
ния самовозбуждения колебаний газа в источниковый член этого уравнения введен множитель,
связанный с пульсациями давления газа. Выделение одной из склонных к самовозбуждению
мод колебаний газа осуществляется с помощью резонансного фильтра, действующего в каждой
ячейке расчетной области. Результаты расчетного исследования, полученные по предложенной
методике, позволяют изучать влияние конструктивных мероприятий и режимных параметров
автоколебаний и подходить более рационально к выбору мер по их подавлению.
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ВВЕДЕНИЕ

Постоянное повышение требований к га-
зотурбинным установкам (ГТУ) по снижению
вредных выбросов оксидов азота NOx требу-
ет ограничения температуры в зонах химиче-
ских реакций. Современная технология мало-
эмиссионного сжигания топлива основывает-
ся на сжигании заранее хорошо перемешанной

бедной топливовоздушной смеси, что позволяет
исключить высокотемпературную стехиомет-
рическую зону. При этом возникают три опас-
ных для работы камеры сгорания (КС) сцена-
рия: срыв пламени, его проскок против потока
в область предварительного смешения топлива

с воздухом и потеря устойчивости.
Пламена бедных топливовоздушных сме-

сей особенно склонны к самовозбуждению ко-
лебаний газа, вибрационному горению [1]. Как
показывает опыт эксплуатации ГТУ, если ам-
плитуда колебаний давления газа в КС на ре-
жимах 50 ÷ 100 % мощности установки начи-
нает превышать 2 % полного давления возду-
ха на входе в камеру, она или отдельные узлы
ГТУ быстро разрушаются [2]. Предотвращение
неустойчивого горения в малоэмиссионных ка-
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мерах сгорания (МЭКС) оказывается одной из
ключевых проблем при их создании.

На самовозбуждение колебаний влияют

не только характеристики пламени (простран-
ственное распределение скорости тепловыделе-
ния, ее чувствительность к колебаниям скоро-
сти и давления газа), но и акустические харак-
теристики полости камеры сгорания и каналов,
по которым к зонам предварительного смеше-
ния подводятся воздух и топливо. Для прогно-
зирования вибрационного горения в таких си-
стемах требуется детальный учет различных

параметров течения (тип топлива, смешение
топлива с воздухом, скорость образования про-
дуктов сгорания), стационарных и зависящих
от времени граничных условий.

Все эти особенности взаимосвязаны и по-
вышают требования к точности моделирова-
ния процессов в турбулентных течениях с го-
рением. Традиционным подходом при газоди-
намических расчетах КС являлось использова-
ние метода RANS/URANS в сочетании с фрон-
товыми моделями турбулентного горения или

с химическими моделями с конечными скоро-
стями реакций. Такие подходы могут быть

экономически эффективными для вычисления

основных и экологических характеристик КС

ГТУ. Однако обоснованный выбор адекватных
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нестационарных методов расчета турбулентно-
го горения, позволяющих описывать различ-
ные виды неустойчивого горения в камере, в
частности использование для этих целей реду-
цированных химических схем, остается не ре-
шеной до конца задачей. Использование мето-
да крупных вихрей (LES) совместно с моделью
горения на основе уравнений переноса функций

распределения плотности вероятности скаляр-
ных параметров потока (PDF) или стохастиче-
ских полей и уравнений химической кинетики

с детальной или скелетной кинетическими схе-
мами связано с многократным увеличением вы-
числительных затрат. Отметим, что для ми-
нимизации стоимости и сроков расчетных ис-
следований при проектировании КС разработа-
ны методы «средней стоимости», такие как мо-
делирование отсоединенных (отделенных) вих-
рей (DES) [3] и моделирование адаптивного

масштабирования (SAS) [4].
Особое место занимают методы расчета

нестационарных турбулентных течений с горе-
нием смеси газов в различных КС (см., напри-
мер, [5, 6]). При таких подходах в потоках в
КС моделируется спектр колебаний давления

газа и анализируется усиление колебаний на

каждой из частот. При этом система сгорания
модифицируется с учетом временной задержки

с помощью геометрии системы или путем до-
бавления поглощения звуковых колебаний. Та-
кой подход основан на работах Крокко [7] и
Маркштейна [8] и получил дальнейшее разви-
тие в целом ряде исследований (см., например,
[9–12]), в которых для моделирования взаимо-
действия между акустическими колебаниями и

процессом горения в математическую модель

горения вводится показатель взаимодействия n
(степенной закон влияния давления на скорость
сгорания), впервые примененный в [7].

