2011. Том 52, № 2

Март – апрель

C. 246 – 258

УДК 539.194

ИССЛЕДОВАНИЕ СТРУКТУРЫ И ЭНЕРГЕТИКИ β-ДИКЕТОНАТОВ. XVII. ВНУТРЕННЕЕ ВРАЩЕНИЕ РАДИКАЛОВ-ЗАМЕСТИТЕЛЕЙ В МОЛЕКУЛАХ β-ДИКЕТОНАТОВ ПО ДАННЫМ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

© 2011 Н.В. Белова¹, Г.В. Гиричев¹*, Х. Оберхаммер²

¹Ивановский государственный химико-технологический университет ²Университет г. Тюбинген, Германия

Статья поступила 21 апреля 2010 г.

Проведено квантово-химическое исследование внутреннего вращения радикаловзаместителей СХ₃ (X = H, F, CH₃) в комплексах β-дикетонатов скандия и кальция. Расчеты выполнены по программе GAUSSIAN-03 методами HF и DFT/B3LYP с использованием релятивистских эффективных остовных псевдопотенциалов и валентно-двухэкспонентных базисов гауссовых функций. Получены аналитические выражения $V(\phi)$, описывающие изменение потенциальной энергии при вращении групп СХ₃. Показано, что вращение групп CH₃ и CF₃ может быть описано простым потенциалом вида $V = V_0/2 + V_3 \cos(3\phi)$, в то время как для описания вращения *mpem*-бутильных групп необходимо использование более сложной функции $V = V_0/2 + V_3 \cos(3\phi) + V_6 \cos(6\phi)$. На основании полученных выражений $V(\phi)$ вычислены эффективные значения торсионных углов $\phi_{э\phi}$ поворота групп CX₃ для различных температур. Показано, что полученные на основании квантово-химических расчетов $\phi_{3\phi}$ близки к величинам, получаемым в электронографических экспериментах.

Ключевые слова: β-дикетонаты, ацетилацетонаты, гексафторацетилацетонаты, дипивалоилметанаты, внутреннее вращение, квантово-химические расчеты, электронография.

β-Дикетонаты металлов в последнее время являлись объектом большого числа структурных исследований. Полученные для этих комплексов электронографические данные позволили установить общие закономерности строения молекул бис-β-дикетонатов *d*-металлов первого переходного ряда, *sp*-металлов, а также *mpuc*-комплексов РЗЭ. В связи с широким внедрением микропроцессорной техники в практику структурных исследований существенно увеличился объем теоретических работ, посвященных изучению комплексов с большим числом атомов. Экспериментальные и рассчитанные квантово-химически структурные параметры β-дикетонатов в основном хорошо согласуются между собой. Главным противоречием между экспериментом и теорией является значительное различие углов, связанное с торсионным движением радикалов-заместителей в хелатных фрагментах этих молекул.

В табл. 1 приведены значения эффективных торсионных углов поворота $\phi_{3\phi}$ групп CX₃, полученные при электронографических исследованиях бис- и *mpuc*- β -дикетонатов различных металлов, а также соответствующие величины, полученные при квантово-химических расчетах для этих же комплексов. Можно отметить в большинстве случаев достаточно сильное расхождение величин ϕ_{3kcn} и ϕ_{pac4} . Разница значений углов ϕ_{3kcn} и ϕ_{pac4} не является удивительной в силу разного физического смысла этих величин. Если полученные из квантово-химических расчетов

