РАСЧЕТ РАЗЛЕТА СКЛАДА ОБЪЕМА ГАЗОЗВЕЗДИ

Ю. В. Казаков, А. В. Федоров, В. М. Фомин
(Новосибирск)

В настоящее время большое внимание уделяется физическому и математическому моделированию многофазных систем, что вызвано широким распространением различных рода технологических схем с использованием гетерогенных и гомогенных сред. Обзоры по математическому моделированию некоторых задач механики гетерогенных сред приводятся в [1—3]. В экспериментах по изучению волновой динамики газозвезды твердых частиц, как правило, делается акцент на взаимодействие ударных волн (УВ) с областями захваченного газа. В [4] проведено экспериментальное исследование разрежения газозвезды с целью изучения влияния запаздывания среды с большим массовым содержанием частиц, находящихся под высоким давлением, на параметры УВ, формирующихся при истечении такой среды в свободное пространство. Вопрос о режимах истечения актуален с точки зрения безопасности различных видов оборудования (трубопроводный транспорт для перемещения сыпучих материалов, химические реакторы с нестабильным режимом и др.). Процесс разрежения газозвезды рассматривается в [5], где в предельном случае объемной долей частиц анализируется разлет газозвезды в вакууме, в [6] проведен расчет взрывного разлета облака газозвезды в случае относительно малых объемных содержаний дисперсной фазы, в [7] исследован процесс внешнего выброса угля и газа в равновесном приближении. Более полная библиография экспериментальных и теоретических работ по динамике газозвезды дана в [1—3, 8].

Рассмотрим решение задачи об определении течения в ударной трубе, в камере высокого давления (КВД) которой находится газозвезда мелких частиц, а в камере низкого давления (КНД) — воздух (задача ГЧ). Смесь от газа отделена диаfragмой, которая в начальный момент разрывается. При этом в область низкого давления распространяется УВ, за которой дывает контактный разрыв, за ним идет комбинированный разрыв (КБР), по газозвезде распространяется волна разрежения (ВР). После отражения ВР от стенки КВД, когда начинается взаимодействие БР и УВ, происходит ослабление УВ. Исследуем также задачу Г — вариант задачи ГЧ, когда в КВД чистый газ.

Уравнения, описывающие это течение в неравновесном приближении, имеют вид

$$\frac{\partial p_i}{\partial t} + \frac{\partial p_i u_i}{\partial x} = 0,$$

$$\frac{\partial p_i u_i}{\partial t} + \frac{\partial p_i u_i u_i}{\partial x} + m_i \frac{\partial p_i}{\partial x} = (-1)^{i+1} f,$$

$$\frac{\partial (\rho_1 E_1 + \rho_2 E_2)}{\partial t} + \frac{\partial (\rho_1 u_1 E_1 + \rho_2 u_2 E_2 + p(m_1 u_1 + m_2 u_2))}{\partial x} = 0,$$

$$p = \rho_1 R T_i, \quad m_1 + m_2 = 1, \quad \rho_1 = \rho_1 m_1, \quad \rho_2 = \text{const},$$

$$e_i = c_i T_i, \quad E_i = e_i + u_i^2/2, \quad i = 1, 2.$$
гии, температура и объемное содержание i-й фазы (индекс i = 1 относится к параметрам газа, i = 2 — к параметрам частиц); p — давление; E_i — полная энергия i-й фазы; f, g — описывающие силовое и тепло-
овое взаимодействие фаз, аналогичны используемым в [10]:

$$ f = 0,125 \ln \pi^2 \sigma_{p_{12}} (u_1 - u_2) (u_1 - u_2), n = 6 m_2 / u_2^3, $$

$$ C_1 = 24 / Re + 4,4 / Re^{0,8}, \quad m_2 \leq 0,08, $$

$$ C_2 = 4 (3 \ln (1,75 + 150 (m_2 Re)^{-1})) \quad m_2 \geq 0,45, $$

$$ C_3 = (m_2 - 0,08) C_2 + (0,45 - m_2) C_1 / 0,35, \quad 0,08 \leq m_2 \leq 0,45, $$

