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Проницаемость является одним из наиболее важных и сложных параметров для оценки при ха-
рактеристике нефтяного коллектора. Косвенная оценка проницаемости осуществлялась несколькими 
эмпирическими методами с использованием скважинных геофизических данных. Они включают в себя 
модель Тимура, в которой используются обычные каротажи, и модель Тимура — Коутса, в которой ис-
пользуется каротаж ядерного магнитного резонанса. Первой целью исследования была оценка пори-
стости, поскольку она напрямую влияет на оценки проницаемости. Затем были проведены детермини-
стическая и стохастическая инверсии, потому что основной целью работы была оценка проницаемости 
карбонатного коллектора в бассейне Кампос на юго-востоке Бразилии. Схема гребневой регрессии была 
использована для детерминистической инверсии уравнений Тимура и Тимура — Коутса. Стохастическая 
инверсия позже была решена с использованием нечеткой логики в качестве прямой задачи, а для оцен-
ки неопределенности был применен метод Монте-Карло. Все оценки были проверены на соответствие 
лабораторным данным по пористости и проницаемости с использованием коэффициента корреляции 
Пирсона (R), среднеквадратичной ошибки (RMSE), средней абсолютной ошибки (MAE) и индекса со-
гласия Уиллмотта (d). Результаты для модели Тимура составили R = 0.41; RMSE = 333.28; MAE = 95.56; и 
d = 0.55. Эти значения были хуже для модели Тимура — Коутса: R = 0.39; RMSE = 355.28; MAE = 79.35; 
и d = 0.51. Модель Тимура с зонами течения продемонстрировала результаты R = 0.55; RMSE = 210.88; 
MAE = 116.66; и d = 0.84, что превосходило результаты для двух других моделей. Таким образом, де-
терминистическая инверсия показала слабую способность адаптироваться к значительным колебаниям 
значений проницаемости вдоль скважины, что видно из сравнения этих трех подходов. Однако стохасти-
ческая инверсия с использованием трех ячеек дала результаты R = 0.35; RMSE = 320.27; MAE = 190.93; и 
d = 0.73, что выглядело хуже, чем результаты детерминистической инверсии. Тем временем стохастиче-
ская инверсия с шестью ячейками успешно скорректировала набор лабораторных наблюдений, посколь-
ку она обеспечивает R = 0.87; RMSE = 156.81; MAE = 74.60; и d = 0.92. Доказано, что последний подход 
может обеспечить надежное решение с согласованными параметрами и точной оценкой проницаемости.

Карбонатный коллектор, инверсия, пористость, проницаемость, гребневая регрессия, схема не-
четкой логики, анализ неопределенности методом Монте-Карло
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Permeability is one of the most significant and challenging parameters to estimate when characterizing 

an oil reservoir. Several empirical methods with geophysical borehole logs have been employed to estimate it 
indirectly. They include the Timur model, which uses conventional logs, and the Timur–Coates model, which 
uses the nuclear magnetic resonance log. The first goal of this study was to evaluate porosity, because it directly 
impacts permeability estimates. Deterministic and stochastic inversions were then carried out, as the main objec-
tive of this work was to estimate the permeability in a carbonate reservoir of the Campos Basin, Southeastern 
Brazil. The ridge regression scheme was used to invert the Timur and Timur–Coates equations deterministically. 
The stochastic inversion was later solved using fuzzy logic as the forward problem, and the Monte Carlo method 
was utilized to assess uncertainty. The goodness of fit for the estimations was all checked with porosity and 
permeability laboratory data using the Pearson correlation coefficient (R), root mean square error (RMSE), mean 
absolute error (MAE), and Willmott’s agreement index (d). The results for the Timur model were R = 0.41; 
RMSE = 333.28; MAE = 95.56; and d = 0.55. These values were worse for the Timur–Coates model, with 
R = 0.39; RMSE = 355.28; MAE = 79.35; and d = 0.51. The Timur model with flow zones had R = 0.55; 
RMSE = 210.88; MAE = 116.66; and d = 0.84, which outperformed the other two models. The deterministic 
inversion showed, thus, little ability to adapt to the significant variations of the permeability values along the 
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well, as can be seen from comparing these three approaches. However, the stochastic inversion using three bins 
had R = 0.35; RMSE = 320.27; MAE = 190.93; and d = 0.73, looking worse than the deterministic inversion. 
In the meantime, the stochastic inversion with six bins successfully adjusted the set of laboratory observations, 
because it provides R = 0.87; RMSE = 156.81; MAE = 74.60; and d = 0.92. This way, the last approach has 
proven it can produce a reliable solution with consistent parameters and an accurate permeability estimation.

Keywords: carbonate reservoir, inversion, porosity, permeability, ridge regression, fuzzy logic scheme, 
Monte Carlo uncertainty analysis

introduction

In the oil industry, petrophysical characteristics, such as lithology, porosity, permeability, and water 
saturation, affect the well productivity in hydrocarbon-bearing reservoirs. Geophysical well logs, one of the 
most valuable and essential tools for rock evaluation, are one way of assessing these reservoir properties. 
Nowadays, logs serve as a continuous and complete record for appraising the geologic formations that a bore-
hole crosses (Luthi, 2001). The signals captured by the tools in the subsurface media are translated into the at-
tributes to assess reservoir rock formation and identify fluid types. This procedure enables us to operate the 
wellbore, to correlate formation depths with nearby wells, and to make interpretations of the quantity and qual-
ity of the petroleum present. Nevertheless, they do not directly present these relevant properties to calculate the 
financial potential of the geologic formations (Tiab and Donaldson, 2015). 