^{*} E-mail: girichev@isuct.ru

1	5 5	1 1	, 1, 51	
β-Дикетонат	ф _{эксп} а	<i>Т</i> , К ^б	ϕ_{pacy}^{a}	Литература
$Zn(acac)_2$	32,7(4,8)	376(5)	0,0	[22]
	$[r_{h1}]$		(B3LYP/cc-pVTZ)	
$Mg(acac)_2$	1,6 ^в	631(10)	1,6	[26]
	$2(A(C_2))$	429(5)	(MP2/6-311+G(d,p))	F 10 1
$Sc(acac)_3$	36,4(6,3)	428(5)		[10]
Sc(hfa).	$[r_{\alpha}]$	310(5)	0.0	[11]
56(1111)3	$[r_{1}]$	510(5)	(B3LYP/VTZ)	[11]
Gd(hfa)3	0.8(5.6)	556(5)	0.0	[27]
	$[r_{h1}]$		(HF/ SBK, 6-31G*)	
Dy(hfa) ₃	20,7(3,1)	494(5)	0,0	[28]
	$[r_{h1}]$		(B3LYP/ ECP, 6-31G*)	
Ho(hfa) ₃	18,8(2,6)	460(5)	0,0	[28]
	$[r_{h1}]$		(B3LYP/ ECP, 6-31G*)	
Er(hfa) ₃	20,3(2,8)	454(5)	0,0	[28]
	$[r_{h1}]$	457(5)	(B3LYP/ ECP, 6-31G*)	[20]
$Y b(hfa)_3$	1/,/(2,1)	457(5)	0,0	[28]
Ga(hfa).	$[r_{h1}]$	416(13)	(DSLIP/ECP, 0-SIG")	[20]
Ga(IIIa)3	$[r_{-}]$	410(13)	(BP86/ 6-31G*)	[2]]
In(hfa) ₃	18,9(1,2)	426(12)	0,4	[29]
	$[r_{\rm a}]$		(BP86/6-31G*)	
$Ba(thd)_2$	21,6(3,3)	761(5)		[30]
	$[r_{\alpha}]$			
$Sr(thd)_2$	35,9(3,3)	711(8)		[31]
	$[r_{\alpha}]$			
$Ga(thd)_3$	14,5(1,3)	381(10)		[32]
	$[r_{\alpha}]$	400(9)		[22]
$Sc(thd)_3$	28,8(0,9)	409(8)		[33]
La(thd) ₂	91(2.5)	480(7)	0.5	[34 35]
Lu(tild)3	$[r_{\alpha}]$	100(7)	(B3LYP/ ECP, 6-31G*)	[51,55]
Er(thd) ₃	12,7(1,1)	409(5)	0,2	[35, 36]
	$[r_{\alpha}]$		(B3LYP/ ECP, 6-31G*)	
Nd(thd) ₃	4,6(1,2)	435(9)	0,5	[35]
	$[r_{\alpha}]$		(B3LYP/ ECP, 6-31G*)	
Yb(thd) ₃	9,1(0,8)	394(6)	0,5	[35]
T / I N	$[r_{\alpha}]$	406 (=)	(B3LYP/ ECP, 6-31G*)	5.053
$Lu(thd)_3$	22,1(2,2)	408(7)	0,3	[37]
	$[r_{h1}]$	l	$ (D3L1P/S00, 0-311G^*)$	l

Величины торсионных углов внутреннего вращения групп СХ₃ в β-дикетонатах металлов

 $[^]a$ ϕ — угол поворота групп CX3 от положения, в котором связь CX—X, лежащая в плоскости хелатного кольца, "заслоняет" связь С—С_т лиганда; $\phi_{3\kappa cn}$ определены при интерпретации электронографических данных (в квадратных скобках указано, в терминах какой структуры проводился анализ МНК); φ_{расч} — получены в квантово-химических расчетах.
⁶ Температура электронографического эксперимента.
^в Фиксированные значения.

углы фрасч относятся к равновесной структуре молекулы, то экспериментально определяемые $\phi_{3\kappa cn}$ следует считать не параметрами статической модели, а величинами, в определенной мере не свободными от проявления динамики торсионных колебаний групп СХ₃. Отметим, что электронографически определяемые величины фэксп зависят от схемы структурного анализа. Если интерпретация дифракционной картины проводится в терминах rg или ra и все они являются независимыми, то получаемые в результате величины являются термически средними и тем существеннее отличаются от равновесных, чем выше температура эксперимента. Если в структурном анализе некоторые параметры выступают как зависимые и уточнение ведется в терминах r_a, то получаемые величины по-прежнему оказываются зависящими от температуры, но при этом утрачивают ясный физический смысл. Если структура молекулы описывается в терминах r_{α} или r_{b1} , то получаемые структурные характеристики имеют смысл равновесных в гармоническом приближении и должны отличаться от равновесных re только на ангармоническую поправку, поскольку гармоническая поправка к межъядерным расстояниям в такой схеме анализа формально учтена. Значительное отличие ф_{эксп} и ф_{расч} (см. табл. 1) даже в случае интерпретации экспериментальных данных в терминах r_{α} или r_{h1} показывает, что гармоническое приближение описывает торсионные колебания, связанные с поворотом групп СХ₃ в β-дикетонатах, недостаточно адекватно, поскольку данные колебания не являются малыми.

