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[TpoHnnaeMocTh SBISIETCST OMHUM U3 HanOOJIee BaXKHBIX U CIIOXKHBIX ITapaMeTPOB JUIsl OLICHKH IIPU Xa-
paktepucTHKe HedTsHOro KojulekTopa. KocBeHHas OIeHKa IMPOHMI[AEMOCTH OCYLIECTBIISUIACH HECKOJIBKUMHM
SMIMPUUECKUMHI METOJAMH C UCIOJIb30BAaHUEM CKBAXKUHHBIX re0(HU3NUECKUX JaHHBIX. OHU BKIIIOYAIOT B ceOst
Mozenb Tumypa, B KOTOpOH HUCTIONB3YIOTCS OOBIYHBIC KapOTaXKH, U Moaeib Tumypa — KoyTtca, B KoTopoii uc-
TIONTB3YeTCsl KapoTaX SIAEPHOTO MAarHUTHOTO pe3oHaHca. [lepBoif Ienbio MccienoBaHus OblIa OLEHKA MOpPH-
CTOCTH, ITOCKOJIBKY OHA HAIpPSIMYIO BIIMSIET Ha OIEHKH ITPOHUIIAEMOCTH. 3aTeM OBLIH IIPOBEICHEI IeTePMHUHH-
CTHUYECKasl U CTOXaCTHYeCKasi ”HBEPCHH, TIOTOMY YTO OCHOBHOI! LIeJTbI0 pa0OThI OblIa OLIEHKA IIPOHUIIAEMOCTH
kapOoHaTHOrO KoJIekTopa B Oacceitne Kamnoc Ha roro-socroke bpasunun. Cxema rpeGHeBol perpeccun Obuia
UCTIONB30BaHa JUIS IETEPMUHUCTHUECKOM HHBepcun ypaBHeHHH Tumypa u Tumypa — Koytca. Ctoxactuueckas
HMHBEPCHS 1T03XKe ObITa PelleHa ¢ HCIOIb30BAHINEM HEUSTKOH JIOTHKH B KaUueCTBE NMPSAMOH 3aa4H, a IJIs OIEH-
KH HeoIlpeAelIeHHOCTH ObUT mpuMeHeH Metox MonTe-Kapio. Bee onenkn Ob1m mpoBepeHbI HA COOTBETCTBHE
71a00paTOPHBIM JTAaHHBIM I10 MOPHUCTOCTH W MPOHHUIIAEMOCTH C MCHOJIB30BaHHEM KOd((HUIMEHTa KOPPESIy
IMupcona (R), cpennexsanparuynoil ommbku (RMSE), cpenueit adbcomorHoit onmbku (MAE) u nnzaekca co-
racust YuuiMorta (d). Pesynsrarst s monenu Tumypa cocrasmm R = 0.41; RMSE =333.28; MAE =95.56; u
d=0.55. Otu 3nayeHus ObuH Xyxe Ui Mozenu Tumypa — Koytea: R = 0.39; RMSE = 355.28; MAE = 79.35;
u d=0.51. Monensr Tumypa ¢ 30HaMH TeYEHUS MPOAEMOHCTpHpoBaia pe3yasrartsl R = 0.55; RMSE = 210.88;
MAE = 116.66; u d = 0.84, 4T0 MPEBOCXOMIIO PE3YIIBTATHI IS IBYX APYTrux moneneil. Takum obGpazom, me-
TEePMUHHUCTHYECKAsl MHBEPCHS MOKa3alia cIadyio CIOCOOHOCTh aIalTUPOBAThCS K 3HAUYUTEIILHBIM KOJIeOaHUSIM
3HAYECHHUH ITPOHUIIAEMOCTH BJI0JIb CKBaXKHHBI, YTO BUJHO M3 CPABHEHUS 3THX TPeX M0X0/10B. OJJTHAKO CTOXACTH-
YyecKasi HHBepCHs C HCIIONb30BaHUEM TpeX A4eek aana pe3yasrarsl R = 0.35; RMSE =320.27; MAE =190.93; u
d = 0.73, 9T0 BBITTIAAENO XYK€, YEM PE3yNbTaThl AETEPMHUHUCTHUECKON HHBEPCHH. TeM BpeMEHEM CTOXacTHUe-
CKast HHBEPCHUSI C MIECTHIO SIeHKaMH YCIEIHO CKOPPEKTHPOBaIa Habop 1abopaTopHBIX HAOMIONEHHH, TTOCKOIb-
Ky oHa obecrieunBaet R = 0.87; RMSE = 156.81; MAE = 74.60; u d = 0.92. Jloka3aHo, 4TO MOCICIHUIN ITOXO]
MOXKET 00€CIIeUUTh HAJISKHOE PEIICHNE C COIIACOBAaHHBIMY ITapaMeTPaMy ¥ TOYHOW OIIEHKOW ITPOHUIIAEMOCTH.

Kapbonamuwiii konnexmop, uneepcus, NOpucmochs, NPOHUYAEMOCMb, 2pebHesas pespeccusl, cxema He-
uemKoll 102uKu, ananus neonpeoeiennocmu memooom Monme-Kapno

DETERMINISTIC AND STOCHASTIC MODELING IN PREDICTION
OF PETROPHYSICAL PROPERTIES OF AN ALBIAN CARBONATE RESERVOIR
IN THE CAMPOS BASIN (Southeastern Brazil)