Reservoir rock has to be porous and permit fluid flow through the interconnected spaces to be commer-
cially viable. One of the critical parameters to be estimated in the characterization of an oil reservoir is perme-
ability, which is the capacity of conducting fluids (Doveton, 2014). It is a critical variable for comprehending 
fluid movement behavior, and in the oil and gas sector, predicting it accurately is an important problem and a 
key component of reservoir characterization. The accurate permeability estimation aids in reservoir develop-
ment and production strategy optimization. Owing to the influence of various geologic factors that regulate 
fluid circulation, this prediction is a challenge (Lucia, 2007).  

The typical method for determining permeability is to conduct time- and money-consuming laboratory 
experiments directly on core or sidewall samples, well testing, and analog reservoir investigations (Liu, 2017). 
These methods only examine a small portion of the reservoir, so one should search for methods that can be used 
throughout the reservoir. In addition to these direct methods, this estimate can be made using indirect methods 
like logs (Schön, 2015). Empirical models developed by Tixier (1949), Morris and Biggs (1967), Timur (1968), 
Coates and Dumanoir (1974), Coates and Denoo (1981), Coates et al. (1999), and Lacentre and Carrica (2003) 
have been used in numerous attempts to determine the permeability from logs over time. Therefore, log-based 
permeability predictions may have drawbacks because of presumptions and uncertainties in the empirical rela-
tionships, though they are relatively quicker and less expensive. According to Kennedy (2015), most petro-
physical parameters are typically correlated with well-log data. However, no evident and significant correlation 
exists between reservoir permeability and log data. Multiple linear regression (Wendt et al., 1986), multivariate 
analysis (Lee and Datta-Gupta, 1999), and polynomial regression (Ahangar-Asr et al., 2011), among others, 
used logs as input to perform this estimation. Additionally, theoretical–mathematical models by Kozeny and 
Carman (Bernabé et al., 2010), Katz and Thompson (1986), Schwartz, Sen, and Johnson (Johnson et al., 1986), 
and Glover and Walker (2009) have all been used to estimate permeability. Artificial intelligence techniques, 
such as fuzzy logic (Hambalek and Gonzalez, 2003; Ilkhchi et al., 2006), neural networks (Huang et al., 1996), 
support vector learning (Weston et al., 1999), and genetic algorithms (Wang et al., 2020), have also been used 
in recent years to predict the permeability of oil reservoirs. 

Since 1940, mathematical and physical problems have been solved using Monte Carlo methods, which are 
most valuable when it is challenging to use other strategies. They comprise a large group of computational algo-
rithms that rely on repeated random sampling to produce numbers. The underlying idea is to use randomness to 
find solutions to issues that, theoretically, could be deterministic. These techniques are typically used to generate 
sketches from a probability distribution, integrate numerically, and solve optimization problems. In many fields, 
including chemistry, physics, engineering, biology, medicine, etc., the technique has been used to estimate per-
meability (Cao et al., 2022). Numerous studies have been conducted in the petroleum field, including those by 
Tao and Watson (1984), Adams (2005), Kumar and Varghese (2005), Yu et al. (2005), Vadapalli et al. (2014), 
Fazelabdolabadi et al. (2019), Francioli and Carrasco (2019), Inyang et al. (2019), and Guerra (2020).

Using well-log data to determine petrophysical characteristics of oil reservoirs, such as permeability, is a 
common task for all the reasons that have been previously mentioned (Wyllie and Rose, 1950). Even so, pre-
dicting permeability from logs is complicated and far from an exact science. As a result, determining permeabil-
ity is complex, and numerous additional attempts will be made in the future (Esmailzadeh et al., 2017). The 
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permeability estimation is, therefore, the focus of 
this work. Inverse mathematical techniques, deter-
ministic and stochastic, were used to interpret the 
results after using log data as the evaluation input. 
The logs were initially interpreted to identify where 
the hydrocarbons were present. Initially, the porosi-
ty was calculated for each geologic stratum, since 
the permeability estimate depends on this assess-
ment. Then, with the application of Timur’s (1968) 
equation, which used basic logs for the calculation 
of permeability, and the Timur–Coates (Coates et 
al., 1999) equation, which uses the Nuclear Mag-
netic Resonance (NMR) log, the deterministic inver-
sion analysis was carried out. Based on these meth-
ods, an algorithm was created to estimate the reservoir permeability using the ridge regression technique (Alkinani 
et al., 2022). After that stochastic inversion was created using the fuzzy logic (FL) method as the forward prob-
lem, which takes the conventional logs as input. Monte Carlo (MC) error analysis, which offers quantifiable ac-
curacy measures, was then used to analyze the estimated permeability quality (Cuddy and Glover, 2002).

Francioli and Carrasco (2019) used log data as input and laboratory measurements on rock samples to 
validate petrophysical parameters, such as porosity, clay volume, water saturation, and permeability. They esti-
mated these properties using FL and analyzed the probability distributions utilizing the MC technique to quan-
tify the assessment uncertainties. Both studies were conducted in carbonate reservoirs, but the datasets are differ-
ent, our postsalt and their presalt layers. Additionally, the permeability was the only focus of the study, and 
inverse deterministic estimates of the log empirical equations by Timur and Timur and Coates were made using 
basic logs and the NMR log, respectively. With experimental permeability data from rock samples, the results 
were confirmed. The deterministic FL permeability estimate used basic logs as input and was verified with ex-
perimental data on rock samples. The stochastic MC technique was then used to evaluate the permeability esti-
mation uncertainties.

