РОССИЙСКАЯ АКАДЕМИЯ НАУК

СИБИРСКОЕ ОТДЕЛЕНИЕ

ФИЗИКО-ТЕХНИЧЕСКИЕ ПРОБЛЕМЫ РАЗРАБОТКИ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

2014 № 3

УДК 622.793, 622.794.3

ОБОСНОВАНИЕ И РАЗРАБОТКА ЭЛЕКТРОХИМИЧЕСКОГО МЕТОДА ИЗВЛЕЧЕНИЯ САПОНИТА ИЗ ОБОРОТНЫХ ВОД

В. Г. Миненко

Институт проблем комплексного освоения недр РАН, E-mail: vladi200@mail.ru, Крюковский тупик, 4, г. Москва, Россия

На основе изучения электроповерхностных свойств частиц сапонита научно обоснован и экспериментально подтвержден эффективный электрохимический метод извлечения сапонит-содержащего продукта и обесшламливания оборотных вод предприятий ОАО "Севералмаз". Сущность метода заключается в использовании электрофоретического эффекта закрепления отрицательно заряженных тонкодисперсных частиц сапонита на аноде и электроосмотического движения и выделения осветленной воды на катоде. Разработанный метод позволит повысить эффективность и стабилизировать процессы извлечения алмазов из руд и одновременно решить экологическую проблему за счет организации замкнутого водооборота и предотвращения сброса вод в тундру.

Электрохимический сепаратор, извлечение сапонита, обесшламливание, сгущенный продукт, осветленный слив, обогатительная фабрика, электрофорез, электроосмос

Архангельская алмазоносная провинция, открытая в 1980 г., является по своим запасам второй сырьевой базой алмазов в России после Якутской и включает два месторождения алмазов — им. В. П. Гриба и им. М. В. Ломоносова [1, 2]. Месторождение им. М. В. Ломоносова — крупнейшее коренное месторождение алмазов в Европейской части Российской Федерации, включает в себя десять кимберлитовых трубок (Снегурочка, Архангельская, Пионерская, им. Ломоносова и др.) и характеризуется высоким качеством алмазного сырья, в котором на долю ювелирного ряда приходится более 60 % ценных кристаллов [2]. С 2005 г. после сдачи в эксплуатацию обогатительной фабрики № 1 (ОФ № 1) ОАО "Севералмаз" ведутся добычные работы на трубке Архангельская, расположенной в южной части месторождения.

Необходимо отметить, что породы трубок месторождения им. М. В. Ломоносова практически полностью замещены глинистыми минералами (преимущественно сапонитом), а не представляют собой твердые массивные породы, как, например, в трубках Якутской провинции. Работы, проведенные Институтом геоэкологии РАН на трубке Архангельская, показали, что содержание сапонита в породах жерловой фации трубки практически не изменяется с глубиной и составляет до 90 %. В водной среде данный минерал образует тонкодисперсную гелеобразную суспензию, частицы которой характеризуются крупностью менее 7 мк и, как следствие,

Работа выполнена при финансовой поддержке Президиума РАН (программа ПП-27).

низкой скоростью осаждения, что создает большие сложности при обеспечении замкнутого водооборота на ОФ № 1. В связи с этим в настоящее время на фабрике существует серьезная проблема нехватки оборотной воды требуемого качества, используемой в процессах обогащения алмазосодержащего сырья. Особенно остро недостаток воды ощущается в период ледостава на хвостохранилище, когда концентрация глинистых шламов в оборотной воде превышает 50–100 г/дм³. Высокое содержание глинистых частиц в оборотных водах приводит к снижению извлечения алмазов в различных обогатительных переделах (тяжелосредная, рентгенолюминесцентная сепарации и др.), повышению расхода реагентов и чистой природной воды, снижению срока службы оборудования и экологической безопасности производства в целом. Важно отметить, что известные гравитационные, фильтрационные, реагентные, физические и другие методы не позволили решить проблему осветления оборотных вод предприятий ОАО "Севералмаз".

Так, например, применение ультразвуковых воздействий и флокулянтов, наоборот, приводит к стабилизации шламовой суспензии, т. е. она становится не текучей.

Однако сам по себе сапонит является ценным товарным продуктом с широким спектром применения в различных отраслях:

- в литейном производстве и металлургии как сырье для окомкования железорудных концентратов и смазки при прокате металлов и др.;
 - в строительстве для производства керамики, керамзита и др.;
 - в химической промышленности для очистки сточных выбросов;
- в легкой промышленности для производства адсорбентов, бумаги и утяжелителей для тканей; как стабилизатор эмульсионных систем;
- в медицине и фармакологии при производстве медпрепаратов (сорбентов) для общей дезинтоксикации организма, лекарственных препаратов эфферентного действия и др.;
- в сельском хозяйстве для производства комплексной минеральной добавки к кормам, повышения урожайности злаков и овощей, детоксикации грунтов;
 - в пищевой промышленности для очистки жидких органических сред и питьевой воды.