$$ q = \pi d \lambda \ Nu (T_1 - T_2), $$

$$ Nu = \begin{cases}
2 + 0,1066 Re_p \varphi_p, & Re \leq 200, \\
2,274 + 0,6 Re_p^{0,67} Pr_p^{0,33}, & Re \geq 200,
\end{cases} $$

$$ Re = \frac{\rho_1 |u_1 - u_2| d / \mu, Pr = c_2 \lambda / \mu. $$

Приведенная система уравнений решалась при следующих началь но-краевых условиях и значениях параметров: $0 < x < l_0 = 0,07 m; m_2 = 0,8375; m_2 = 0,1625, u_1 - u_2 = 0, \eta = \rho_1 / \rho_2 = 50, T_1 = T_2 = 300 K, r_{11} = 5,651 \text{ кг/м}^3, \rho_{22} = 1460 \text{ кг/м}^3, \gamma = 1,66, c_2 = 710 \text{ МДж/(кг} \cdot \text{рад} \), c_1 = 3128 \text{ MДж/(кг} \cdot \text{рад} \), \mu = 1,85 \cdot 10^{-5} \text{ кг/(м} \cdot \text{с} \), \lambda = 0,143 \text{ кг} \cdot \text{м} \cdot \text{с} / \text{ккал} \cdot \text{рад} \); $x \leq 0: m_1 = 1, m_2 = 0, u_1 = 0, T_1 = 300 K, \gamma = 1,44, c_1 = 716 \text{ MДж/(кг} \cdot \text{рад} \), p_{11} = 0,11639 - 11,639 \text{ кг/м}^3; x = l_0: u_1 (t) = 0. $

Для расчета использовался модифицированный метод крупных част-
ций с отслеживанием контактного и комбинированного разрывов [6].
Ранее этот алгоритм тестируется только на точных решениях уравнений
газовой динамики [11]. Представляется целесообразным провести
теоретические расчеты для точных решений уравнений механики гетерогенных
сред [8]. Этот вопрос более противоречив, так как известно, что сис-
тема уравнений негиперболична в случае скоростной неравновесности при
$(u_1 - u_2)^2 < a^2 (1 + (\rho_{11} m_1 / \rho_{22} m_2)^{2,3})^2$ [8, 12, 13]. Проблема устойчивости
разностных схем для двухскоростных моделей обсуждалась в [13, 14],
где отмечалось, что при $h \approx d$ (h — шаг разностной сетки, d — размер
включения дисперсной фазы) характерное время нарастания возмущений
(с длиной волны $\approx h$), которые могут генерироваться в сетке, значи-
тельно превосходит характерное время релаксации. И, следовательно, на дан-
ной разностной сетке возмущения не будут нарастать при определенном
соотношении на τ и h, следующем из условия Куранта. Требование $h \approx d$
при этом естественно, так как мы используем для описания частиц газо-
взвеси континуальный подход, в рамках которого эффекты с характер-
ным размером d не могут быть описаны. В качестве тестового расчета ре-
шалась задача о распространении по газовзвеси стационарной изотерми-
ческой УВ [5]. Показано, что разностное решение близко к аналитическо-
му, разрыв размыкается на 4–5 ячеек, зона релаксации передается
удовлетворительно. Тестовый расчет позволил проанализировать некото-
рый особенности численного изучения задач механики гетерогенных сред.

Перейдем к обсуждению результатов расчетов сформулированной за-
дачи. На рис. 1 приведены распределения давления во времени: A — в
точке $x = -0,2 m$, B — в точке $x = -0,44 m$, I — задача Г, 2 — задача
ГЧ, $\eta = 50, d = 100 мм, \beta = - \eta = 50, d = 20 мм при $p_1/p_0 = 35$. Вид-
но, что в случае Г уже сформировался характерный треугольный профиль
в отличие от ГЧ, где течение представляется почти ступенчатым импульсом с УВ меньшей амплитудой. На рис. 2 представлены распределения давления в трубе на момент времени $t = 330 мкс$, I — задача Г, 2 и 3 — за-
daча ГЧ при $\eta = 50, d = 100 и 20 мм соответственно. Видно, что для задачи Г давление газа в КВД падает быстрее, чем для ГЧ, что обуслов-
лено межфазным трением и теплообменом. Характерное время падения
давления в КВД растет с уменьшением диаметра частиц при фиксирован-
ном массовом отношении η. Уменьшение диаметра частиц приводит к
увеличению сопротивления, которое оказывают частицы на газ, и к интен-
сификации вовлечения частиц в движение, что является следствием того, что в выражении для силы сопротивления содержатся члены, пропорциональные \(d^{-1}, d^{-2} \). Интенсифицируется и теплообмен при уменьшении диаметра частиц. Газ, с одной стороны, остывает по мере прохождения \(\text{ВР} \), с другой — нагревается за счет присутствия теплых частиц.