GEOLOGIC CONTEXT 

The reservoir addressed in this study belongs to the Campos Basin, which is in Southeastern Brazil 
(Fig. 1). The origin and evolution of the Campos Basin are related to the separation of the supercontinent Gond-
wana. They are marked by the disaggregation of the South American and African plates with the consequent 
formation of the South Atlantic Ocean (Bruhn et al., 2003). The tectonic and sedimentary evolution of this basin 
occurred in three primary megasequences: rift, postrift, and drift phases (Guardado et al., 1989), which corre-
spond, respectively, to the continental, transitional, and marine systems and comprise a wide variety of reser-
voirs (Dias et al., 1990).

The marine sequence begins the open marine deposition during thermal subsidence associated with the 
drift phase. This stage begins with carbonate sedimentation (Macaé Group) and grades to a mainly siliciclastic 
succession (Campos Group), all affected by intense halokinesis (Supplementary Materials, Fig. 1). In an early 
drift context, the Macaé Group sedimentation occurred during the Albian Age and comprised the Goitacás, 
Quissamã, Outeiro, Imbetiba, and Namorado formations. The Quissamã Formation comprises grainstone and 
packstone carbonate rocks consisting of oncoids, ooids, peloids, and other bioclasts. It is associated with NE 
shoals deposited in high- to moderate-energy environments. The Outeiro Formation is formed of thin carbonate 
layers interbedded with marl and mudstone deposited in response to a gradual rise in sea level and the drowning 
of the shallow carbonate platform of the Quissamã Formation (Suppl. Mat., Fig. 2). These carbonate rocks have 
abundant pelagic microfossils like calcispheres (pithonellids), planktonic foraminifera, and radiolarians (Okubo 
et al., 2015). 

MATERIALS AND METHODS

The works by Kozeny (1927), Carman (1937), Tixier (1949), Morris and Biggs (1967), Timur (1968), 
Coates and Denoo (1974), Coates and Dumanoir (1974), Amaefule et al. (1993), Timur and Coates (Coates et 

Fig. 1. Location map of the studied oilfield in 
the Campos Basin (modified from (Bruhn et al., 
2003)). 
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al., 1999), and Lacentre and Carrica (2003) are just a few of the many initiatives in estimating permeability over 
time. The studies of Timur and Timur and Coates, the first using basic logs and the second using the NMR log 
as input, were concentrated on this work.

Kozeny (1927) first proposed the equation for determining the rock permeability, and Carman (1937) 
later modified it. The Kozeny–Carman equation, a classical permeability–porosity relationship, is used in vari-
ous fields, including chemical, biochemical, and electrochemical engineering, groundwater flow, and water and 
oil reservoirs. Still, many other permeability models commonly use this equation as their foundation:

	 k a
S

�
�� �
�

�

3

2 2
1

, 	 (1)

where k = permeability (m2); a = 0.2 is the Kozeny constant, which depends on pore shapes; S is the specific 
surface area of the rock (m–1); and f is the porosity (fraction). The formula only applies to groups of sphere-
shaped rocks, and the surface area can only be calculated using core analysis and specialized tools. It is based on 
flow through capillary tubes, and a sample with cross-sectional area A and length L is made up of n capillary tubes, 
each with microscopic length l and radius r, representing rock with connected pores. The measure of rock texture 
that connects permeability with average grain diameter is called “the porosity function” (f3/(1 – f)2).

The Kozeny–Carman equation has a limited range of applications owing to its strict application only to 
loose sand. Estimating the specific surface area of the grain in consolidated rock formations is complicated, and, 
most importantly, it cannot be directly measured by logging. Timur (1968) created a modified version of the 
original equation based on typical borehole logs as a result:
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where kTimur is the permeability (mD); a = 104 is a formation-dependent correction coefficient dependent on 
Archie’s (1942) coefficients m and n (mD ms2); b = 4.4 and c = 2.0 are regression coefficients statistically 
evaluated from laboratory experiments; f (%) is the porosity obtained from NPHI, RHOB, or DT logs, and SWirr 
(%) is the irreducible water saturation, which can be estimated from the NMR log or using the water saturation 
(SW) vs. porosity (f) cross plot (Buckles, 1965). The equation applies solely over zones with SWirr, i.e., hydro-
carbon zones on top of the transition zone (Kennedy, 2015).

Posteriorly, Coates et al. (1999), following Timur’s model, developed a model for permeability based on 
the NMR log through the following equation:

	 k ab
c

TimurCoates

FFI

BVI
� �

�
�

�
�
� , 	 (3)

where a, b, and c have the same values as those shown in Timur’s equation. The free fluid index (FFI) is the 
producible part of porosity or the productive potential volume in the saturated rock for a given capillary pres-
sure (%). The bound volume irreducible (BVI) is the nonproducible part of porosity or the volume of the fluids 
trapped inside the porous structure by capillary forces (%). Both values are determined based on the T2cutoff 
time, as shown in the yellow and blue shading of Suppl. Mat., Fig. 3. In the equation, they are defined as 

	 FFI BVI
NMR

� �  and	 (4)

	 BVI
NMR Wirr

= S ,	 (5)

where fNMR is the porosity (%) measured through the NMR log. 
The study scheme started linearizing permeability equations 2 and 3 using an operator called “the Jaco-

bian matrix” (A), formed by partial derivatives of the linearized equation about the parameters to be calculated, 
a, b, and c. The workflow designed for this work is shown in Suppl. Mat., Fig. 3. Following it, the dataset used 
in this study includes geophysical well logs, such as caliper (CAL), gamma-ray (GR), neutron porosity (NPHI), 
density (RHOB), sonic (DT), photoelectric (PEF), shallow resistivity (RXO), deep resistivity (RT), and NMR 
T2 distribution. Experimental porosity (fLAB) and permeability (kLAB) data were also used, measured in the 
laboratory from core samples with helium gas expansion. These measurements were used to assess the quality 
of the simulations. Thus, the first stage of the work was reservoir characterization based on the analysis of the 
logs with the use of the Interactive Petrophysics – IP (Geoactive…, 2021) software. This preliminary interpreta-
tion exposed important reservoir characteristics, such as top, bottom, carbonate mud presence, water saturation, 
porosity, and presence of oil. 