Заметим, что в ранних электронографических исследованиях положение радикаловзаместителей СХ₃ в молекулах β-дикетонатов принималось фиксированным [1—7]. Причем для групп CH₃ предполагалось, что связь С—H, лежащая в плоскости хелатного кольца, "заслоняет" связь С—O лиганда (торсионный угол поворота CH₃ $\varphi = 60^{\circ}$). Для групп CF₃ предполагалась энергетически более выгодной конфигурация с $\varphi = 0^{\circ}$ (связь С—F, лежащая в плоскости хелатного кольца, "заслоняет" связь С—C_r лиганда).

В ряде работ предпринимались попытки описать внутреннее вращение групп CX₃ на основании электронографических данных. При изучении комплекса Er(thd)₃ авторами [8] были рассмотрены две модели строения лиганда, в которых связь C_X —C(H₃), лежащая в плоскости хелатного фрагмента, "заслоняет" либо связь C—O ($\varphi = 60^\circ$), либо связь C—C_r лиганда ($\varphi = 0^\circ$). Наилучшего же согласия с экспериментом удалось достигнуть при использовании третьей модели, учитывающей обе описанные выше конформации с равным весом. На основании этого был сделан вывод о свободном вращении *трет*-бутильных групп. Авторы [8] предприняли, кроме того, попытку интерпретировать экспериментальные данные с учетом потенциальной функции, получив при этом нулевую величину барьера внутреннего вращения *трет*-бутильных групп.

Авторы [5—7] для определения барьера вращения групп CF₃ в комплексах гексафторацетилацетонатов использовали несколько более сложный подход, предполагающий, что вращение каждой группы CF₃ можно рассматривать независимо от всех других, а для учета внутреннего вращения при расчете теоретической функции приведенной молекулярной составляющей интенсивности рассеяния электронов применима статистическая модель, в которой торсионный угол для каждой из шести групп CF₃ может принимать значения либо $\phi = 0$, либо $\phi = 60^{\circ}$. Величина барьера внутреннего вращения групп CF₃ в этом случае имеет смысл разницы потенциальных энергий молекулы при этих двух возможных положениях. Величины потенциальных барьеров внутреннего вращения трифторметильных групп были найдены равными: 0,65(18) для Cu(hfa)₂ [6], 1,10(20) для Al(hfa)₃ [5] и 0,80(15) ккал/моль для Cr(hfa)₃ [7]. Однако, сами авторы [5, 7] отмечают, что этим величинам не следует придавать слишком большого значения, так как подобную модель можно считать лишь первым приближением к описанию внутреннего вращения CF₃-групп.

По сходной методике определялся барьер внутреннего вращения (V_0) *трет*-бутильных групп в комплексе Cu(thd)₂ [9]. Найдено, что электронографические данные отвечают величине $V_0 \ge 1,4$ ккал/моль.

Для комплексов Sc(acac)₃ и Sc(hfa)₃ величина потенциального барьера вращения заместителей в лигандах была оценена на основании значений эффективных углов поворота групп СХ₃, *Рис.* 1. Структура β-дикетонатов кальция и скандия.
X=H (ацетилацетонаты — acac), X=F (гексафторацетилацетонаты — hfa), X=CH₃ (дипивалоилметанаты — thd)

определенных в электронографических исследованиях: $\varphi = 36,4(6,3)$ для Sc(acac)₃ [10] и $\varphi = 19,8(1,7)^{\circ}$ для Sc(hfa)₃ [11]. Для описания вращения групп CH₃ и CF₃ принимали простую потенциальную функцию вида $V = V_0/2(1 - \cos 3\varphi)$. Оцененный барьер внутреннего вращения метильных групп в молекуле Sc(aa)₃ составляет $V_0 = 0,65(65)$ ккал/моль. Экспериментально полученное значение φ для Sc(hfa)₃ соответствует барьеру $V_0 = 1,1(0,2)$ ккал/моль.

Целью данной работы является исследование процессов внутреннего вращения радикалов-заместителей —CX₃ в βдикетонатах посредством квантово-химических расчетов на примере бис- и *трис*-комплексов с центральными атомами Са и Sc соответственно (рис. 1) и с наиболее часто исполь-

зуемыми на практике радикалами-заместителями: CX₃=CH₃ (ацетилацетонаты — acac), CX₃=CF₃ (гексафторацетилацетонаты — hfa) и CX₃=C(CH₃)₃ (дипивалоилметанаты — thd).