В работе рассматривается метод чис-
ленного моделирования и исследования про-
цесса нестационарного турбулентного горе-
ния заранее подготовленной бедной смеси ме-
тан/воздух, который при относительно малых
затратах времени расчета и вычислительных

ресурсов может помочь в создании и довод-
ке МЭКС ГТУ. Основное внимание при разра-
ботке метода было уделено особенностям моде-
ли турбулентного горения и метода выделения

наиболее опасных мод колебаний.

Рис. 1. Схема расчетной области МЭКС

ЦИАМ:

1 — граница втекания воздуха в расчетную об-
ласть, 2 — пилоны основного подвода топлива,
3 — канал смесителя, 4 — конический стабили-
затор пламени, 5 — жаровая труба, 6 — мерный

участок, 7 — переходный участок, 8 — «горячий

дроссель»

ОБ�ЕКТ ИССЛЕДОВАНИЯ

В качестве объекта исследования выбрана

полноразмерная МЭКС ЦИАМ с одной боль-
шой зоной рециркуляции [13, 14] (рис. 1). Она
отличается от большинства КС газодинами-
ческой схемой течения и конструктивным об-
ликом. Для формирования единственной зоны
стабилизации пламени в ней используется ко-
нический стабилизатор пламени, а начальный
участок жаровой трубы выполнен в виде без-
отрывного конического диффузора. Это позво-
ляет существенно увеличить размеры зоны ре-
циркуляции за стабилизатором пламени и зна-
чительно сместить границу бедного срыва пла-
мени в область больших значений коэффици-
ента избытка воздуха. На выходе из жаровой
трубы к камере присоединен цилиндрический

мерный участок, в котором происходит вырав-
нивание потока и проводится отбор проб газа,
а в конце мерного участка установлен модуль с

регулируемым «горячим дросселем», обеспечи-
вающим при помощи перемещения централь-
ного тела изменение площади проходного сече-
ния.

ОПРЕДЕЛЯЮЩАЯ СИСТЕМА УРАВНЕНИЙ
И МЕТОД РЕШЕНИЯ

Моделирование рабочего процесса в рас-
сматриваемой МЭКС осуществлялось метода-
ми вычислительной гидродинамики (CFD) с
использованием модели турбулентного горения

с тепловыделением, зависящим от колебания

давления. В нестационарном решении задачи

моделируется процесс с возбуждением колеба-
ний давления. В расчетном исследовании рас-
сматривалось трехмерное нестационарное тур-
булентное течение сжимаемого газа с горением
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смеси метан/воздух в отсеке камеры сгорания.
Для численного интегрирования осредненной

по Фавру определяющей системы уравнений

Навье — Стокса (RANS) использовался под-
ход SAS SST k–ω [15], обеспечивающий LES-
поведение крупных, явно разрешаемых вихрей
и RANS-поведение у стенок и в других обла-
стях, где сеточное разрешение недостаточно
для явного моделирования вихрей.

При моделированим турбулентного горе-
ния использовалось уравнение переноса для пе-
ременной степени завершенности горения C,
модифицированное для учета влияния пульса-
ций давления на скорость горения:

∂(ρC̃)

∂t
+∇(ρC̃ũi)−

−∇
(( k

cp
+
µt
σt

)
∇C̃

)
= W. (1)

Чертой сверху в этом уравнении обозначено

осреднение по Рейнольдсу, тильдой — осред-
нение по Фавру, ρ — плотность, ui — i-я ком-
понента скорости, W — скорость изменения па-
раметра C̃, связанная с химическими реакция-
ми, µt — турбулентная вязкость, σt — турбу-
лентное числоШмидта, k — теплопроводность,
cp — удельная теплоемкость при постоянном

давлении, t — время.
Переменная степени завершенности горе-

ния C определялась как нормированная сум-
ма массовых фракций компонентов смеси. Для
моделирования самовозбуждения акустических