file:///C:\Users\�������\AppData\Local\Temp\Rar$DIa6972.16789\Additional Materials\figure4.jpg
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1306

Next, several porosity estimates were made based on NPHI, RHOB, DT, and NMR logs, aiming to find 
the best correlation fLAB and choose it for use in the Timur and Timur–Coates permeability estimation (Ken-
nedy, 2015). An NMR log was also used to estimate the FFI and BVI, essential parameters for estimating per-
meability through the Timur–Coates model (Fig. 2). The reservoir was then divided into flow zones (FZ), each 
having its own cutoff time (T2cutoff), which is used to determine more realistic values for the BVI and FFI 
(Carrasquilla et al., 2012).

In the case of borehole logging, the inverse problem refers to the determination of the physical properties 
of the geologic medium crossed by a borehole, given the data of response of this environment to the logging 
tools (Oliver et al., 2008). This problem is considered underdetermined, because there are more model variables 
than the amount of information obtained through an inversion process. The solution is nonunique, since the 
optimization approach has many solutions for every log when they are linearly independent. The problem is 
also ill-posed, because it is impossible to fit the associated data (Lavrentiev, 1967). The ridge regression scheme 
was used to carry out the deterministic inversion, a linear model the estimator of which has biased coefficients 
with lower variance than the conventional least squares. It includes positive weights along the diagonal of the 
covariance matrix, unlike the standard least squares estimator (Suppl. Mat., Fig. 4). The ridge regression ap-
proach is an instance of Tikhonov’s (1963) regularization, with the addition of conversion into a correlation 
matrix, which is optional but allows comparisons of the magnitude of the smoothing coefficient between mo
dels. In this scenario, the ridge estimator is given by Tarantola (2004):

	 x A A I A y� �� � �
�

T T
1

,	 (6)

where x is the parameter vector of dimension p; y is the observation vector of dimension p; A is the Jacobian 
matrix of dimension p × q; l is the regularization parameter; T means transposed; e is the error or residuals; and 
I is the identity matrix. The inversion code was developed in the Matlab (2016) platform, for which it was nec-
essary to input the variables of the initial parameters (a0, b0, and c0), the acceptable margin of error (e), and the 
smoothing parameter (l). The algorithm output was the estimated permeability curve, with the parameters a, b, 
and c being evaluated when the inversion stabilizes or converges. There are other methods for solving the cor-
responding systems of linear equations, for example, the singular value decomposition, which makes it possible 
to obtain a solution with a minimum norm. In contrast, in the case of the Tikhonov regularization, the resulting 
solution will depend on parameter l, the value of which is rather difficult to determine (Tavakoli and Reynolds, 
2011).

The stochastic inversion used the FL approach, and the uncertainty analysis was made with MC. Fuzzy 
logic is used to develop a forward model, based on the basic logs, to estimate the permeability of the reservoir, 
and measurements of the core samples are made to assess the quality of the adjustments. Fuzzy logic is an ex-

Fig. 2. Free fluid index (FFI, yellow shaded) and bound volume index (BVI, blue shaded) zones in the 
nuclear magnetic resonance (NMR) porosity distribution based on the T2cutoff time. 

file:///C:\Users\�������\AppData\Local\Temp\Rar$DIa6972.16789\Additional Materials\figure4.jpg
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tension of conventional Boolean logic developed as a means of modeling uncertainty through the concept of 
“partial truth,” that is, truth values between “completely true” and “completely false” (Zadeh, 1965). This con-
cept makes it possible to consider extreme values and infinite possibilities between the true and the false. The 
models or sets are mathematical means of representing vagueness and imprecise information, hence the term 
“fuzzy,” which can recognize, represent, manipulate, interpret, and use data and information that are vague and 
lack certainty (Padilla et al., 2022). In fuzzy techniques, each term is described by a function that assigns to 
each possible value x of the corresponding quantity a degree µ(x) from the interval [0, 1], to which this value 
satisfies the related property. Here, (a) 1 means that the property is satisfied; (b) 0 means that the property is not 
satisfied; and (c) values between 0 and 1 correspond to intermediate degrees of confidence. The corresponding 
function µ(x) is a membership function or fuzzy. The rules usually combine inaccurate statements using logical 
connectives like “and,” “or,” “not,” “if-then,” “implies,” etc. The mathematics involved is part of a normal 
distribution, which is given by Cuddy and Glover (2002):

	 P x e x x

� � �
� �� �2 2

2

2

/ �

� �
, 	 (7)

where P(x) is the probability of an x observation being measured in the dataset described by the arithmetic mean 
x  and standard deviation s. A Gaussian, or normal, distribution curve estimates the relative likelihood, fuzzi-
ness, that an observation belongs to a specific dataset. The dataset can be divided into smaller parts called “bins,” 
so that the probability of an observation belonging to a given bin can be calculated from Eq. 6 by replacing the 
mean and the standard deviation by xb � and sb. These parameters are derived from the calibrating or conditioning 
dataset using the conventional statistics by the normal distribution. The most well-known fuzzy system is 
the Mamdani rule-based one, the inference of which was first introduced as a control system for the method by 
synthesizing a set of linguistic control rules obtained from experienced human operators. In this system, the out-
put of each rule is a fuzzy set (Fig. 3A). The following rules are used: (a) fuzzify all input values into fuzzy 
membership functions (Fig. 3B, C), (b) execute all applicable rules in the rule base to compute the fuzzy output 
functions (Fig. 3D), (c) defuzzify the fuzzy output functions to get “crisp” output values (Fig. 3A) (Mamdani and 
Assilian, 1975). 