ОПИСАНИЕ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ И ИХ РЕЗУЛЬТАТОВ

Квантово-химические расчеты для всех шести комплексов выполнены с использованием пакета программ GAUSSIAN-03 [12] в приближениях Хартри—Фока (HF) и теории функционала электронной плотности DFT (B3LYP). Во всех расчетах для атомов С, О, Н использовали валентный двухэкспоненциальный базис Хузинаги—Даннинга (D95V) [13], для атомов Са и Sc были выбраны базисы, разработанные штутгартской группой, с использованием эффективных остовных потенциалов: квазирелятивистского ECP10MWB для Ca [14] и релятивистского ECP10MDF для Sc [15] (в обоих случаях 10 электронов отнесены в остов).

Для каждого комплекса рассчитывали профиль потенциальной функции $V(\varphi)$ при повороте одной группы CX₃ и всех шести (в случае комплексов скандия) или четырех (для комплексов кальция) одновременно. Торсионные углы $\varphi(C_rCC_XX)$ варьировали с шагом 5—10° при оптимизации всех остальных параметров. Для конформаций, отвечающих стационарным точкам на ППЭ $V(\varphi)$, были выполнены расчеты силовых полей и частот нормальных колебаний. Кроме того, для таких конформаций в случае комплексов кальция проведен NBO-анализ при помощи программы NBO 5.0 [16], входящей в состав программного комплекса GAMESS [17].

На рис. 2 приведены функции $V(\varphi)$, рассчитанные для случаев одновременного синфазного вращения всех групп CX₃. Для всех шести комплексов наименьшая потенциальная энергия соответствует углу поворота $\varphi(C_rCC_XX) = 0^\circ$, т.е. такому положению радикалов-заместителей, когда связь C_X—X, лежащая в плоскости хелатного кольца, "заслоняет" связь C—C_r. В табл. 2 приведены структурные параметры изучаемых комплексов, полученные в результате квантовохимических расчетов для конфигураций, соответствующих минимальной энергии. Можно отметить, что геометрия углерод-кислородного каркаса хелатного кольца в β-дикетонатах мало зависит от природы центрального атома и количества лигандов. Так, наибольшие изменения в величинах межъядерных расстояний при замене центрального атома с Са на Sc не превышают 0,004 Å, а в величинах валентных углов — 2,2°. Исключение составляет межъядерное расстояние О···O, согласованно изменяющееся с изменением размера иона-комплексообразователя. При замене радикала-заместителя CH₃ в ацетилацетоне на CF₃ как для комплексов кальция, так и в случае β-дикетонатов скандия, наибольшие изменения наблюдаются в расстояниях С—O (укорочение r(C—O) в гексафторацетилацетонатах по сравнению с ацетилацетонатами достигает 0,02 Å), а также в величинах углов CC_rC (в гексафторацетилацетонатах ∠CC_rC мень-

Puc. 2. Функции внутреннего вращения *V*(φ) радикалов-заместителей в комплексах Ca и Sc, рассчитанные для случаев одновременного вращения всех групп CX₃

Параметр	Ca(acac) ₂	Ca(hfa) ₂	Ca(thd) ₂	$Sc(acac)_3$	Sc(hfa) ₃	Sc(thd) ₃			
HF									
<i>r</i> (M—O)	2,244	2,265	2,235	2,103	2,101	2,097			
<i>r</i> (C—O)	1,284	1,263	1,285	1,282	1,265	1,284			
$r(C-C_r)$	1,409	1,397	1,410	1,405	1,394	1,406			
$r(C - C_X)$	1,510	1,534	1,540	1,507	1,531	1,535			
<i>r</i> (0…0)	2,777	2,711	2,745	2,663	2,618	2,634			
∠OMO	76,4	73,5	75,8	78,6	77,1	77,8			
∠MOC	135,4	136,5	136,5	136,2	136,4	137,3			
$\angle CC_rC$	124,3	119,6	124,5	122,3	118,2	122,4			
$\angle OCC_X$	116,1	114,1	114,9	116,1	114,1	114,8			
			B3LYP						
<i>r</i> (M—O)	2,224	2,243	2,216	2,094	2,091	2,090			
<i>r</i> (C—O)	1,307	1,289	1,308	1,305	1,290	1,307			
$r(C - C_r)$	1,420	1,410	1,420	1,416	1,406	1,416			
$r(C - C_X)$	1,519	1,543	1,549	1,515	1,540	1,545			
<i>r</i> (0…0)	2,792	2,766	2,792	2,703	2,670	2,677			
∠OMO	78,7	76,1	78,1	80,4	79,3	79,6			
∠MOC	134,0	134,9	135,1	135,1	134,9	136,1			
$\angle CC_rC$	125,2	120,7	125,4	123,0	119,3	123,2			
$\angle OCC_X$	116,3	114,6	115,1	116,2	114,6	114,9			