колебаний газа в источниковый член уравнения

для C̃ был введен множитель, пропорциональ-
ный пульсациям давления в степени n [7] (нор-
мированный показатель взаимодействия горе-
ния и акустики):

W = ρunbUt|grad C̃|
( p

pav

)n
, (2)

где ρunb — плотность свежей смеси, Ut — тур-
булентная скорость горения, pav — среднее по

времени давление, p — мгновенное значение

давления.
Турбулентная скорость горения определя-

лась с использованием аппроксимации из [16]:

Ut = max
[
Un, GA

(u′Lt
a

)1/4( u′
Un

)1/2]
,

где Un — нормальная скорость ламинарно-
го горения, которая определялась решением

Un-задачи в пакете прикладных программ

CHEMKIN для заданного состава смеси с

использованием детальной кинетической схе-
мы горения метана в воздухе GRI-Mech 3.0
[17], G — коэффициент продольного растя-
жения пламени, A — модельный коэффици-
ент, u′ — пульсационная компонента скорости,
Lt — интегральный турбулентный масштаб

длины, a — коэффициент температуропровод-
ности. Зависимость Un от состава, давления и
температуры смеси была рассчитана заранее и

использовалась в ходе CFD-решения в таблич-
ной форме.

ГРАНИЧНЫЕ УСЛОВИЯ

Граничные условия на входе и выходе вы-
числительного объема должны учитывать аку-
стическое взаимодействие с областями, не во-
шедшими в расчетную область [18, 19]. При
исследовании склонности камеры сгорания к

реализации режимов акустических колебаний

на входе в расчетную область задавались гра-
ничные условия, учитывающие локальные па-
раметры акустической волны. Они зависят от
характера распространения звуковой волны из

расчетной области навстречу потоку. При до-
пущении свободного распространения волны

по подводящему каналу без отражения мгно-
венный расход воздуха на границе расчетной

области можно задать соотношением

G = Gav

(
1− 1−Mav

κMav

p− pav
pav

)
, (3)

где Gav — заданный расход воздуха, Mav —
среднее по времени число Маха в сечении вхо-
да, pav — среднее по времени давление в сече-
нии входа, p — мгновенное, среднее по сечению
давление на входе, κ — показатель адиабаты.

Дополнительно на границе входа задава-
лись направляющие векторы потока, полная
температура и параметры характеристик тур-
булентности в соответствии с выбранной моде-
лью турбулентности.

На выходе камера сгорания должна окан-
чиваться участком, реализующим течение, по-
добное течению на входе в турбину ГТУ. Как
правило, в ГТУ в сопловом аппарате турбины
течение близко к критическому. В этом случае
для упрощения моделирования совместной ра-
боты КС и турбины на выходе из расчетной об-
ласти КС присоединяется имитатор соплового
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аппарата — канал с большим загромождени-
ем на входе, длиной, достаточной для вырав-
нивания течения перед выходом из этого кана-
ла (выхода из расчетной области). В сечении

выхода из этого присоединенного канала зада-
ются постоянное статическое давление и нуле-
вые производные остальных параметров тече-
ния по нормали к границе расчетной области.

В используемой модели горения отсут-
ствует механизм влияния отвода тепла в

стенки жаровой трубы и КС на реализацию

неустойчивых режимов. Ранее выполненные

расчеты данной КС с подробным моделирова-
нием системы охлаждения показали, что воз-
действие конвективной системы охлаждения на

течение в данной КС ограничено примерно зо-
ной пограничного слоя. Поэтому, исходя из це-
лей работы и выбранной расчетной области, на
стенках использовались адиабатические гра-
ничные условия и пристенные функции.

При расчете отдельного (периодического)
сектора камеры сгорания на боковых гранях

ставилось граничное условие периодичности.

МЕТОД РАСЧЕТА

Для расчетов используется периодический

60-градусный сектор КС. Выбор размера сек-
тора накладывает ограничения на возмож-
ность возникновения тангенциальных мод ко-
лебаний, которые могли бы иметь место при

моделировании полного объема камеры (360◦).
Однако для целей изложения методики та-
кое ограничение расчетной области приемлемо,
так как в выбранном секторе могут реализовы-
ваться продольные и радиальные моды колеба-
ний.