Fig. 3. Fuzzy logic approach: 
a – General scheme with conventional logs as input and permeability as output; b – types of membership functions (adapted from ht-
tps://github.com/VManuelSM/Membership-functions); c – rules (adapted from https://www.geocities.ws/hemakumar_b37/fuzzy); d – 
Mamdani controller. 
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Monte Carlo simulation performs sensitivity analysis through random parameter variation. It is a tech-
nique for studying how a model responds to randomly generated inputs. Stochastic inversion techniques are 
widely used to assess the permeability of complex heterogeneous systems. For example, Tyler et al. (1996), Li 
et al. (2005), McKenna and Reeves (2006), and Bruckmann and Clauser (2020) worked on this theme. This 
approach is used for dealing with the variability and complexity of the parameters that control permeability, 
such as porosity, pore throats, and system connectivity. This estimate section will develop the stochastic inver-
sion through the FL scheme as the forward problem and the MC uncertainty analysis. In this case, its vagueness 
evaluation is applied to the FL model to assess the degree of confidence of the evaluated model. It involves a 
three-step process: (a) randomly generate “N” inputs, sometimes called scenarios (Suppl. Mat., Fig. 5A), (b) run 
a simulation for each of the “N” inputs (Suppl. Mat., Fig. 5B), and (c) aggregate and assess the outputs from the 
simulations (Suppl. Mat., Fig. 5C).

It is assumed that the samples are taken from a normalized distribution function fx, such that the probabil-
ity of a value of the variable being between x and x + dx is given by fxdx. If the value x is in a range [a, b], then 
the total probability will be

	
a

b

xf dx� �1, 	 (8)

The cumulative distribution function can be defined as

	 F f dxx
a

x

x� � , 	 (9)

From these settings, you can generate a random number Rf and equal Fx (Kroese et al., 2014). Thus, the 
representative value for variable x will be obtained from

	 F Rx f= .	 (10)

The distribution to be chosen depends on the analyzed application, the Gaussian being one of the most 
used (Suppl. Mat., Fig. 5D). By generating random variables, it is possible to simulate many probabilistic mod-
els through this process (Prügel-Bennett, 2019). The possible scenarios are simulated with this random genera-
tor, considering the type of distribution chosen (normal), the variation interval (10%), the input data (logs), and 
the number of simulations (500).

The goodness of fit for the estimates shows the degree of error and correlation between observed and 
calculated data. Thus, the statistics metric of the forecast was calculated with the Pearson correlation coefficient 
(R), root mean square error (RMSE), mean absolute error (MAE), and Willmott’s agreement index (d), all 
checked with fLAB and kLAB laboratory data (Devlin et al., 1975). The coefficient R measures linear correlation 
or degree of association between two datasets and two variables. Root mean square error is frequently used to 
measure the differences between values predicted by an estimator and observed values. At the same time, MAE 
measures errors between paired observations expressing the same phenomenon. Meanwhile, d is a standardized 
measure of the degree of model prediction error, which varies between 0 and 1, and it represents the ratio of 
RMSE and the potential error (Willmott, 1984). The main difference between RMSE and MAE is that the first 
is more sensitive to observations with huge errors. At the same time, MAE is more robust to observations with 
values very distant from most other observations (outliers).

RESULTS

Reservoir evaluation. Numerous works on geological and petrophysical topics have been published on 
this oilfield, including those by Mohriak et al. (1990), Gunter et al. (1997), Cainelli and Mohriak (1999), Guar-
dado et al. (2000), Blauth et al. (2011), Bueno et al. (2014), and Carrasquilla and de Abreu (2023). These au-
thors stated that this reservoir can be divided into two main zones (Fig. 4, track 2), designated as zone 1 (red) 
and zone 2 (green). This figure also displays the CAL, GR, RXO, RT, RHOB, NPHI, DT, and PEF logs on 
tracks 3 to 6 that were used for this assessment. The GR log in zone 1 has a mode around 85 °API and values 
ranging from 45 to 180 °API, typical of areas with high mud content, which are, therefore, radioactive. Zone 2 
has, meanwhile, a mode around 25 °API and values ranging from 17 to 55 °API, which are low radioactivity 
levels appropriate for the carbonate reservoir (track 3). At the same time, the RXO and RT logs show two types 
of behavior (track 4): (a) portions in which RT (red curve) is more significant than RXO (black curve), indicat-
ing the contact between the water-based mud fluid and the reservoir hydrocarbons; (b) parts in which these two 
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logs overlap, indicating that resistivity near the borehole wall is like that of the formation; i.e., the water-based 
mud fluid (black curve) gets in touch with the reservoir water (red curve). Crossings between RHOB and NPHI 
logs along the borehole are shown in track 5, indicating the presence of hydrocarbons (yellow shading) and 
water (green shading). The DT log also in this track shows many variations throughout the well, which indicates 
the lithologic alterations. The PEF log is shown in track 6, and their values for limestone, dolomite, and quartz 
minerals are 5.1, 3.1, and 1.8 1 B/e, respectively (Schlumberger, 2013). The SW calculation was performed us-
ing the Archie (1942) equation, with coefficient values of a = 1; m = 2; n = 2.5; and RW = 0.03 (track 7). Fol-
lowing this track, SW is < 20% between 60 to 125 m depth (oil zone), gradually increasing until reaching 80% 
at 145 m depth (aquifer zone). After this analysis, the reservoir section with the most significant potential for 
hydrocarbon production is identified in zone 2, between 72 and 125 m depth (track 7).