A. Carrasquilla, R. Guerra

Permeability is one of the most significant and challenging parameters to estimate when characterizing
an oil reservoir. Several empirical methods with geophysical borehole logs have been employed to estimate it
indirectly. They include the Timur model, which uses conventional logs, and the Timur—Coates model, which
uses the nuclear magnetic resonance log. The first goal of this study was to evaluate porosity, because it directly
impacts permeability estimates. Deterministic and stochastic inversions were then carried out, as the main objec-
tive of this work was to estimate the permeability in a carbonate reservoir of the Campos Basin, Southeastern
Brazil. The ridge regression scheme was used to invert the Timur and Timur—Coates equations deterministically.
The stochastic inversion was later solved using fuzzy logic as the forward problem, and the Monte Carlo method
was utilized to assess uncertainty. The goodness of fit for the estimations was all checked with porosity and
permeability laboratory data using the Pearson correlation coefficient (R), root mean square error (RMSE), mean
absolute error (MAE), and Willmott’s agreement index (d). The results for the Timur model were R = 0.41;
RMSE = 333.28; MAE = 95.56; and d = 0.55. These values were worse for the Timur—Coates model, with
R = 0.39; RMSE = 355.28; MAE = 79.35; and d = 0.51. The Timur model with flow zones had R = 0.55;
RMSE = 210.88; MAE = 116.66; and d = 0.84, which outperformed the other two models. The deterministic
inversion showed, thus, little ability to adapt to the significant variations of the permeability values along the
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well, as can be seen from comparing these three approaches. However, the stochastic inversion using three bins
had R = 0.35; RMSE = 320.27; MAE = 190.93; and d = 0.73, looking worse than the deterministic inversion.
In the meantime, the stochastic inversion with six bins successfully adjusted the set of laboratory observations,
because it provides R = 0.87; RMSE = 156.81; MAE = 74.60; and d = 0.92. This way, the last approach has
proven it can produce a reliable solution with consistent parameters and an accurate permeability estimation.

Keywords: carbonate reservoir, inversion, porosity, permeability, ridge regression, fuzzy logic scheme,
Monte Carlo uncertainty analysis

INTRODUCTION

In the oil industry, petrophysical characteristics, such as lithology, porosity, permeability, and water
saturation, affect the well productivity in hydrocarbon-bearing reservoirs. Geophysical well logs, one of the
most valuable and essential tools for rock evaluation, are one way of assessing these reservoir properties.
Nowadays, logs serve as a continuous and complete record for appraising the geologic formations that a bore-
hole crosses (Luthi, 2001). The signals captured by the tools in the subsurface media are translated into the at-
tributes to assess reservoir rock formation and identify fluid types. This procedure enables us to operate the
wellbore, to correlate formation depths with nearby wells, and to make interpretations of the quantity and qual-
ity of the petroleum present. Nevertheless, they do not directly present these relevant properties to calculate the
financial potential of the geologic formations (Tiab and Donaldson, 2015).

Reservoir rock has to be porous and permit fluid flow through the interconnected spaces to be commer-
cially viable. One of the critical parameters to be estimated in the characterization of an oil reservoir is perme-
ability, which is the capacity of conducting fluids (Doveton, 2014). It is a critical variable for comprehending
fluid movement behavior, and in the oil and gas sector, predicting it accurately is an important problem and a
key component of reservoir characterization. The accurate permeability estimation aids in reservoir develop-
ment and production strategy optimization. Owing to the influence of various geologic factors that regulate
fluid circulation, this prediction is a challenge (Lucia, 2007).

The typical method for determining permeability is to conduct time- and money-consuming laboratory
experiments directly on core or sidewall samples, well testing, and analog reservoir investigations (Liu, 2017).
These methods only examine a small portion of the reservoir, so one should search for methods that can be used
throughout the reservoir. In addition to these direct methods, this estimate can be made using indirect methods
like logs (Schon, 2015). Empirical models developed by Tixier (1949), Morris and Biggs (1967), Timur (1968),
Coates and Dumanoir (1974), Coates and Denoo (1981), Coates et al. (1999), and Lacentre and Carrica (2003)
have been used in numerous attempts to determine the permeability from logs over time. Therefore, log-based
permeability predictions may have drawbacks because of presumptions and uncertainties in the empirical rela-
tionships, though they are relatively quicker and less expensive. According to Kennedy (2015), most petro-
physical parameters are typically correlated with well-log data. However, no evident and significant correlation
exists between reservoir permeability and log data. Multiple linear regression (Wendt et al., 1986), multivariate
analysis (Lee and Datta-Gupta, 1999), and polynomial regression (Ahangar-Asr et al., 2011), among others,
used logs as input to perform this estimation. Additionally, theoretical-mathematical models by Kozeny and
Carman (Bernabé¢ et al., 2010), Katz and Thompson (1986), Schwartz, Sen, and Johnson (Johnson et al., 1986),
and Glover and Walker (2009) have all been used to estimate permeability. Artificial intelligence techniques,
such as fuzzy logic (Hambalek and Gonzalez, 2003; Ilkhchi et al., 2006), neural networks (Huang et al., 1996),
support vector learning (Weston et al., 1999), and genetic algorithms (Wang et al., 2020), have also been used
in recent years to predict the permeability of oil reservoirs.

Since 1940, mathematical and physical problems have been solved using Monte Carlo methods, which are
most valuable when it is challenging to use other strategies. They comprise a large group of computational algo-
rithms that rely on repeated random sampling to produce numbers. The underlying idea is to use randomness to
find solutions to issues that, theoretically, could be deterministic. These techniques are typically used to generate
sketches from a probability distribution, integrate numerically, and solve optimization problems. In many fields,
including chemistry, physics, engineering, biology, medicine, etc., the technique has been used to estimate per-
meability (Cao et al., 2022). Numerous studies have been conducted in the petroleum field, including those by
Tao and Watson (1984), Adams (2005), Kumar and Varghese (2005), Yu et al. (2005), Vadapalli et al. (2014),
Fazelabdolabadi et al. (2019), Francioli and Carrasco (2019), Inyang et al. (2019), and Guerra (2020).