По результатам расчетов построена зависимость средней скорости \(\text{УВ} \) на участке между \(x = -0,2 \) и \(x = -0,68 \) от начального отношения давлений на диафрагме при фиксированном давлении в \(\text{ВВД} \). Отметим, что скорость здесь непостоянна, так как отраженная от стенки \(\text{ВР} \) догоняет \(\text{УВ} \) и за счет их взаимодействия \(\text{УВ} \) замедляется. В [4] этот факт не оговаривался, хотя очевидно, что он может быть существенным в определенных ситуациях. На рис. 3 показаны расчетные зависимости числа Маха \(\text{УВ} \) от \(\ln (p_1/p_0) \): 2 — \(\eta = 50 \), \(d = 100 \) \(\text{мкм} \), 4 — \(\eta = 50 \), \(d = 20 \) \(\text{мкм} \); 3 — эксперимент, 1 — течение \(\Gamma \), 5 — расчетная кривая, полученная в рамках равновесного подхода. Как видно, зависимость скорости распространения \(\text{УВ} \) от \(\ln (p_1/p_0) \) для неравновесного течения лежит в границах, которые представляют собой замороженное в равновесное течение [4]. В [4] не приведены данные о размере частиц, которые использовались в эксперименте. Однако, как видно из рис. 3, наиболее удовлетворительное соответствие расчетной и экспериментальной кривой получается при \(d = 20 \) \(\text{мкм} \), что позволяет предполагать, что в эксперименте использовались частицы с эффективным диаметром \(d = 20 \) \(\text{мкм} \). Этот вывод справедлив с точностью до нашего представления о параметрах силового и теплового взаимодействия фаз. На рис. 4 представлены распределения давления газа при \(\eta = 50 \), \(d = 100 \) \(\text{мкм} \), \(p_1/p_0 = 35 \) в точках \(A \) (\(x = -0,2 \) м), \(B \) (\(x = -0,44 \) м), \(C \) (\(x = -0,68 \) м), 1 — значения \(C_D \) и \(\text{Nu} \) из [10], 2 — \(C_D = 24/\text{Re}, \text{Nu} = 2 \). Второй вариант описания взаимодействия фаз приводит к тому, что силовое и тепловое взаимодействие...
вие фаз значительно уменьшается и течение приближается к замороженному.

Остановимся коротко на структуре ВР в газовзвеси, примыкающей к области покоя. Вихри, передающиеся по газовой фазе, приводят газ в движение. Под действием газа частицы начинают разгоняться и после истечения некоторого времени приходят в равновесие с газовой фазой по скоростям и температурам. Аналогично зоне релаксации в замороженной УВ волне разрежения, распространяющейся по смеси, также существует зона релаксации. В описываемом случае зона релаксации примыкает к переднему фронту ВР \(x = x_1(t) \), который характеризуется тем, что в его малой окрестности слева параметры течения переменны, справа — постоянны (речь идет о течении до взаимодействия ВР со стенкой).