Afterward, two cross plots were made to support the porosity and lithology estimates based on NPHI, 
RHOB, and DT logs, shown in Fig. 4 (track 5). Figure 6A (Suppl. Mat.) shows cross plot NPHI versus RHOB, 
with most points falling on the limestone line (LS), others on the dolomite line (DOL), and a few on the sand-
stone line (SS). The largest cluster indicates that the primary reservoir has porosity indicated on the line between 
20 and 25%. This cross plot shows three sections within zone 2: 2a, which presents PEF values close to 5.1 B/e, 
being predominantly composed of limestone matrix (dark blue rectangle); 2b, considered a transitional zone with 
alternating PEF values between 5.1 and 3.1 B/e, which shows an overlap of dolomite and limestone matrices 
(pink triangle), and 2c, with PEF values around 3.1 B/e, formed mainly by dolomites (light blue rectangle). Fig-
ure 6 (Suppl. Mat.) shows cross plot NPHI versus DT, with most points falling on the limestone line (LS, dark 
blue rectangle), others on the dolomite line (DOL, light blue rectangle), and the rest on the sandstone line (SS). 
The center of the principal cluster in the LS line is also located between 20 and 25% porosity.

Porosity estimates were based on NPHI, RHOB, DT, and NMR logs to find the best fit with fLAB (Suppl. 
Mat., Fig. 7). Porosity is vital in permeability evaluation, so numerous efforts have been made to derive a gen-

Fig. 4. Well logs were used in the study. Tracks: 
1 – depth (m); 2 – zones 1 and 2; 3 – GR (°API, green curve) and CAL (in, black curve) logs; 4 – RXO-Shallow (Ohm·m, black curve) and 
RT-deep resistivity (Ohm·m, red curve) logs; 5 – NPHI (p.u., green curve), RHOB (g/cm3, red curve), and DT (ms/ft., blue curve) logs; 
6 – PEF (B/e, gray curve) log; 7 – Archie SW (%, blue shaded). 
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eral relationship between porosity and permeability. Neutron porosity (fNPHI) is shown in track 3 (green line); it 
is read directly from the log. The density porosity (fRHOB) was estimated using the limestone matrix density 
(rma = 2.71 g/cm3) and the density of fluid (rfluid = 1.19 g/cm3), which is the mud filtrate in the invaded zone 
(track 4, red line). The sonic porosity (fDT) was estimated using Dtma = 50 ms/ft. for limestone and Dtfluid = 200 
ms/ft. for mud filtrate (track 5, blue line). Track 6 (pink line) shows the total porosity, which was determined 
through the equation fND = (fNPHI + fRHOB)/2 (Schlumberger, 2013). The NMR porosity (fNMR) is given by the 
area below the relaxation time curve (T2); for this reason, it is essential to precisely determine the T2cutoff 
time, being 111 ms in this case (track 7, green line). The porosity estimates and their respective goodness of fit 
statistics about the porosity of core samples are listed in Table 1 (Suppl. Mat.). The best correspondence be-
tween the estimated porosities and fLAB is followed by fNMR, with R = 0.57; RMSE = 0.03; MAE = 0.02; and 
d = 0.85. The worst estimate is for fDT, with R = 0.42; RMSE = 0.04; MAE = 0.03; and d = 0.78, which may 
be due to its lack of ability to detect the presence of vugs or fractures, commonly found in carbonate rocks, the 
size of which is probably not enough to attenuate the sonic signal (Tiab and Donaldson, 2015). As expected, 
fND fit slightly better fLAB than fNPHI and fRHOB individually, perhaps, by the presence of secondary porosity, 
where moderate values are usually caused by vugs and few fractures (Doveton, 2014). Carrasquilla and Lima 
(2020) confirmed this pattern by analyzing acoustic image logs, concluding that this oilfield presents heteroge-
neous zones owing to the high occurrence of vugs at these depths.

Using fLAB, kLAB, and geological information, Nocchi (2012) utilized the Winland (1972) equation to 
classify the different rock types according to the pore throat radius (r) and to determine the flow zones (FZ). The 
T2cutoffs were also determined from the NMR log for each FZ using an inverse process (Table 2). These pa-
rameters are important, because it is through them that the FFI and BVI are determined, which are required in 
the Timur–Coates permeability evaluation. Thus, the reservoir was separated into nine FZ used as a basis for 
finding the BVI and FFI in Suppl. Mat., Table 2 and Fig. 8 (track 2). Track 4 shows the SWirr evaluation from 
the NMR log used in the Timur permeability estimate, while track 5 displays the FFI (yellow shaded) and BVI 
(brown shaded), where free fluid is more abundant than the trapped liquid. The laboratory data for fLAB and 
kLAB from core samples are shown in tracks 6 and 7 (black dots). The blue curve of track 6 (kINT) interpolates 
kLAB, which is used in the deterministic inversion with the Timur and Timur–Coates equations. This interpola-
tion is required to solve the system of equations, because kLAB is very spaced, and an almost continuous array 
is necessary as a function of depth. The red curve in track 7 is fNMR, while the cutoffs of the T2 distribution are 
shown in track 8, T2cutoff (constant T2, red curve) and T2cutoffgm (T2 geometric mean, light blue curve). 
T2cutoff was made by the interpreter much faster and more useful in a preliminary interpretation than T2cut-
offgm, used in the Schlumberger permeability formula (kSDR)

	 k a Tb c
SDR NMR T cutoffgm� � �� 2 ,	 (11)

where a, b, and c are constants with the same meaning as those explained in the previous equations.
Deterministic inversion of permeability. The essential idea of deterministic inversion is to stabilize or 