При этом на территории бывшего СССР имеется единственное месторождение сапонитовых глин — Варваровское, расположенное на территории Хмельницкой области Украины.

Таким образом, актуальность работы обусловлена как необходимостью организации качественной системы водооборота, обеспечивающей высокое извлечение алмазов в процессах обогащения, так и снижением экологической нагрузки на окружающую среду с попутным получением товарного продукта — сапонита.

Сапонит — это высокомагнезиальный глинистый минерал подкласса слоистых силикатов, группы монтмориллонита. В виде изоморфной примеси содержит Fe, иногда Cr, а также Ni, Zn, Cu, Li и др. Образуется при выветривании темноцветных (магниевых) минералов ультраосновных пород (серпентинитов) и обладает свойствами бентонитов.

Для структуры сапонита характерно слоистое расположение анионов и катионов в кристаллической решетке. Важным свойством данного минерала является способность к обмену катионами [3], благодаря которой он обладает высокими адсорбционными и ионообменными свойствами. Так, емкость катионного обмена сапонита значительно больше, чем трепела и глауконита и составляет $0.68 \text{ мг} \cdot 9 \text{кв/r}$ [4]. Обменные катионы (Na⁺, K⁺, Ca²⁺), присутствуя в составе минерала, не являются частью его кристаллической структуры, а будучи адсорбированы лишь частично, компенсируют отрицательный заряд кристаллической решетки, возникающий в результате замены в ней высоковалентных катионов более низковалентными (например, Al^{3+} на Mg^{2+} , Si^{4+} на Al^{3+}) [5].

С целью подтверждения информации об отрицательном заряде частиц сапонита и присутствии значительного количества подвижных катионов в составе минерала проведены эксперименты по определению дзета-потенциала поверхности частиц сапонита и осмотической скорости воды методом электроосмоса [6].

Результаты экспериментов показали, что среднее значение дзета-потенциала частиц сапонита составляет -4.14 мВ и практически не зависит от подаваемого на электроды напряжения. При этом наблюдается четкая зависимость осмотической скорости движения воды между электродами (катодом и анодом) от подаваемого напряжения (рис. 1). Так, при изменении напряжения на электродах с 10 до 60 В (плотность тока на электродах возрастает с 16 до 105 A/M^2) происходит увеличение осмотической скорости воды с 4.4 до 15.8 мкм/с.

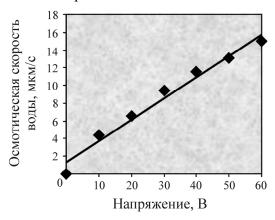


Рис. 1. Зависимость осмотической скорости движения воды от напряжения на электродах

Кроме того, в последующих экспериментах методом электрофореза [6] с использованием электрофоретической ячейки в комплекте с микроскопом МБУ-5 и источником постоянного тока были также определены дзета-потенциал поверхности частиц сапонита и их электрофоретическая скорость в зависимости от приложенного к частицам напряжения. Установлено, что при изменении напряжения в 6 раз с 10 до 60 В дзета-потенциал изменяется незначительно и находится в пределах от –18 до –23 мВ, тогда как электрофоретическая скорость минеральных частиц увеличивается в 7.3 раза с 2.5 до 18.3 мкм/с (рис. 2). Разница в значениях дзета-потенциала частиц сапонита, полученных методами электроосмоса и электрофореза, объясняется тем, что в первом случае определение дзета-потенциала основано на перемещении жидкости в пористых телах (в минеральной навеске) под действием электрического поля, а во втором — на явлении перемещения отдельной минеральной частицы.

В результате проведенных экспериментов показана возможность осмотического движения чистой воды из суспензии сапонита к катоду со скоростью до 15.8 мкм/с и электрофоретического движения отрицательно заряженных частиц сапонита к аноду со скоростью до 18.3 мкм/с.

Таким образом, можно сделать вывод, что для эффективной очистки сапонитосодержащих водных систем может быть использован безреагентный электрохимический метод (электрохимическая сепарация), в котором должны быть реализованы процессы электрофоретического извлечения сапонитсодержащего продукта на аноде и осмотического выделения воды на катоде.

Для проведения испытаний предлагаемого метода изготовлена действующая модель электрохимического сепаратора (рис. 3), обеспечивающего эффективное извлечение сапонита и одновременное получение осветленного слива из сапонитосодержащих водных систем.