Using well-log data to determine petrophysical characteristics of oil reservoirs, such as permeability, is a
common task for all the reasons that have been previously mentioned (Wyllie and Rose, 1950). Even so, pre-
dicting permeability from logs is complicated and far from an exact science. As a result, determining permeabil-
ity is complex, and numerous additional attempts will be made in the future (Esmailzadeh et al., 2017). The
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Fig. 1. Location map of the studied oilfield in
the Campos Basin (modified from (Bruhn et al.,
2003)).
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permeability estimation is, therefore, the focus of

this work. Inverse mathematical techniques, deter-
ministic and stochastic, were used to interpret the
results after using log data as the evaluation input.
The logs were initially interpreted to identify where
the hydrocarbons were present. Initially, the porosi-
ty was calculated for each geologic stratum, since
the permeability estimate depends on this assess-
ment. Then, with the application of Timur’s (1968)
equation, which used basic logs for the calculation
of permeability, and the Timur—Coates (Coates et
al., 1999) equation, which uses the Nuclear Mag-
netic Resonance (NMR) log, the deterministic inver- W W
sion analysis was carried out. Based on these meth-
ods, an algorithm was created to estimate the reservoir permeability using the ridge regression technique (Alkinani
et al., 2022). After that stochastic inversion was created using the fuzzy logic (FL) method as the forward prob-
lem, which takes the conventional logs as input. Monte Carlo (MC) error analysis, which offers quantifiable ac-
curacy measures, was then used to analyze the estimated permeability quality (Cuddy and Glover, 2002).
Francioli and Carrasco (2019) used log data as input and laboratory measurements on rock samples to
validate petrophysical parameters, such as porosity, clay volume, water saturation, and permeability. They esti-
mated these properties using FL and analyzed the probability distributions utilizing the MC technique to quan-
tify the assessment uncertainties. Both studies were conducted in carbonate reservoirs, but the datasets are differ-
ent, our postsalt and their presalt layers. Additionally, the permeability was the only focus of the study, and
inverse deterministic estimates of the log empirical equations by Timur and Timur and Coates were made using
basic logs and the NMR log, respectively. With experimental permeability data from rock samples, the results
were confirmed. The deterministic FL permeability estimate used basic logs as input and was verified with ex-
perimental data on rock samples. The stochastic MC technique was then used to evaluate the permeability esti-
mation uncertainties.
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GEOLOGIC CONTEXT

The reservoir addressed in this study belongs to the Campos Basin, which is in Southeastern Brazil
(Fig. 1). The origin and evolution of the Campos Basin are related to the separation of the supercontinent Gond-
wana. They are marked by the disaggregation of the South American and African plates with the consequent
formation of the South Atlantic Ocean (Bruhn et al., 2003). The tectonic and sedimentary evolution of this basin
occurred in three primary megasequences: rift, postrift, and drift phases (Guardado et al., 1989), which corre-
spond, respectively, to the continental, transitional, and marine systems and comprise a wide variety of reser-
voirs (Dias et al., 1990).

The marine sequence begins the open marine deposition during thermal subsidence associated with the
drift phase. This stage begins with carbonate sedimentation (Macaé Group) and grades to a mainly siliciclastic
succession (Campos Group), all affected by intense halokinesis (Supplementary Materials, Fig. 1). In an early
drift context, the Macaé Group sedimentation occurred during the Albian Age and comprised the Goitacas,
Quissama, Outeiro, Imbetiba, and Namorado formations. The Quissama Formation comprises grainstone and
packstone carbonate rocks consisting of oncoids, ooids, peloids, and other bioclasts. It is associated with NE
shoals deposited in high- to moderate-energy environments. The Outeiro Formation is formed of thin carbonate
layers interbedded with marl and mudstone deposited in response to a gradual rise in sea level and the drowning
of the shallow carbonate platform of the Quissama Formation (Suppl. Mat., Fig. 2). These carbonate rocks have
abundant pelagic microfossils like calcispheres (pithonellids), planktonic foraminifera, and radiolarians (Okubo
et al., 2015).

MATERIALS AND METHODS

The works by Kozeny (1927), Carman (1937), Tixier (1949), Morris and Biggs (1967), Timur (1968),
Coates and Denoo (1974), Coates and Dumanoir (1974), Amaefule et al. (1993), Timur and Coates (Coates et
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al., 1999), and Lacentre and Carrica (2003) are just a few of the many initiatives in estimating permeability over
time. The studies of Timur and Timur and Coates, the first using basic logs and the second using the NMR log
as input, were concentrated on this work.

Kozeny (1927) first proposed the equation for determining the rock permeability, and Carman (1937)
later modified it. The Kozeny—Carman equation, a classical permeability—porosity relationship, is used in vari-
ous fields, including chemical, biochemical, and electrochemical engineering, groundwater flow, and water and
oil reservoirs. Still, many other permeability models commonly use this equation as their foundation:

3
k=a % , (1)
$*(1-9)

where &k = permeability (m2); a = 0.2 is the Kozeny constant, which depends on pore shapes; S is the specific
surface area of the rock (m); and ¢ is the porosity (fraction). The formula only applies to groups of sphere-
shaped rocks, and the surface area can only be calculated using core analysis and specialized tools. It is based on
flow through capillary tubes, and a sample with cross-sectional area 4 and length L is made up of n capillary tubes,
each with microscopic length / and radius r, representing rock with connected pores. The measure of rock texture
that connects permeability with average grain diameter is called “the porosity function” (¢3/(1 — ¢)?).

The Kozeny—Carman equation has a limited range of applications owing to its strict application only to
loose sand. Estimating the specific surface area of the grain in consolidated rock formations is complicated, and,
most importantly, it cannot be directly measured by logging. Timur (1968) created a modified version of the
original equation based on typical borehole logs as a result:

1 c
Ketigmur =a”[ j : )

S Wirr

where &, 1S the permeability (mD); a = 104 is a formation-dependent correction coefficient dependent on
Archie’s (1942) coefficients m and n (mD ms?); b = 4.4 and ¢ = 2.0 are regression coefficients statistically
evaluated from laboratory experiments; ¢ (%) is the porosity obtained from NPHI, RHOB, or DT logs, and Sy,
(%) is the irreducible water saturation, which can be estimated from the NMR log or using the water saturation
(Sw) vs. porosity (¢) cross plot (Buckles, 1965). The equation applies solely over zones with Sy, i.e., hydro-
carbon zones on top of the transition zone (Kennedy, 2015).