converge the parameters b and c of the Timur and Timur–Coates equations from the input or initial parameters 
b0 and c0 in the permeability estimation. In the inverse processes, the initial parameter a0 remains constant with 
a value of 1.0 × 104, because it is a scalar constant that has to do with transforming the theoretical Kozeny–Car-
man equation into the well-log practical cases. A code was developed in the Matlab (2016) platform based on the 
methodology proposed by de Oliveira (2019) for the SW estimation and modified for the case of permeability by 
Guerra (2020). The input parameters shown above were chosen based on the shared values of two equations in 
the literature. In the case of e, though there was no information about the acquisition error, it was considered low 
and chosen with a value of 10%. The regularization parameter l is a positive quantity less than one (usually less 
than 0.3), and it varies during the execution of the inverse process. The algorithm was developed as output to 
display the stabilized parameters b and c, the convergent estimate, and the fit statistic parameters (R, RMSE, 
MAE, and d).

Two simulations with the Timur equation were performed, the first with the entire reservoir interval and 
the second using the division of the reservoir into FZ. The other simulation was made with the traditional 
model of Timur and Coates. The simulated permeability curves with this inversion procedure are shown in Fig. 
9 (Suppl. Mat.) for the Timur original equation (track 4, green curve), for the Timur–Coates equation (track 5, 
red curve), and the Timur equation dividing the reservoir into FZ (track 6, blue curve). The three simulations 
plotted with kLAB (black dots) are shown in the respective tracks, and all the estimates are in track 7. Table 3 
(Suppl. Mat.) shows the input parameters a0, b0, and c0 for each simulation, besides the change of l (regulariza-
tion parameter) and in (number of iterations) for the models of Timur, Timur–Coates, and Timur with flow 
zones. For the Timur model, three simulations were carried out with a0 = 1.0 × 104; b0 = 5.0; c0 = 2.0; and 
in = 2, the only parameters that change being l = 500.0, 1.0 × 103, and 1.5 × 103. For the Timur–Coates model, 
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three simulations were also carried out with a0 = 1.0 × 104; b0 = 4.0; c0 = 2.0; and in = 5, with only changes in 
l = 1.750 × 103, 2.375 × 103, and 2.750 × 103. In both cases, iterations were stopped when convergence was 
reached. For the Timur model with flow zones, owing to experience with previous simulations, three of them 
were carried out, with a0 = 1.00 × 104; 20.65 < b0 < –10.22; and 12.63 < c0 < –7.26, the latter two varying in each 
flow zone. For this model, l and in have variations according to each flow zone, 25.00 < l < 0.50, and 250 < in < 2. 

The statistical results of the goodness of fit are shown in Suppl. Mat., Table 4. This table shows that 
Timur’s estimate with flow zones presents the best results with R = 0.55; RMSE = 210.88; MAE = 116.66; and 
d = 0.84, with FZ1, FZ7, and FZ9 being the best-defined and FZ2, FZ5, and FZ8 the worst. Next comes Timur’s 
evaluation for the entire reservoir (R = 0.40; RMSE = 401.57; MAE = 164.68; d = 0.56) and, finally, the Timur–
Coates model (R = 0.39; RMSE = 424.30; MAE = 123.57; d = 0.52). Thus, these results show that determinis-
tic inversion is a tortuous process for permeabilities, but dividing reservoirs into flow zones is a good strategy 
for improving permeability estimation. 

Stochastic inversion of permeability. At the start, to make the stochastic inversion of permeability, it 
was necessary to develop the FL forward model based on the input logs shown above and kLAB to check the 
quality of the fit. The choice of bins is given according to the data of the higher reliability present model, i.e., 
the core samples. According to Cuddy and Glover (2002), the number of bins will depend on the number of core 
samples available, and a reasonable number of samples per bin is about 30. Since the present study has data 
from 99 core samples, three bins would be sufficient to generate a consistent model. The results for simulation 
1 of the probabilistic model are in Suppl. Mat., Fig. 10 (tracks 3 and 4), plotted along with kLAB (black dots). In 
track 3, kFL_S1_ml (green curve) is the most likely result, and kFL_S1_av (red curve) represents the average between 
the curves of the highest kFL_S1_mlH and lowest kFL_S1_mlL probability of kFL_S1_ml, which is considered a reference 
for the model. In track 4, kFL_S1_ml (green curve), kFL_S1_mlH (gray curve), and kFL_S1_mlL (gray curve) are plotted, 
which are essential for the evaluation, because it is by the use of them that the variation, or inaccuracy, is shown 
through the yellow shaded region or fuzziness. It is seen in this figure that the simulation generated better per-
meability estimates at various intervals along the wellbore. This feature is more evident in FZ1 and FZ9 at the 
beginning and end of the studied borehole range, where kFL_S1_ml and kFL_S1_av curves do not show variation and 
remain the same. The statistics of the goodness of fit of this simulation is R = 0.35; RMSE = 320.27; 
MAE = 190.93; and d = 0.73, which is a bad estimate (Suppl. Mat., Table 5). 

A second simulation was performed with six bins and the same input logs. The improvement was sig-
nificant, as observed in tracks 5 and 6 of Fig. 10 (Suppl. Mat.). The zones in simulation one (kFL_S1_ml, three 
bins) were not well adjusted, but simulation two (kFL_S2_ml, six bins) has a more excellent approximation with 
kLAB. Track 5 shows kFL_S2_ml (green curve) and kFL_S2_av (red curve), plotted along with kLAB (black dots). As 
mentioned in simulation 1, in simulation 2, the kFL_S2_av curve represents the average between kFL_S2_mlH and 
kFL_S2_mlL, and kFL_S2_ml is the most likely result. The statistics of the goodness of fit of this simulation is R = 0.87; 
RMSE = 156.81; MAE = 74.60; and d = 0.92, which is a reasonable estimate and much better than kFL_S1_ml with 
R = 0.35; RMSE = 320.27; MAE = 190.23; and d = 0.73 (Table 5). Track 6 displays kFL_S2_ml (green curve), 
kFL_S2_mlH (gray curve), kFL_S2_mlL (gray curve), and the estimated imprecision through the yellow shaded region 
(fuzziness).