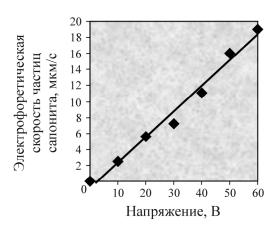


Рис. 2. Зависимость электрофоретической скорости движения частиц сапонита к аноду от напряжения на электродах

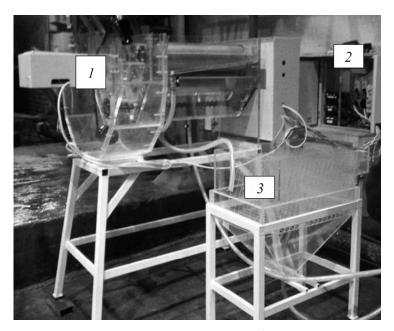


Рис. 3. Опытная модель электрохимического сепаратора (в комплекте с пакетным сгустителем) для очистки сапонитсодержащих вод: I — электрохимический сепаратор; 2 — шкаф управления сепаратором; 3 — пакетный сгуститель Π C-0.1

В сепараторе воздействие электрического тока на сапонитсодержащую оборотную воду осуществлялось при ее прохождении между барабанами-катодами и барабаном-анодом, выполненных из электропроводящего материала. При этом барабаны-катоды (2 шт.) наполовину погружены в оборотную воду, что обеспечивает непрерывное получение осветленного слива из суспензии при вращении барабанов-катодов с помощью прижимных пластин, по которым вода стекает в переливные карманы. Барабан-анод находится под барабанами-катодами ровно посередине (поверхности всех барабанов параллельны). Расстояние между барабаном-анодом и барабанами-катодами регулируется поднятием или опусканием барабана-анода.

Необходимо отметить, что максимальное значение рабочего напряжения на барабанах составляло 30 В, так как его дальнейшее увеличение приводит к резкому увеличению энергозатрат (более $4.0-6.0 \text{ kBt} \cdot \text{ч}$ на обработку 1 м³ исходной сапонитсодержащей воды). Кроме того,

на основе определенных ранее (при напряжении 30 В) осмотической скорости движения воды к катоду (\sim 9 мкм/с) и электрофоретической скорости частиц сапонита к аноду (\sim 8 мкм/с) установлена суммарная скорость осветления воды, которая составляет около 17 мкм/с. С учетом этого и экспериментальных данных рассчитана рациональная частота вращения барабанов-катодов 20 мин $^{-1}$, обеспечивающая скорость образования слоя осветленной воды на поверхности барабанов-катодов 18 мкм/с и производительность по сливу 40 дм 3 /ч. При этом частота вращения барабана-анода составляет 0.5-2 мин $^{-1}$, так как ее увеличение приводит к обводнению сгущенного сапонитсодержащего продукта.

Экспериментальную обработку исследуемых суспензий в сепараторе проводили в проточном режиме с контролем параметров сепарации (производительность, линейный ток, напряжение, частота вращения барабанов и др.), количества и качества выделяемых продуктов.

Испытания сепаратора на ОФ № 1 ОАО "Севералмаз" с использованием различных сапонит-содержащих вод, характеризующихся содержанием твердого от 50 до 257 г/дм³, показали возможность получения из них до 75 % осветленного слива с содержанием твердой фазы 0.5-30 г/дм³ и извлечения более 80 % сапонита. В получаемом концентрате (сгущенном сапонитсодержащем продукте) содержание твердой фазы составляет до 600 г/дм³.

В случае осуществления только извлечения сапонитсодержащего продукта на аноде (когда барабаны-катоды неподвижны, а осветленный слив достигается переливом) наблюдается снижение эффективности процесса очистки оборотной воды вследствие повышения содержания твердой фазы в осветленном сливе в 3-5 раз, снижения ее содержания в сгущенном продукте в 1.4 раза и увеличения энергозатрат на получение осветленного слива в 2-5 раз (таблица).

Качественно-количественные показатели процесса электрохимической сепарации сапонитсодержащей воды (содержание твердой фазы $\sim 200~\text{г/дм}^3$)

Номер примера	Способ извлечения осветленного слива и сапонитсодержащего продукта	Извлечение воды в осветленный слив, %	Извлечение сапонита в сгущенный продукт, %	Содержание твердой фазы в осветленном сливе, г/дм³	Содержание твердой фазы в сгущенном продукте, ${ m r}/{ m дм}^3$	Расход электроэнергии на обработку 1 M^3 воды, к Br -ч
1	Извлечение сгущенного продукта на аноде: с попутным получением воды на катодах (40 дм ³ /ч)	72.7	93.3	20.0	560	5.0
	без попутного получения воды на катодах	66.2	65.0	110.5	355	10.1
2	Извлечение сгущенного продукта на аноде: с попутным получением воды на катодах (30 дм ³ /ч)	65.7	97.0	10.0	485.0	6.0
	без попутного получения воды на катодах	68.5	89.1	28.0	498.0	32.8