Posteriorly, Coates et al. (1999), following Timur’s model, developed a model for permeability based on
the NMR log through the following equation:

»( FFLY
kTimurCoates =a (ﬁ 5 (3)

where a, b, and ¢ have the same values as those shown in Timur’s equation. The free fluid index (FFI) is the
producible part of porosity or the productive potential volume in the saturated rock for a given capillary pres-
sure (%). The bound volume irreducible (BVI) is the nonproducible part of porosity or the volume of the fluids
trapped inside the porous structure by capillary forces (%). Both values are determined based on the T2cutoff
time, as shown in the yellow and blue shading of Suppl. Mat., Fig. 3. In the equation, they are defined as

FFI =z —BVI and “4)

BVI=\mr Swirr » (5)

where Qyyr 1S the porosity (%) measured through the NMR log.

The study scheme started linearizing permeability equations 2 and 3 using an operator called “the Jaco-
bian matrix” (4), formed by partial derivatives of the linearized equation about the parameters to be calculated,
a, b, and c. The workflow designed for this work is shown in Suppl. Mat., Fig. 3. Following it, the dataset used
in this study includes geophysical well logs, such as caliper (CAL), gamma-ray (GR), neutron porosity (NPHI),
density (RHOB), sonic (DT), photoelectric (PEF), shallow resistivity (RXO), deep resistivity (RT), and NMR
T2 distribution. Experimental porosity (¢, ,5) and permeability (k; ,p) data were also used, measured in the
laboratory from core samples with helium gas expansion. These measurements were used to assess the quality
of the simulations. Thus, the first stage of the work was reservoir characterization based on the analysis of the
logs with the use of the Interactive Petrophysics — IP (Geoactive..., 2021) software. This preliminary interpreta-
tion exposed important reservoir characteristics, such as top, bottom, carbonate mud presence, water saturation,
porosity, and presence of oil.
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Fig. 2. Free fluid index (FFI, yellow shaded) and bound volume index (BVI, blue shaded) zones in the
nuclear magnetic resonance (NMR) porosity distribution based on the T2cutoff time.

Next, several porosity estimates were made based on NPHI, RHOB, DT, and NMR logs, aiming to find
the best correlation ¢; , and choose it for use in the Timur and Timur—Coates permeability estimation (Ken-
nedy, 2015). An NMR log was also used to estimate the FFI and BVI, essential parameters for estimating per-
meability through the Timur—Coates model (Fig. 2). The reservoir was then divided into flow zones (FZ), each
having its own cutoff time (T2cutoff), which is used to determine more realistic values for the BVI and FFI
(Carrasquilla et al., 2012).

In the case of borehole logging, the inverse problem refers to the determination of the physical properties
of the geologic medium crossed by a borehole, given the data of response of this environment to the logging
tools (Oliver et al., 2008). This problem is considered underdetermined, because there are more model variables
than the amount of information obtained through an inversion process. The solution is nonunique, since the
optimization approach has many solutions for every log when they are linearly independent. The problem is
also ill-posed, because it is impossible to fit the associated data (Lavrentiev, 1967). The ridge regression scheme
was used to carry out the deterministic inversion, a linear model the estimator of which has biased coefficients
with lower variance than the conventional least squares. It includes positive weights along the diagonal of the
covariance matrix, unlike the standard least squares estimator (Suppl. Mat., Fig. 4). The ridge regression ap-
proach is an instance of Tikhonov’s (1963) regularization, with the addition of conversion into a correlation
matrix, which is optional but allows comparisons of the magnitude of the smoothing coefficient between mo-
dels. In this scenario, the ridge estimator is given by Tarantola (2004):

x=(ATA+I)_1 ATy+, (6)

where x is the parameter vector of dimension p; y is the observation vector of dimension p; A4 is the Jacobian
matrix of dimension p X g; A is the regularization parameter; T means transposed; € is the error or residuals; and
1 is the identity matrix. The inversion code was developed in the Matlab (2016) platform, for which it was nec-
essary to input the variables of the initial parameters (a,, b,, and ¢), the acceptable margin of error (¢), and the
smoothing parameter (A). The algorithm output was the estimated permeability curve, with the parameters a, b,
and ¢ being evaluated when the inversion stabilizes or converges. There are other methods for solving the cor-
responding systems of linear equations, for example, the singular value decomposition, which makes it possible
to obtain a solution with a minimum norm. In contrast, in the case of the Tikhonov regularization, the resulting
solution will depend on parameter A, the value of which is rather difficult to determine (Tavakoli and Reynolds,
2011).

The stochastic inversion used the FL approach, and the uncertainty analysis was made with MC. Fuzzy
logic is used to develop a forward model, based on the basic logs, to estimate the permeability of the reservoir,
and measurements of the core samples are made to assess the quality of the adjustments. Fuzzy logic is an ex-
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Fig. 3. Fuzzy logic approach:

A — General scheme with conventional logs as input and permeability as output; B — types of membership functions (adapted from ht-
tps://github.com/VManuelSM/Membership-functions); C — rules (adapted from https://www.geocities.ws/hemakumar b37/fuzzy); D —
Mamdani controller.