Расчетная сетка — многоблочно-структу-
рированная, содержит ≈ 2 млн гексаэдриче-
ских элементов. При этом в окружном направ-
лении шаг сетки постоянный, количество яче-
ек 60. По радиусу — 63 ячейки со сгущением
к стенкам. В приосевой области использовался
«декартов» сеточный блок.

Расчетное моделирование выполнено в па-
кете прикладных программ FLUENT [20]. При-
менялся решатель «pressure based» и матрич-
ный метод решения системы уравнений. Мо-
дель горения — «Premixed combustion — C
Equation» с выражением для скорости тур-
булентного пламени «Turbulent flame speed
model — Zimont». При этом использовалась

возможность пакета FLUENT, позволяющая
пользователю переопределять выражение для

источникового члена в уравнении для C̃ с по-
мощью пользовательской функции, написанной
на языке СИ. На этапе инициализации для всех
уравнений задавался первый порядок аппрок-
симации, затем выполнялся переход на неста-
ционарный режим с минимальной схемной вяз-
костью, т. е. с максимальным порядком ап-
проксимации (третьим) и ограниченными цен-
тральными разностями для уравнения движе-
ния и с неявной схемой второго порядка по вре-
мени. Для задачи на самовозбуждение колеба-
ний в зоне горения и во входном канале выби-
рался шаг по времени, обеспечивающий значе-
ние числа Куранта порядка единицы. При этом
для обеспечения сходимости на два и более по-
рядка величин на каждом временном слое зада-
валось не менее 15 подытераций решателя. Для
ускорения получения начального решения ме-
тодом установления допускалось значение чис-
ла Куранта порядка 10.

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ
РАСЧЕТНЫХ ИССЛЕДОВАНИЙ

При расчете 60-градусного периодическо-
го сектора КС использовались следующие па-
раметры смеси: давление p = 575 кПа, темпе-
ратура T = 828 К, коэффициент избытка воз-
духа α = 2.3. Статическое давление на выхо-
де из расчетной области Pex = 300 кПа, для
остальных параметров течения задаются нуле-
вые производные по нормали к границе расчет-
ной области.

На рис. 2 приведены результаты расчета

установившегося режима турбулентного горе-
ния в рассматриваемой МЭКС (см. рис. 1).

На первом этапе расчета методом установ-
ления с использованием SST k–ω модели тур-

Рис. 2. Средние поля параметров потока:

а — поле продольной компоненты скорости, б —
поле температуры
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Рис. 3. Амплитудный спектр колебаний газа

булентности выполнялся расчет установивше-
гося режима течения с горением. С помощью

лопаточных завихрителей в смесителе создава-
лась небольшая закрутка потока. Конструкция
камеры сгорания обеспечивала формирование

единой большой зоны рециркуляции (рис. 2,а).
Пламя примыкало к стенке в конце жаровой

трубы (рис. 2,б), так как для расчета выбран
напряженный режим с большой скоростью по-
тока и с относительно низким коэффициентом

полноты сгорания.
На втором этапе расчетов выполнен пере-

ход на нестационарный режим (методом SAS
SST k–ω), для которого задан показатель взаи-
модействия n = 2 в (2). При этом в ходе неста-
ционарного решения самопроизвольно возник-
ли колебания давления. После переходного ре-
жима получен квазиустановившийся режим с

небольшими колебаниями давления. Затем по-
казатель взаимодействия был увеличен до n =
4 для получения четко выраженных колебаний
давления с амплитудными значениями 1÷ 3 %.
В спектре автоколебаний давления газа при за-
данном на входе граничном условии (3) при по-
казателе взаимодействия n = 4 видны суще-
ственные по амплитуде Ap три моды колебаний
с частотами f ≈ 360, 820 и 1 200 Гц (рис. 3).

По мере выхода на установившийся ре-
жим колебаний газа соотношение между вы-
сотой пиков может меняться из-за небольшо-
го изменения положения фронта пламени (оно
зависит от интенсивности колебаний газа, так
как при колебаниях усиливается процесс сме-
шения).