На рис. 5 приведены расчетные \(x - t \)-диаграммы распространения головы ВР в КВД при \(p_1/p_0 = 350 \): 5 — чистый газ в КВД, 2 — газовзвесь с \(\eta = 50 \), \(d = 20 \) мкм, 3 — газовзвесь с \(\eta = 50 \), \(d = 50 \) мкм. При этом фронт волн разрежения в сечении фиксировался по положению точки, в которой давление газа отличается от невозвышенного давления в КВД на 2%. Такой критерий позволяет некоторым образом учесть наличие влияния схемной вязкости, которая обусловливает размывание фронта. На рис. 5 дана также кривая \(l \), соответствующая траектории головы ВР, полученной из равновесной теории, \(x = a_0 l \), \(a_0 = 136 \) м/с, и \(\zeta \), представляющая кривую головы ВР в чистом газе \(x = a_0 l + 1014 \) м/с. В начальный момент времени диафрагма находилась в ячейке \(i = 100 \). Из сравнения аналитической кривой \(\zeta \) и расчетной 5 следует, что расчетные маховые моменты времени. Анализ расчетов позволяет установить, что в газовзвеси можно определить «видимую» скорость переднего фронта ВР, которая может быть зафиксирована в эксперименте, а также реальную скорость переднего фронта, который значительно ослабляется процессами межфазного трения. Здесь прослеживается аналогия с общей теорией распространения возмущений в релаксирующих средах [15], где передний фронт движется со скоростью \(a_f \) и сформирован быстро затухающими гармониками, а часть сигнала, представленная медленно затухающими гармониками, движется со скоростью \(a_s \). Для газовзвеси «видимая» скорость распространения головы ВР меняется во времени от \(a_f \) к \(a_s \) [16]. Как видно из рис. 5, с уменьшением диаметра частиц переход к равновесной скорости звука происходит быстрее.

Затухание переднего фронта возмущений для ВР можно проанализировать на примере задачи о распаде разрыва для системы уравнений, описывающих течение газа в трубе с жестко закрепленными частями в акустическом приближении:

\[
\rho_t + \rho_0 u x = 0, \quad u_t + \frac{x^3}{2 \rho_0} \rho x = - \omega u, \quad \omega > 0
\]
с начальными данными $x > 0$, $\rho = \rho^+$, $u = 0$; $x \leq 0$, $\rho = \rho^-$, $u = 0$, $\rho^+ > \rho^-$. Предполагается, что частицы оказывают силовое взаимодействие на газ, пропорциональное скорости газа, при $C_D = 24/Re$ получим $\alpha \sim \sqrt{\frac{t}{4}}$.

Система (1) сводится к известному телеграфному уравнению (без ограничения общности можно считать $\rho_0 = 1$, $c_0 = 1$), которое с помощью замены $\omega = \exp \left(-\alpha t/2\right)$, $z = \alpha(x + t)/2$, $y = \alpha(x - t)/2$ сводится к

$$w_{xy} + \omega/4 = 0.$$

Воспользовавшись решением уравнения (2), найденным в [17] методом Римана, можем представить решение системы (1) в виде

$$\rho(x, t) = \left[\frac{\alpha}{4} \int_{x-t}^{x+t} \rho_0(\lambda) \left(\frac{\alpha^2 x - \lambda}{\xi} \right) J_0 \left(-\frac{\xi}{\alpha}\right) d\lambda + \right] \exp \left(-\alpha t/2\right),$$

где $\xi = \alpha^2 \left(\frac{\alpha^2}{2} - \frac{1}{t^2}\right) - \frac{1}{t^2}$; J_0, J_1 — функции Бесселя нулевого и первого порядков.

Из (3) следует, что амплитуда разрыва, распространяющегося вправо (являющегося в данном случае аналогом ВР), меняется по закону $|\rho| = = 0,5(\rho^+ - \rho^-) \exp \left(-\alpha t/2\right)$.

Результаты расчета по формуле (3) при $\rho^+ = 3$, $\rho^- = 1$ на момент времени $t = 1$ представлены на рис. 6 для $\alpha = 25$, 4, $0,04$ (линии $I - 3$). Видно, что возрастание коэффициента α, соответствующее уменьшению диаметра частиц, приводит к затуханию переднего фронта.

Таким образом, численно проанализирована волновая картина течения, возникающего при разлете облака частиц с небольшой концентрацией дискретной фазы. Данные количественные оценки ослабления УВ, возникающих в чистом газе при варьировании начальных параметров смеси, определение ВР в смеси и найдена ее структура. Показано, что в отличие от газовой динамики (равновесной) передний фронт ВР распространяется с переменной скоростью, которая меняется от a_t до a_e в процессе течения. Сравнение с имеющимися экспериментальными результатами [4] позволило сделать вывод об адекватности математической модели изучаемому явлению для небольших концентраций.