Равновесные геометрические параметры молекул β-дикетонатов, полученные в результате квантово-химических расчетов (межъядерные расстояния в Å, углы в град.)*

* Для всех приведенных конфигураций величина угла $\phi = 0^{\circ}$.

	HF		B3LYP			HF		B3LYP	
Молекула	поворот одной группы СХ ₃ ^а	поворот всех групп СХ3 ^б	поворот одной группы СХ ₃ ^а	поворот всех групп СХ3 ^б	Молекула	поворот одной группы СХ ₃ ^а	поворот всех групп СХ3 ^б	поворот одной группы СХ ₃ ^а	поворот всех групп СХ ₃ ^б
Ca(acac) ₂	0,62	2,68	0,57	2,40	Sc(acac) ₃	0,71	4,57	0,62	3,96
Ca(hfa) ₂	0,97	4,25	0,74	3,18	Sc(hfa) ₃	1,01	6,62	0,73	4,72
Ca(thd) ₂	0,87	4,00	0,72	3,28	Sc(thd) ₃	0,95	6,50	0,71	4,91

Относительная энергия ΔE (ккал/моль) конформаций молекул ML_n

^а В данной конформации один из торсионных углов $\phi(C_r - C_x - X) = 60^\circ$ (связь $C_x - X$, лежащая в плоскости хелатного кольца, "заслоняет" связь С—О). В остальных группах CX₃ связь $C_x - X$, лежащая в плоскости хелатного кольца, "заслоняет" связь С—С.

⁶ В данной конформации значения всех торсионных углов $\varphi(C_r - C - C_X - X) = 60^\circ$ (связь $C_X - X$, лежащая в плоскости хелатного кольца, "заслоняет" связь C - O).

ше на $3,7-4,7^{\circ}$). Замена CH₃ на C(CH₃)₃ не приводит к столь существенным изменениям структурных параметров в хелатном кольце.

Структура комплекса ML_n (M = Ca, Sc; L = acac, hfa), в которой один из радикалов-заместителей CH₃ или CF₃ расположен так, что связь C_X—X, лежащая в плоскости, "заслоняет" связь C—O хелатного кольца, соответствует седловой точке первого порядка на поверхности потенциальной энергии. При повороте всех групп CX₃ на φ (C_r—C—C_X—X) = 60° геометрия комплекса соответствует седловой точке четвертого порядка (для Ca(acac)₂ и Ca(hfa)₂) или шестого порядка (для Sc(acac)₃ и Sc(hfa)₃).

Расчеты для комплексов дипивалоилметанатов показали, что внутреннее вращение *трет*бутильных групп (поворот всей группы C(CH₃)₃ относительно связи C—C_X) носит более сложный характер, нежели вращение метильных и трифторметильных групп. Потенциальная функция внутреннего вращения групп C(CH₃)₃ имеет два локальных минимума, соответствующих торсионным углам φ (C_r—C—C_X—C(H₃)) = 0 и 60°, причем последнему отвечает более высокая энергия. Геометрическая конфигурация комплекса Ca(thd)₂, в которой все значения φ (C_r—C— C_X—C(H₃)) равны 45°, соответствует седловой точке четвертого порядка на ППЭ. В случае комплекса Sc(thd)₃ конфигурация с φ (C_r—C—C_X—C(H₃)) = 45° соответствует седловой точке шестого порядка.