На рис. 4 показано распределение сред-
неквадратичных значений колебаний давления

газа A360 Гц. Из рис. 4 следует, что в смеси-
тельном канале амплитуда колебаний давле-
ния превышает амплитуду за стабилизатором

пламени (ниже по потоку) — энергия акусти-
ческих колебаний накачивается в канал смеше-

Рис. 4. Распределение относительного средне-
квадратичного значения колебаний давления

газа в продольном сечении камеры сгорания

ния. Полученное распределение среднеквадра-
тичных значений амплитуды колебаний давле-
ния по объему КС позволяет определить поло-
жение пучностей и узлов колебаний — в КС

возбудились колебания первой продольной мо-
ды с частотой 360 Гц. При этом газодинамиче-
ские возмущения давления накладываются на

эту картину течения вблизи границ расчетной

области и внутри области на участках течения

с большими поперечными градиентами сред-
ней скорости, но не сильно ее искажают. Ко-
лебания с частотой 350 ÷ 400 Гц реализовыва-
лись и в экспериментах, проведенных с данной
камерой [21].

В полученном нестационарном расчете КС

моделируется процесс турбулентного горения с

возбуждением колебаний давления. При этом
в первую очередь в потоке возбуждаются ча-
стоты колебаний, к которым камера наиболее
склонна. На этом этапе исследования возмож-
на расчетная отработка конструктивных меро-
приятий для подавления колебаний давления,
однако это может быть затруднительно из-за
возможной реализации режима с возбуждени-
ем нескольких частот.

МЕТОД ВЫДЕЛЕНИЯ КОЛЕБАНИЙ
ВЫБРАННОЙ ЧАСТОТЫ

Спектральный анализ колебаний давления

газа позволяет выбрать для дальнейшего ана-
лиза характерную частоту с максимальной ам-
плитудой. Рассмотрим подход, позволяющий
раздельно исследовать возбуждаемые частоты

колебаний. Для этого определяются значения
частот колебаний по осциллограммам, запи-
санным в ходе расчета в нескольких харак-
терных точках камеры. Далее с помощью од-
ного из описанных ниже методов для каждой

из выбранных частот колебаний рассчитыва-
ется поле и визуализируется пространственное

распределение среднеквадратических значений

колебаний давления. Дальнейший анализ поз-
воляет определить форму моды колебаний для

каждой частоты, а также численно оценить с
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помощью предложенных критериев склонность

камеры к реализации колебаний выделенной

частоты.
В исследовании В. П. Ляшенко и

В. И. Фурлетова (2001 г., неопубликован-
ная работа) для колебаний выбранной частоты
были созданы условия преимущественного

развития. Для этой цели использовалось

рекуррентное соотношение

pav N = pav N−1
(

1− δt

Tfi

)
+ pN

δt

Tfi
,

(4)
p′ = p− pav N .

Здесь N — номер шага по времени, δt — ве-
личина шага по времени, Tfi — ширина вре-
менного фильтра, pN — мгновенное значение

давления в текущий момент времени, pav N и

pav N−1 — уточняемые во времени значения

среднего давления, p′ — отклонение текущего

давления от среднего. Это соотношение рабо-
тает как фильтр высоких частот. Результат,
приведенный на рис. 4, был получен с помо-
щью формулы (4). При большой разности по
частоте между спектральными пиками оно ока-
зывается вполне эффективным, но, когда ча-
стота продольных мод колебаний оказывается

близкой к частоте поперечных мод колебаний,
возможность проанализировать отдельно каж-
дую моду колебаний оказывается нереализуе-
мой. Для этого требуется использовать более
избирательные полосовые фильтры.

В данной работе для выделения колебаний

выбранной частоты применялась модель ре-
зонансного фильтра [9], который описывается
нестационарным уравнением для простого ос-
циллятора с затуханием, на который действует
«сила» — локальные колебания давления. Это
уравнение имеет вид

ẍ+ kdẋ+ ω20x = p′, (5)

где второй член — линейное демпфирование,
а третий — восстанавливающая сила. Здесь
x(t) — функция времени, зависящая от ампли-
туды и частоты колебаний давления, коэффи-
циента затухания и частоты собственных коле-
баний осциллятора. Получается, что источни-
ковым членом p′ является текущее локальное
значение отклонения давления от его среднего

по времени значения, ω0 — выделяемая круго-
вая частота колебаний, kd — коэффициент ли-
нейного демпфирования. Приведенное уравне-
ние описывает воздействие «силы» (локальных