tension of conventional Boolean logic developed as a means of modeling uncertainty through the concept of
“partial truth,” that is, truth values between “completely true” and “completely false” (Zadeh, 1965). This con-
cept makes it possible to consider extreme values and infinite possibilities between the true and the false. The
models or sets are mathematical means of representing vagueness and imprecise information, hence the term
“fuzzy,” which can recognize, represent, manipulate, interpret, and use data and information that are vague and
lack certainty (Padilla et al., 2022). In fuzzy techniques, each term is described by a function that assigns to
each possible value x of the corresponding quantity a degree p(x) from the interval [0, 1], to which this value
satisfies the related property. Here, (a) 1 means that the property is satisfied; (b) 0 means that the property is not
satisfied; and (c) values between 0 and 1 correspond to intermediate degrees of confidence. The corresponding
function p(x) is a membership function or fuzzy. The rules usually combine inaccurate statements using logical
connectives like “and,” “or,” “not,” “if-then,” “implies,” etc. The mathematics involved is part of a normal
distribution, which is given by Cuddy and Glover (2002):

ef(xffc)z/Zcz
P(x)= T olon @)

where P(x) is the probability of an x observation being measured in the dataset described by the arithmetic mean
X and standard deviation o. A Gaussian, or normal, distribution curve estimates the relative likelihood, fuzzi-
ness, that an observation belongs to a specific dataset. The dataset can be divided into smaller parts called “bins,”
so that the probability of an observation belonging to a given bin can be calculated from Eq. 6 by replacing the
mean and the standard deviation by X, and o,. These parameters are derived from the calibrating or conditioning
dataset using the conventional statistics by the normal distribution. The most well-known fuzzy system is
the Mamdani rule-based one, the inference of which was first introduced as a control system for the method by
synthesizing a set of linguistic control rules obtained from experienced human operators. In this system, the out-
put of each rule is a fuzzy set (Fig. 34). The following rules are used: (a) fuzzify all input values into fuzzy
membership functions (Fig. 3B, (), (b) execute all applicable rules in the rule base to compute the fuzzy output
functions (Fig. 3D), (c) defuzzify the fuzzy output functions to get “crisp” output values (Fig. 34) (Mamdani and
Assilian, 1975).
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Monte Carlo simulation performs sensitivity analysis through random parameter variation. It is a tech-
nique for studying how a model responds to randomly generated inputs. Stochastic inversion techniques are
widely used to assess the permeability of complex heterogeneous systems. For example, Tyler et al. (1996), Li
et al. (2005), McKenna and Reeves (2006), and Bruckmann and Clauser (2020) worked on this theme. This
approach is used for dealing with the variability and complexity of the parameters that control permeability,
such as porosity, pore throats, and system connectivity. This estimate section will develop the stochastic inver-
sion through the FL scheme as the forward problem and the MC uncertainty analysis. In this case, its vagueness
evaluation is applied to the FL model to assess the degree of confidence of the evaluated model. It involves a
three-step process: (a) randomly generate “N” inputs, sometimes called scenarios (Suppl. Mat., Fig. 54), (b) run
a simulation for each of the “N” inputs (Suppl. Mat., Fig. 5B), and (c) aggregate and assess the outputs from the
simulations (Suppl. Mat., Fig. 5C).

It is assumed that the samples are taken from a normalized distribution function f,, such that the probabil-
ity of a value of the variable being between x and x + dx is given by f.dx. If the value x is in a range [a, b], then
the total probability will be

b
[ ®)
The cumulative distribution function can be defined as
Fo= [fas, ©)

From these settings, you can generate a random number R, and equal F, (Kroese et al., 2014). Thus, the
representative value for variable x will be obtained from

F,=R,. (10)

The distribution to be chosen depends on the analyzed application, the Gaussian being one of the most
used (Suppl. Mat., Fig. 5D). By generating random variables, it is possible to simulate many probabilistic mod-
els through this process (Priigel-Bennett, 2019). The possible scenarios are simulated with this random genera-
tor, considering the type of distribution chosen (normal), the variation interval (10%), the input data (logs), and
the number of simulations (500).

The goodness of fit for the estimates shows the degree of error and correlation between observed and
calculated data. Thus, the statistics metric of the forecast was calculated with the Pearson correlation coefficient
(R), root mean square error (RMSE), mean absolute error (MAE), and Willmott’s agreement index (d), all
checked with ¢, 45 and k; 4 laboratory data (Devlin et al., 1975). The coefficient R measures linear correlation
or degree of association between two datasets and two variables. Root mean square error is frequently used to
measure the differences between values predicted by an estimator and observed values. At the same time, MAE
measures errors between paired observations expressing the same phenomenon. Meanwhile, d is a standardized
measure of the degree of model prediction error, which varies between 0 and 1, and it represents the ratio of
RMSE and the potential error (Willmott, 1984). The main difference between RMSE and MAE is that the first
is more sensitive to observations with huge errors. At the same time, MAE is more robust to observations with
values very distant from most other observations (outliers).

RESULTS

Reservoir evaluation. Numerous works on geological and petrophysical topics have been published on
this oilfield, including those by Mohriak et al. (1990), Gunter et al. (1997), Cainelli and Mohriak (1999), Guar-
dado et al. (2000), Blauth et al. (2011), Bueno et al. (2014), and Carrasquilla and de Abreu (2023). These au-
thors stated that this reservoir can be divided into two main zones (Fig. 4, track 2), designated as zone 1 (red)
and zone 2 (green). This figure also displays the CAL, GR, RXO, RT, RHOB, NPHI, DT, and PEF logs on
tracks 3 to 6 that were used for this assessment. The GR log in zone 1 has a mode around 85 °API and values
ranging from 45 to 180 °API, typical of areas with high mud content, which are, therefore, radioactive. Zone 2
has, meanwhile, a mode around 25 °API and values ranging from 17 to 55 °API, which are low radioactivity
levels appropriate for the carbonate reservoir (track 3). At the same time, the RXO and RT logs show two types
of behavior (track 4): (a) portions in which RT (red curve) is more significant than RXO (black curve), indicat-
ing the contact between the water-based mud fluid and the reservoir hydrocarbons; (b) parts in which these two
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Fig. 4. Well logs were used in the study. Tracks:

1 —depth (m); 2 — zones 1 and 2; 3 — GR (°API, green curve) and CAL (in, black curve) logs; 4 — RXO-Shallow (Ohm-m, black curve) and
RT-deep resistivity (Ohm-m, red curve) logs; 5 — NPHI (p.u., green curve), RHOB (g/cm?3, red curve), and DT (ms/ft., blue curve) logs;
6 — PEF (B/e, gray curve) log; 7 — Archie Sy, (%, blue shaded).

logs overlap, indicating that resistivity near the borehole wall is like that of the formation; i.e., the water-based
mud fluid (black curve) gets in touch with the reservoir water (red curve). Crossings between RHOB and NPHI
logs along the borehole are shown in track 5, indicating the presence of hydrocarbons (yellow shading) and
water (green shading). The DT log also in this track shows many variations throughout the well, which indicates
the lithologic alterations. The PEF log is shown in track 6, and their values for limestone, dolomite, and quartz
minerals are 5.1, 3.1, and 1.8 1 B/e, respectively (Schlumberger, 2013). The Sy, calculation was performed us-
ing the Archie (1942) equation, with coefficient values of a = 1; m = 2; n = 2.5; and Ry, = 0.03 (track 7). Fol-
lowing this track, Sy, is <20% between 60 to 125 m depth (oil zone), gradually increasing until reaching 80%
at 145 m depth (aquifer zone). After this analysis, the reservoir section with the most significant potential for
hydrocarbon production is identified in zone 2, between 72 and 125 m depth (track 7).

Afterward, two cross plots were made to support the porosity and lithology estimates based on NPHI,
RHOB, and DT logs, shown in Fig. 4 (track 5). Figure 6A (Suppl. Mat.) shows cross plot NPHI versus RHOB,
with most points falling on the limestone line (LS), others on the dolomite line (DOL), and a few on the sand-
stone line (SS). The largest cluster indicates that the primary reservoir has porosity indicated on the line between
20 and 25%. This cross plot shows three sections within zone 2: 2a, which presents PEF values close to 5.1 B/e,
being predominantly composed of limestone matrix (dark blue rectangle); 2b, considered a transitional zone with
alternating PEF values between 5.1 and 3.1 B/e, which shows an overlap of dolomite and limestone matrices
(pink triangle), and 2c, with PEF values around 3.1 B/e, formed mainly by dolomites (light blue rectangle). Fig-
ure 6 (Suppl. Mat.) shows cross plot NPHI versus DT, with most points falling on the limestone line (LS, dark
blue rectangle), others on the dolomite line (DOL, light blue rectangle), and the rest on the sandstone line (SS).
The center of the principal cluster in the LS line is also located between 20 and 25% porosity.

Porosity estimates were based on NPHI, RHOB, DT, and NMR logs to find the best fit with ¢; o5 (Suppl.
Mat., Fig. 7). Porosity is vital in permeability evaluation, so numerous efforts have been made to derive a gen-
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eral relationship between porosity and permeability. Neutron porosity (¢npy;) 1S shown in track 3 (green line); it
is read directly from the log. The density porosity (drpyog) Was estimated using the limestone matrix density
(Pma = 2.71 g/em3) and the density of fluid (pg,q = 1.19 g/em3), which is the mud filtrate in the invaded zone
(track 4, red line). The sonic porosity (¢r) Was estimated using Az,,, = 50 us/ft. for limestone and Az, = 200
ps/ft. for mud filtrate (track 5, blue line). Track 6 (pink line) shows the total porosity, which was determined
through the equation ¢yp = (dnpmr + Pruop)/2 (Schlumberger, 2013). The NMR porosity (dywr) is given by the
area below the relaxation time curve (T2); for this reason, it is essential to precisely determine the T2cutoff
time, being 111 ms in this case (track 7, green line). The porosity estimates and their respective goodness of fit
statistics about the porosity of core samples are listed in Table 1 (Suppl. Mat.). The best correspondence be-
tween the estimated porosities and ¢; ,p is followed by ¢y, With R = 0.57; RMSE = 0.03; MAE = 0.02; and
d = 0.85. The worst estimate is for ¢pp, with R = 0.42; RMSE = 0.04; MAE = 0.03; and d = 0.78, which may
be due to its lack of ability to detect the presence of vugs or fractures, commonly found in carbonate rocks, the
size of which is probably not enough to attenuate the sonic signal (Tiab and Donaldson, 2015). As expected,
Op fit slightly better ¢ o5 than ¢yp; and drpyep individually, perhaps, by the presence of secondary porosity,
where moderate values are usually caused by vugs and few fractures (Doveton, 2014). Carrasquilla and Lima
(2020) confirmed this pattern by analyzing acoustic image logs, concluding that this oilfield presents heteroge-
neous zones owing to the high occurrence of vugs at these depths.

Using ¢; op, kap, and geological information, Nocchi (2012) utilized the Winland (1972) equation to
classify the different rock types according to the pore throat radius () and to determine the flow zones (FZ). The
T2cutoffs were also determined from the NMR log for each FZ using an inverse process (Table 2). These pa-
rameters are important, because it is through them that the FFI and BVI are determined, which are required in
the Timur—Coates permeability evaluation. Thus, the reservoir was separated into nine FZ used as a basis for
finding the BVI and FFI in Suppl. Mat., Table 2 and Fig. 8 (track 2). Track 4 shows the Sy, evaluation from
the NMR log used in the Timur permeability estimate, while track 5 displays the FFI (yellow shaded) and BVI
(brown shaded), where free fluid is more abundant than the trapped liquid. The laboratory data for ¢, o5 and
kysp from core samples are shown in tracks 6 and 7 (black dots). The blue curve of track 6 (k1) interpolates
ki sg> Which is used in the deterministic inversion with the Timur and Timur—Coates equations. This interpola-
tion is required to solve the system of equations, because k; 55 is very spaced, and an almost continuous array
is necessary as a function of depth. The red curve in track 7 is ¢yyr, While the cutoffs of the T2 distribution are
shown in track 8, T2cutoff (constant T2, red curve) and T2cutoffgm (T2 geometric mean, light blue curve).
T2cutoff was made by the interpreter much faster and more useful in a preliminary interpretation than T2cut-
offgm, used in the Schlumberger permeability formula (kqpg)

kspr = aq)lb\IMR (T Tczcutoffgm ) > (11)

where a, b, and ¢ are constants with the same meaning as those explained in the previous equations.