In an exploratory analysis, it is impossible to be entirely sure of a decision, but reasonable estimates can 
be made. For this reason, probabilistic estimates are often used in decision-making. The MC uncertainty analysis 
assumes this role by simulating potential scenarios and evaluating their degree of probability. Thus, this stage of 
the work aims to assess the FL model developed through the analysis of uncertainties by MC. Possible scenarios 
are simulated through a random generator based on the type of distribution chosen, the margin of variation, input 
data, and the number of simulations. The distribution chosen was Gaussian (normal), because the generated val-
ues are expected to represent the real data, presenting smoother ends and higher density in intermediate values. 
The margin of variation of the scenarios was 50 lower and 50 higher at the reference values, i.e., the confidence 
interval in track 5 of Fig. 11 (Suppl. Mat.). The input data were the curves generated in the FL model, the logs 
used in the previous analyses, and the permeability values of core samples. As explained, the MC method stabi-
lizes in a certain number of iterations, when it begins to generate exceedingly minor variations. In this study, the 
total number of iterations used was 500, since for larger values the differences were insignificant.

The simulation results can be found in Fig. 11 (Suppl. Mat.) (tracks 4 and 5). In track 4, the kFL_S2_av_P10, 
kFL_S2_av_P50, and kFL_S2_av_P90 curves represent the 10, 50, and 90 percentiles of the lowest values of all 500 
simulations, respectively. In track 5, the confidence interval of the simulations is observed, where kFL_S2_av_me 
and kFL_S2_av_pe represent the negative and positive variations about the kFL_S2_av, respectively. The P10, P50, and 
P90 curves are fundamental in understanding how the values are distributed in the sample (track 4). It is neces-
sary to note that the program classifies all the results for each depth level and then calculates the value of each 
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of the three percentiles to evaluate these parameters. A widespread error in this type of analysis is to confuse the 
percentiles with a probability of occurrence. The P90 does not mean that the estimate has a 90% chance of oc-
curring, but rather that the kFL_S2_av_P90 curve at that depth represents this percentile of the values calculated in the 
distribution curve. Once the distribution is normal, that is, a symmetric distribution, the best parameter to evalu-
ate this dataset is P50 (kFL_S2_av_P50). Thus, looking at kFL_S2_av_P50 (red) and kFL_S2_av (black dashed, track 4), we 
notice that the curves show similar behavior in much of the studied interval. The most significant differences 
between the estimate and the real data are shown, too. In a brief comparison, in Table 3 (Suppl. Mat.) of the 
deterministic inversion by FZ, the algorithm could not stabilize the coefficients in these zones. Still, in the sto-
chastic inversion, it was possible to perform a better estimate of permeability, even if presenting low reliability.

conclusions

Deterministic and stochastic inversions were employed to estimate the permeability of a carbonate reser-
voir in this work. A preliminary reservoir analysis was conducted on well-log data to determine the mudstone 
concentration, water saturation, porosity, and hydrocarbon presence of the reservoir. The NMR porosity was the 
most effective method for estimating the permeability, according to an analysis of the fit error between the es-
timated and the core sample porosities. Based on the ridge regression scheme, the Timur and Timur–Coates 
permeability equation coefficients were calculated as part of the deterministic inversion process. Both algo-
rithms failed to replicate the permeability behavior at the reservoir edges and some intervals inside the reservoir 
when the reservoir was viewed as a single unit. The permeability values differed slightly in each flow zone 
when the reservoir was sectioned. The Timur equation exhibits a better correlation with the core data (R = 0.41; 
RMSE = 333.48; MAE = 95.56; and d = 0.55) when compared with the Timur–Coates model (R = 0.39; 
RMSE = 355.28; MAE = 79.35; and d = 0.51). Timur’s flow zone model outperformed the other two (R = 0.55; 
RMSE = 210.88; MAE = 116.66; and d = 0.84), but this method failed to bring the coefficients into convergence 
in some flow zones. Deterministic inversion has a reduced capacity to adjust to significant variations in the 
permeability values along the borehole. As a result, a stochastic inversion was constructed using the forward 
problem with the fuzzy logic scheme and the uncertainty analysis of Monte Carlo. The processes started devel-
oping the fuzzy model based on the log data as input and the permeability measured in samples to support the 
results. The study has demonstrated that the fuzzy model with three bins shows worse results than deterministic 
inversion, with R = 0.35; RMSE = 320.27; MAE = 190.93; and d = 0.73. Despite that, the guess with six bins 
consistently estimated the permeability in flow zones with R = 0.87; RMSE = 156.81; MAE = 74.60; and 
d = 0.92, which the deterministic inversion could not do. The Monte Carlo uncertainty analysis was then used 
to evaluate this model, which had the best correlation with the real data. The goodness of fit analysis has shown 
that the stochastic process succeeds in the flow zones where the deterministic inversion is unsuccessful. It has 
demonstrated that the estimate is located between 50% and 90% probability of occurring, usually closer to 90%. 
Finally, it is possible to see that the deterministic inversion cannot match the critical permeability alterations 
when analyzed to the stochastic inversion. The random approach can perform an accurate permeability assess-
ment, because it is a robust solution with reliable parameters, which validate the estimation stability. 
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