колебаний давления газа) на колебательный
контур. Решение определяется в ходе установ-
ления для каждой ячейки расчетного объема. В
результате в ячейке устанавливаются колеба-
ния параметров x, ẋ и ẍ. Для простейшего слу-
чая гармонического одномодового силового воз-
действия вида p′ = A cos(ωt) решением уравне-

ния (5) будет x =
A

kdω
sin(ωt). При этом первая

производная по времени ẋ =
A

kd
cos(ωt) совпа-

дает по фазе с силовым членом p′, а амплитуда
колебаний первой производной оказывается в

kd раз меньше амплитуды вынуждающей си-
лы. В ходе решения параметры осциллятора

(частота, фаза и амплитуда ẋkd) приближают-
ся к параметрам интересующей моды колеба-
ний в каждой ячейке расчетного объема. После
получения установившегося решения выполня-
ется сбор статистики для получения поля сред-
неквадратичного значения ẋkd, которое пока-
зывает амплитуду колебаний с выбранной ча-
стотой ω0.

Для качественного выделения необходимо

соблюдение следующих условий: kd/ω0 � 1 и
kd/ω0 < d/2π, где d = δ/f — логарифмиче-
ский декремент затухания автоколебаний дав-
ления газа с частотой f , δ — коэффициент за-
тухания. Первое неравенство отвечает за то,
что уравнению колебаний соответствует резо-
нансный контур (отсутствие апериодичности),
второе неравенство позволяет контуру заметно

возбуждаться, даже если частота автоколеба-
ний газа несколько отличается от собственной

частоты резонатора.

РАБОТА РЕЗОНАНСНОГО ФИЛЬТРА

Проведено сравнение спектров силового

источникового члена p′ в уравнении колебаний
(5) и установившихся колебаний ẋ в резонанс-
ном контуре для разных значений коэффици-
ента линейного демпфирования и для двух вы-
бранных частот 360 и 1 180 Гц, присутствую-
щих в спектре колебаний газа.

Исходный сигнал колебаний давления га-
за p′ (со спектром 1, рис. 5) получен в ре-
зультате моделирования горения в полнораз-
мерной МЭКС ЦИАМ с использованием выше-
описанной модели с источниковым членом (2).
На рис. 5, иллюстрирующем избирательность
метода, показано выделение колебаний с инте-
ресующей частотой при соответствующем под-
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Рис. 5. Работа резонансного фильтра. Сравне-
ние спектров:

а — ω0/(2π) = 360 Гц, kd = 70, б — ω0/(2π) =
1 180 Гц, kd = 27, 1 — силовой источник коле-
баний (p′ = p − pav), 2 и 3 — сигнал на выходе

резонансного фильтра (ẋ)

боре коэффициентов kd, что обеспечивает хоро-
шее выделение как для высоких, так и для низ-
ких частот. При этом фаза колебаний ẋ в ре-
зонансном контуре совпадает с интересующим

нас компонентом исходного сигнала.
На рис. 6 приведены результаты трехмер-

ного CFD-моделирования с пространственным
выделением колебаний по описанной методи-
ке — поля относительной амплитуды колеба-
ний ẋ для двух выбранных частот (спектр ко-
лебаний давления в контрольной точке на оси

камеры приведен на рис. 3).
Видно, что в ходе моделирования с ши-

рокополосным откликом источникового члена

(2) два резонансных фильтра с частотой 360
и 1 180 Гц, работающих одновременно в темпе
расчета, хорошо выделяют и локализуют зоны
колебаний с выбранными частотами.

В использованной расчетной постановке

колебания давления газа воздействуют на ско-
рость горения и тепловыделение через характе-
ристики турбулентности потока, смешение ме-
тана с воздухом, колебания локального соста-
ва смеси и непосредственно с помощью мно-
жителя (p/pav)n в (2). Показатель взаимодей-

Рис. 6. Относительные амплитуды колебаний
давления выделенных мод: первая продольная
360 Гц (а), третья продольная мода 1 180 Гц
(б)

ствия n подбирается в ходе получения решения
с учетом целесообразности ограничения уста-
новившейся амплитуды колебаний на уровне

1 ÷ 3 %. В расчетах должно выполняться усло-
вие p′max/pav � kМ, где k — показатель адиа-
баты при начальной температуре смеси, М —
число Маха в смеси, p′max — максимальное зна-
чение пульсаций давления. При p′max/pav > kМ
амплитуда колебаний газа в звуковой волне

оказывается одного порядка со средней скоро-
стью потока — это очень сильные, как прави-
ло, недопустимые на практике колебания.