Deterministic inversion of permeability. The essential idea of deterministic inversion is to stabilize or
converge the parameters b and ¢ of the Timur and Timur—Coates equations from the input or initial parameters
byand ¢, in the permeability estimation. In the inverse processes, the initial parameter a, remains constant with
a value of 1.0 x 104, because it is a scalar constant that has to do with transforming the theoretical Kozeny—Car-
man equation into the well-log practical cases. A code was developed in the Matlab (2016) platform based on the
methodology proposed by de Oliveira (2019) for the Sy, estimation and modified for the case of permeability by
Guerra (2020). The input parameters shown above were chosen based on the shared values of two equations in
the literature. In the case of €, though there was no information about the acquisition error, it was considered low
and chosen with a value of 10%. The regularization parameter A is a positive quantity less than one (usually less
than 0.3), and it varies during the execution of the inverse process. The algorithm was developed as output to
display the stabilized parameters b and c, the convergent estimate, and the fit statistic parameters (R, RMSE,
MAE, and d).

Two simulations with the Timur equation were performed, the first with the entire reservoir interval and
the second using the division of the reservoir into FZ. The other simulation was made with the traditional
model of Timur and Coates. The simulated permeability curves with this inversion procedure are shown in Fig.
9 (Suppl. Mat.) for the Timur original equation (track 4, green curve), for the Timur—Coates equation (track 5,
red curve), and the Timur equation dividing the reservoir into FZ (track 6, blue curve). The three simulations
plotted with 4; , (black dots) are shown in the respective tracks, and all the estimates are in track 7. Table 3
(Suppl. Mat.) shows the input parameters a,, b,, and ¢, for each simulation, besides the change of 1 (regulariza-
tion parameter) and in (number of iterations) for the models of Timur, Timur—Coates, and Timur with flow
zones. For the Timur model, three simulations were carried out with @, = 1.0 x 104; b, = 5.0; ¢, = 2.0; and
in = 2, the only parameters that change being 1 = 500.0, 1.0 % 103, and 1.5 x 103. For the Timur—Coates model,
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three simulations were also carried out with a, = 1.0 x 104, b, = 4.0; ¢, = 2.0; and in = 5, with only changes in
1=1.750 x 103, 2.375 x 103, and 2.750 x 103. In both cases, iterations were stopped when convergence was
reached. For the Timur model with flow zones, owing to experience with previous simulations, three of them
were carried out, with a, = 1.00 x 104; 20.65 < b,<—10.22; and 12.63 < ¢,<—7.26, the latter two varying in each
flow zone. For this model, 1 and in have variations according to each flow zone, 25.00 <1< 0.50, and 250 <in<2.

The statistical results of the goodness of fit are shown in Suppl. Mat., Table 4. This table shows that
Timur’s estimate with flow zones presents the best results with R = 0.55; RMSE = 210.88; MAE = 116.66; and
d=0.84, with FZ1, FZ7, and FZ9 being the best-defined and FZ2, FZ5, and FZ8 the worst. Next comes Timur’s
evaluation for the entire reservoir (R = 0.40; RMSE =401.57; MAE = 164.68; d = 0.56) and, finally, the Timur—
Coates model (R = 0.39; RMSE = 424.30; MAE = 123.57; d = 0.52). Thus, these results show that determinis-
tic inversion is a tortuous process for permeabilities, but dividing reservoirs into flow zones is a good strategy
for improving permeability estimation.

Stochastic inversion of permeability. At the start, to make the stochastic inversion of permeability, it
was necessary to develop the FL forward model based on the input logs shown above and k; 45 to check the
quality of the fit. The choice of bins is given according to the data of the higher reliability present model, i.e.,
the core samples. According to Cuddy and Glover (2002), the number of bins will depend on the number of core
samples available, and a reasonable number of samples per bin is about 30. Since the present study has data
from 99 core samples, three bins would be sufficient to generate a consistent model. The results for simulation
1 of the probabilistic model are in Suppl. Mat., Fig. 10 (tracks 3 and 4), plotted along with &, ,5 (black dots). In
track 3, kp g m1 (green curve) is the most likely result, and kg g, ,, (red curve) represents the average between
the curves of the highest kg ; i and lowest kg g . probability of kg ;. Which is considered a reference
for the model. In track 4, kg s, , (green curve), kg s, o (@ray curve), and kg g i (gray curve) are plotted,
which are essential for the evaluation, because it is by the use of them that the variation, or inaccuracy, is shown
through the yellow shaded region or fuzziness. It is seen in this figure that the simulation generated better per-
meability estimates at various intervals along the wellbore. This feature is more evident in FZ1 and FZ9 at the
beginning and end of the studied borehole range, where kg ; , and kg g, ., curves do not show variation and
remain the same. The statistics of the goodness of fit of this simulation is R = 0.35; RMSE = 320.27;
MAE = 190.93; and d = 0.73, which is a bad estimate (Suppl. Mat., Table 5).