Авторы выражают своим приятным долгом поблагодарить Б. Е. Гельфанд, обратившего их внимание на данную задачу.

ЛИТЕРАТУРА

2. Ивандаев А. И., Кутушев А. Г., Нигматуллин Р. И. Газовая динамика многофазных сред. Ударные и детонационные волны в газовзвесях // Итоги науки и техники. Сер. Механика жидкости и газа.— М.: ВИНИТИ АН СССР, 1981.— Т. 16.

3. Янченко И. Н., Солоухин Р. И., Паньрып А. И., Фомин В. М. Сверхзвуковые двухфазные течения в условиях скоростной неравновесности частиц.— Новосибирск: Наука, 1980.

4. Гельфанд Б. Е., Губанов А. В. и др. Ударные волны при разлете скатого объема газовзвеси твердых частиц // ДАН СССР.— 1985.— Т. 281, № 5.

8. Казаков Ю. В., Федоров А. В., Фомин В. М. Структуры изотермических ударных волн и расчет разлета облака частиц.— Новосибирск, 1986.— (Предпринят/ ИТПМ СО АН СССР; № 8).

9. Ивандаев А. И. Течение в ударной трубе при наличии взвешенных частиц // ФТВ.— 1984.— № 3.

Поступила 7/IV 1984 г.

УДК 539.3

КАНОНИЧЕСКИЙ ТЕНЗОР В ТЕОРИИ УПРУГОСТИ

В. В. Кузнецов

(Новосибирск)

В [1] даётся определение канонического вида симметричного тензора, согласно которому он принимает простейшую (диагональную) форму в главных осях. В настоящей работе определяется симметричный тензор, приводящий к квадратичному тензору потенциальной энергии в единице объёма изотропного упругого тела к каноническому виду. Показывается, что такое приведение можно осуществить надлежащим выбором двух констант в форме, аналогичной обобщённому закону Гука.

Напряженно-деформированное состояние в элементарном объёме упругого тела характеризуется тензором напряжений σ_{ij} и тензором деформаций ϵ_{ij} ($i, j = 1, ..., 3$), компоненты которых связаны соотношениями упругости

\[
s_{ij} = \epsilon_{ij} = b_{ijkm} \delta_{hm},
\]

(1)

Здесь и в дальнейшем b_{ijkm} — тензор упругих постоянных и по повторяющимся двойникам индексам производится суммирование. В изотропном упругом теле

\[
b_{ijkm} = \lambda \delta_{ij} \delta_{hm} + \mu (\delta_{ik} \delta_{jm} + \delta_{im} \delta_{jk}),
\]

(2)λ, μ — постоянные Ламе; δ_{ij} — символ Кронекера.

Определим канонический тензор s_{ij} как тензор, компоненты которого связаны с компонентами тензора деформаций теми же соотношениями, что и компоненты тензора напряжений с компонентами канонического тензора, т. е.

\[
s_{ij} = c_{ijkm} \delta_{hm},
\]

(3)

\[
\sigma_{ij} = c_{ijkm} \delta_{hm}.
\]

(4)

Причём полагаем, что для коэффициентов c_{ijkm} выполняются свойства симметрии относительно перестановки индексов i и j, k и m, а также пар ij и km. Из сравнения соотношений (3), (4) и (1) можно прийти к заключению, что если канонический тензор существует, то он обладает некоторыми интересными свойствами двойственности. С одной стороны, согласно (3), s_{ij} могут рассматриваться как некоторые «напряжения», а с другой, согласно (4), как некоторые «деформации». Для того чтобы σ_{ij} оставался действительным тензором напряжений, постоянные c_{ijkm} должны быть связаны условием

\[
c_{ijkm} \delta_{hmrs} = b_{ijsr},
\]

(5)

Следовательно, нахождение канонического тензора связано с определением постоянных c_{ijkm}. Предположим, что коэффициенты c_{ijkm} могут быть