В случае, когда возникает необходимость
исследовать высокочастотные колебания и, на-
пример, оптимизировать для их подавления

конструкцию реальных поглотителей, модели-
рование рассмотренным способом (с широко-
полосным откликом источникового члена) про-
цесса горения с автоколебаниями может при-
водить к развитию превалирующей низкоча-
стотной составляющей, которая может поме-
шать возникновению высокочастотной моды

или усложнить анализ высокочастотных коле-
баний. В этом случае можно, например, по-
давить низкочастотный режим автоколебаний

большими реальными поглотителями. Отме-
тим, что применительно к исследованной схе-
ме МЭКС возможно подавить низкочастотные

колебания и путем изменения основных геомет-
рических параметров камеры (диаметра и дли-
ны жаровой трубы, диаметра конического ста-
билизатора) [14] или специальной настройкой
граничных условий на входе и выходе из рас-
четного объема.

Однако в рамках настоящего исследования

были рассмотрены другие подходы исследова-
ния высокочастотных мод. Один из них осно-
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ван на возбуждении только представляющих

интерес высокочастотных составляющих и от-
сутствии воздействия на остальные моды. Для
реализации этого подхода развивается идея ре-
зонансного выделения, но уже с активным воз-
действием на скорость тепловыделения интере-
сующей составляющей. Для этого в источнико-
вом члене (2) уравнения (1) заменяется состав-
ляющая, чувствительная к давлению, выраже-
ние записывается в виде

W = ρunbUt|grad C̃|
(pav + kdẋ

pav

)n
,

где ẋ — текущее значение первой производ-
ной параметра осциллятора с выбранной для

анализа частотой (в текущей расчетной ячей-
ке). В таком случае будут преимущественно

возбуждаться колебания с частотой, близкой к
заданной параметрами осциллятора. Однако и
в этом случае механизмы, связанные с пуль-
сациями концентрации топлива, могут приво-
дить к возникновению низкочастотных колеба-
ний с большой амплитудой, поэтому для та-
кого анализа целесообразно обеспечивать одно-
родный состав на входе в зону горения. Такой
подход позволяет, например, расчетными мето-
дами отработать [22] эффективность реальных
поглотителей, настроенных на выбранную ча-
стоту, значение которой получено или в резуль-
тате спектрального анализа пульсаций давле-
ния при широкополосном возбуждении, или по
результатам эксперимента.

Альтернативой вышеописанному методу с

выборочным возбуждением заранее известной

высокочастотной моды является подавление ко-
лебаний с заранее известными низкими ча-
стотами без прямого воздействия на осталь-
ные моды. Для этого аналогично вышеопи-
санному способу вводятся осцилляторы, но с
собственными частотами, соответствующими
низким частотам колебаний. Далее в источни-
ковом члене (2) из текущего значения давле-
ния p вычитается сумма значений первой про-
изводной ẋi от параметра осциллятора с соот-
ветствующими коэффициентами kdi для каж-
дой подавляемой i-й низкочастотной составля-
ющей:

W = ρunbUt|grad C̃|
(p−∑ kdiẋi

pav

)n
. (6)

Это позволяет не усиливать степенной зависи-
мостью выбранные низкочастотные моды. Бла-
годаря этому можно увеличить значение степе-
ни n влияния давления на источниковый член

для более заметного возбуждения и, соответ-
ственно, исследования высокочастотных коле-
баний.

ОЦЕНКА СКЛОННОСТИ МЭКС
К НЕУСТОЙЧИВОМУ ГОРЕНИЮ
И ЭФФЕКТИВНОСТИ МЕТОДОВ

ЕГО ПОДАВЛЕНИЯ

Источниковый член в уравнении переноса

для переменной степени завершенности горе-
ния, записанный с множителем (p/pav)n, и вы-
бранные граничные условия для акустических

колебаний газа допускают возбуждение боль-
шого числа мод колебаний.