Исследование минерального состава пробы концентрата электрохимической сепарации, выполненное в ФГУП "ВИМС" с использованием рентгенографического количественного фазового анализа (РКФА) и экспрессного рентгенографического полуколичественного фазового анализа глинистых минералов, показало наличие в нем более 74 % минералов монтмориллонитовой группы:

Минерал	Содержание, %		
Сапонит + монтмориллонит	74.5		
Кварц	12.0		
Доломит	5.0		
Кальцит	2.0		
Гематит	2.5		
Фторапатит	1.0		
Рутил	1,0		
Анатаз	1.0		
Иллит	1.0		
Сумма	100.0		

Методом растровой электронной микроскопии (РЭМ) установлено, что микроструктура осадка сапонитсодержащего продукта, полученного при электрохимической сепарации шламсодержащих вод ОФ № 1 (рис. 4), схожа с микроструктурой осадка монтмориллонита и характеризуется крупноячейстым строением [7]. При этом, как и в случае с монтмориллонитом, преобладают ячейки округлой формы размером 3 – 5 мкм [7]. Стенки ячеек образованы довольно толстыми листообразными микроагрегатами с нечеткими контурами и часто завернутыми краями, взаимодействующими друг с другом по типу базис – базис и базис – скол.

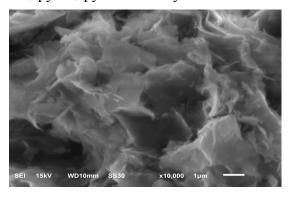


Рис. 4. РЭМ-фотография микроструктуры сапонитсодержащего продукта электрохимической сепарации шламсодержащих вод

Результаты исследований грансостава продуктов, полученных на сепараторе, позволили установить, что шламы, осажденные на аноде, отличаются пониженной (5-6 мкм) крупностью в сравнении с исходной пробой (7 мкм). Кроме того, из РЭМ-фотографий, представленных на рис. 5, видно, что концентрат электрохимической сепарации (сгущенный продукт) в сравнении с твердой фазой, выделенной из исходной воды, характеризуется более плотной упаковкой (усадкой) и меньшим размером пор, что обеспечивает концентрацию твердой фазы в сгущенном продукте от 450 до 600 г/дм³, тогда как при естественном осаждении под действием гравитационных сил и с применением реагентов-флокулянтов концентрация твердой фазы в сгущенном продукте, как правило, не превышает $200-400 \text{ г/ дм}^3$.

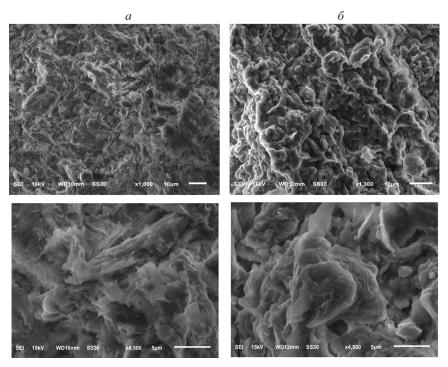


Рис. 5. РЭМ-фотографии микроструктуры: a — сгущенного продукта электрохимической сепарации; δ — твердой фазы, выделенной из исходной оборотной воды (верхние фото — разрешение 10 мкм, нижние — 5 мкм)

выводы

Впервые научно обоснован и экспериментально подтвержден эффективный электрохимический метод извлечения сапонитсодержащего продукта и обесшламливания оборотных вод. Это позволит повысить эффективность и стабилизировать процессы извлечения алмазов из руд и одновременно решить экологическую проблему за счет организации замкнутого водооборота и предотвращения сброса вод в тундру.

СПИСОК ЛИТЕРАТУРЫ

- 1. Горкин А. П. География. Серия: Современная иллюстрированная энциклопедия. М.: Росмэн, 2006.
- **2. Карпенко Ф. С.** Условия накопления сапонитсодержащих осадков и технология их сгущения в хвостохранилище месторождения алмазов им. М. В. Ломоносова: автореф. дис. ... канд. геол.-мин. наук. М., 2009.
- **3.** Navrátilová Z., Maršálek R. Application of Electrochemistry for Studying Sorption Properties of Montmorillonite, Clay Minerals in Nature Their Characterization, Modification and Application. Chapter 14, September, 2012.
- 4. http://saponit.com/rus/saponite.html
- **5.** Осипов В. И., Соколов В. Н., Румянцева Н. А. Микроструктура глинистых пород. М.: Недра, 1989.
- 6. Фролов Ю. Г. Курс коллоидной химии. М.: Химия, 1989.
- **7. Осипов В. И., Соколов В. Н.** Глины и их свойства. М.: ГЕОС, 2013.

Поступила в редакцию 1/IV 2014