A second simulation was performed with six bins and the same input logs. The improvement was sig-
nificant, as observed in tracks 5 and 6 of Fig. 10 (Suppl. Mat.). The zones in simulation one (kg g ,» three
bins) were not well adjusted, but simulation two (ky; , ., SiX bins) has a more excellent approximation with
ki ag- Track 5 shows kg s, . (green curve) and kg «, 4, (red curve), plotted along with k; . (black dots). As
mentioned in simulation 1, in simulation 2, the kg , ,, curve represents the average between kg g» p and
ke so mis and kgp o o is the most likely result. The statistics of the goodness of fit of this simulation is R = 0.87;
RMSE = 156.81; MAE = 74.60; and d = 0.92, which is a reasonable estimate and much better than ky; , ., with
R =0.35; RMSE = 320.27; MAE = 190.23; and d = 0.73 (Table 5). Track 6 displays k;; s, ,, (green curve),
ker s mim (gray curve), kg s, i (gray curve), and the estimated imprecision through the yellow shaded region
(fuzziness).

In an exploratory analysis, it is impossible to be entirely sure of a decision, but reasonable estimates can
be made. For this reason, probabilistic estimates are often used in decision-making. The MC uncertainty analysis
assumes this role by simulating potential scenarios and evaluating their degree of probability. Thus, this stage of
the work aims to assess the FL. model developed through the analysis of uncertainties by MC. Possible scenarios
are simulated through a random generator based on the type of distribution chosen, the margin of variation, input
data, and the number of simulations. The distribution chosen was Gaussian (normal), because the generated val-
ues are expected to represent the real data, presenting smoother ends and higher density in intermediate values.
The margin of variation of the scenarios was 50 lower and 50 higher at the reference values, i.e., the confidence
interval in track 5 of Fig. 11 (Suppl. Mat.). The input data were the curves generated in the FL model, the logs
used in the previous analyses, and the permeability values of core samples. As explained, the MC method stabi-
lizes in a certain number of iterations, when it begins to generate exceedingly minor variations. In this study, the
total number of iterations used was 500, since for larger values the differences were insignificant.

The simulation results can be found in Fig. 11 (Suppl. Mat.) (tracks 4 and 5). In track 4, the k¢ g5 v pros
ket so av pso» AN ki gy ay poo CUTVES represent the 10, 50, and 90 percentiles of the lowest values of all 500
simulations, respectively. In track 5, the confidence interval of the simulations is observed, where kg sy ay me
and ks, , pe represent the negative and positive variations about the kg, g, ,,, respectively. The P10, P50, and
P90 curves are fundamental in understanding how the values are distributed in the sample (track 4). It is neces-
sary to note that the program classifies all the results for each depth level and then calculates the value of each
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of the three percentiles to evaluate these parameters. A widespread error in this type of analysis is to confuse the
percentiles with a probability of occurrence. The P90 does not mean that the estimate has a 90% chance of oc-
curring, but rather that the kg ¢, ,, poo curve at that depth represents this percentile of the values calculated in the
distribution curve. Once the distribution is normal, that is, a symmetric distribution, the best parameter to evalu-
ate this dataset is P50 (kg g5 ay pso)- Thus, looking at kg ¢, .y pso (ted) and &y o, ,, (black dashed, track 4), we
notice that the curves show similar behavior in much of the studied interval. The most significant differences
between the estimate and the real data are shown, too. In a brief comparison, in Table 3 (Suppl. Mat.) of the
deterministic inversion by FZ, the algorithm could not stabilize the coefficients in these zones. Still, in the sto-
chastic inversion, it was possible to perform a better estimate of permeability, even if presenting low reliability.

CONCLUSIONS

Deterministic and stochastic inversions were employed to estimate the permeability of a carbonate reser-
voir in this work. A preliminary reservoir analysis was conducted on well-log data to determine the mudstone
concentration, water saturation, porosity, and hydrocarbon presence of the reservoir. The NMR porosity was the
most effective method for estimating the permeability, according to an analysis of the fit error between the es-
timated and the core sample porosities. Based on the ridge regression scheme, the Timur and Timur—Coates
permeability equation coefficients were calculated as part of the deterministic inversion process. Both algo-
rithms failed to replicate the permeability behavior at the reservoir edges and some intervals inside the reservoir
when the reservoir was viewed as a single unit. The permeability values differed slightly in each flow zone
when the reservoir was sectioned. The Timur equation exhibits a better correlation with the core data (R =0.41;
RMSE = 333.48; MAE = 95.56; and d = 0.55) when compared with the Timur—Coates model (R = 0.39;
RMSE =355.28; MAE = 79.35; and d = 0.51). Timur’s flow zone model outperformed the other two (R = 0.55;
RMSE =210.88; MAE = 116.66; and d = 0.84), but this method failed to bring the coefficients into convergence
in some flow zones. Deterministic inversion has a reduced capacity to adjust to significant variations in the
permeability values along the borehole. As a result, a stochastic inversion was constructed using the forward
problem with the fuzzy logic scheme and the uncertainty analysis of Monte Carlo. The processes started devel-
oping the fuzzy model based on the log data as input and the permeability measured in samples to support the
results. The study has demonstrated that the fuzzy model with three bins shows worse results than deterministic
inversion, with R = 0.35; RMSE = 320.27; MAE = 190.93; and d = 0.73. Despite that, the guess with six bins
consistently estimated the permeability in flow zones with R = 0.87; RMSE = 156.81; MAE = 74.60; and
d = 0.92, which the deterministic inversion could not do. The Monte Carlo uncertainty analysis was then used
to evaluate this model, which had the best correlation with the real data. The goodness of fit analysis has shown
that the stochastic process succeeds in the flow zones where the deterministic inversion is unsuccessful. It has
demonstrated that the estimate is located between 50% and 90% probability of occurring, usually closer to 90%.
Finally, it is possible to see that the deterministic inversion cannot match the critical permeability alterations
when analyzed to the stochastic inversion. The random approach can perform an accurate permeability assess-
ment, because it is a robust solution with reliable parameters, which validate the estimation stability.
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