Для оценки склонности конкретной мо-
ды колебаний к самовозбуждению требует-
ся исследовать колебания давления неболь-
шого уровня, которые незначительно влияют
на средние параметры, характеризующие зо-
ну горения, и владеть методикой, позволяющей
произвольно выделять колебания, соответству-
ющие выбранному спектральному пику. При
этом минимальное значение показателя взаи-
модействия n в выражении (p/pav)n, начиная с
которого в камере появляются колебания дан-
ной моды, должно оставаться чувствительным
к изменению конструктивных и режимных па-
раметров КС.

В качестве характеристики склонности

камеры к возникновению режимов автоколеба-
ний (относительно других исследованных этим
методом конструкций) может использоваться
значение показателя взаимодействия n, при ко-
тором получается контрольный уровень коле-
баний давления (как правило, 1 ÷ 3 % пульса-
ций давления). Определение указанных харак-
терных значений n требует большого времени
счета.

Более удобным критерием количественной

оценки склонности камеры к неустойчивым ре-
жимам и эффективности мер подавления яв-
ляется логарифмический декремент затухания,
который определяется по виду огибающей за-
тухающего колебательного процесса. Для это-
го после получения в расчете установившегося

процесса колебаний с выделенной частотой от-
ключается обратная связь источника тепловы-
деления с пульсациями давления (выполняется
обнулением показателя взаимодействия n), по-
сле чего процесс переходит в затухающий. По
темпу затухания колебаний определяется чис-
ленное значение логарифмического декремен-
та затухания. Чем медленнее будет происхо-
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Рис. 7. Установившийся режим колебаний.
Осциллограмма (а) и спектр (б) в точке на
оси камеры на расстоянии от стабилизатора

100 мм

Рис. 8. Осциллограмма колебаний давления

(1) с частотой f = 356 Гц до и после отклю-
чения обратной связи (отключение при t =
2.93 с) и аппроксимация (2) Aexp(−δt) затуха-
ния амплитуды сигнала, по параметрам кото-
рой определяется значение логарифмического

декремента затухания d = δ/f = 161/356 =
0.45

дить затухание колебаний в их естественном

масштабе времени (в единицах периода колеба-
ний), тем выше считается склонность данных
колебаний к самовозбуждению.

На рис. 7 приведены осциллограмма

и спектр установившихся колебаний давле-
ния газа, полученный при трехмерном CFD-
моделировании рассматриваемой МЭКС с от-
носительно низким уровнем колебаний давле-
ния p′/pav ≈ 1 % и с частотой 356 Гц.

На рис. 8 показано затухание этих коле-
баний в промежутке непосредственно перед и

после отключения обратной связи. Разрыв об-
ратной связи осуществляется удалением мно-
жителя (p/pav)n из выражения источникового

члена (2) уравнения (1) для C̃ (или заданием
n = 0).

ЗАКЛЮЧЕНИЕ

1. Разработан метод моделирования са-
мовозбуждения автоколебаний газа в камерах

сгорания ГТУ. Рассматривались трехмерное

нестационарное турбулентное течение и горе-
ние бедной смеси метан — воздух в отсеке

МЭКС. Для численного интегрирования си-
стемы уравнений применялся подход SAS с

SST k–ω моделью турбулентности. Граничные
условия задавались с учетом связи с парамет-
рами акустических колебаний. Скорости обра-
зования продуктов сгорания и тепловыделения

зависят от колебаний давления газа. Склон-
ность камеры сгорания к самовозбуждению ко-
лебаний газа характеризуется показателем вза-
имодействия n и логарифмическим декремен-
том затухания d.

2. Выполнена апробация элементов мето-
дики расчета самовозбуждения колебаний га-
за на модели МЭКС ГТУ, ранее испытанной в
ЦИАМ: 1) получено самовозбуждение колеба-
ний первой продольной моды с частотой 360 Гц,
наблюдаемой в эксперименте; 2) показана зави-
симость амплитуды колебаний давления газа в

МЭКС от показателя взаимодействия; 3) про-
демонстрирована методика выделения из слож-
ного спектра колебаний моды с интересую-
щей частотой и её анализ — пространствен-
ное распределение среднеквадратичной ампли-
туды колебаний давления газа в объеме МЭКС,
определение моды и декремента затухания.
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