Величины относительных энергий конформаций изученных комплексов $\Delta E = E(\varphi = 60^\circ) - E(\varphi = 0^\circ)$ приведены в табл. 3. Несколько более высокие значения барьеров для комплексов скандия могут свидетельствовать о более заторможенном вращении радикалов-заместителей в *mpuc*-комплексах из-за больших, нежели в бис-комплексах, стерических затруднений. Однако, в целом, можно говорить о достаточной характеристичности величин потенциальных барьеров вращения групп CH₃, CF₃ и C(CH₃)₃ в молекулах β-дикетонатов. Следует отметить, что во всех случаях величины потенциальных барьеров, полученные для одновременного поворота всех групп радикалов-заместителей, близки к четырехкратной в комплексах Ca и шестикратной в комплексах Sc величине барьеров вращения одной группы CX₃ (см. для примера рис. 3 и данные табл. 3). Это позволяет заключить, что вращение радикалов-заместителей CH₃, CF₃, C(CH₃)₃ как в бис-, так и в *mpuc*-комплексах является практически независимым. К этому выводу приводит и тот факт, что потенциальная энергия при вращении групп CX₃ в лиганде меняется независимо от направления вращения групп (т.е. две группы CX₃ в лиганде могут вращаться таким образом, чтобы лиганд в целом сохранял симметрию C₂ либо C₃).

Равновесная геометрия комплексов CaL_2 и ScL_3 (L = acac, hfa, thd) отвечает симметрии D_{2d} и D_3 соответственно. При этом молекулы CaL_2 имеют 4 крутильных колебания v_{rot} , связанных

Рис. 3. Функции внутреннего вращения *V*(φ) радикалов-заместителей CX₃:

a — рассчитанные методом HF для случаев одновременного вращения всех четырех групп CH₃ (I) и вращения одной группы CH₃ (II) в ацетилацетонате Ca; δ — рассчитанные методом B3LYP для случаев одновременного вращения всех шести групп CF₃ (I) и вращения одной группы CF₃ (II) в гексафторацетилацетонате Sc; ϵ — рассчитанные методом HF для случаев одновременного вращения всех четырех групп C(CH₃)₃ (I) и вращения одной группы C(CH₃)₃ (II) в дипивалоилметанате Ca

Рис. 4. Рассчитанные (НF) значения $V(\varphi)$ (точки), а также функции вида $V = V_0/2 + V_3\cos(3\varphi) + V_6\cos(6\varphi) + V_9\cos(9\varphi) + V_{12}\cos(12\varphi)$ (сплошные кривые), $V = V_0/2 + V_3\cos(3\varphi)$ (пунктирные кривые в случаях *а* и *б*) и $V = V_0/2 + V_3\cos(3\varphi) + V_6\cos(6\varphi)$ (пунктирная кривая в случае *6*), полученные для *а* — Sc(acac)₃ (вращение одной группы CH₃), *б* — Ca(hfa)₂ (вращение одной группы CF₃) и *в* — Ca(thd)₂ (вращение четырех групп $C(CH_3)_3)$

с поворотом групп CX₃ симметрии A_2 , B_1 и E. Шесть колебаний v_{rot} в молекулах ScL₃ относятся к типам симметрии A_1 , A_2 , 2E. В табл. 4 приведены значения частот, наибольший вклад в которые вносят крутильные колебания v_{rot} (вклад в величину потенциальной энергии нормальных колебаний от торсионных координат рассчитан по программе Shrink [18—20]), а также их интенсивности в ИКС и СКР. Как видно из анализа распределения потенциальной энергии, все колебания являются в достаточной степени смешанными, и речь может идти лишь об их пре-имущественном отнесении к конкретным внутренним колебательным координатам.

			HF		B3LYP			
Молекула	v _{rot} , см ⁻¹ , (отнесение)	$E_{\rm rot}$, ^a %	Интенсивность в ИКС, км/моль	Интенсивность в СКР, отн. ед. ^б	v_{rot} , cm^{-1}	$E_{\rm rot}$, %	Интенсивность в ИКС, км/моль	
$Ca(acac)_2$	93 (E)	70	0,057	$7,4 \cdot 10^{-3}$	87 (E)	68	0,60	
	$101(A_2)$	84			95 (A ₂)	84		
	$101 (B_1)$	84	—	$2,0 \cdot 10^{-2}$	95 (<i>B</i> ₁)	84		
Ca(hfa) ₂	23 (E)	58	1,34	$1,7\cdot 10^{-1}$	20 (E)	52	1,25	
	25 (A_2)	80			21 (A_2)	76		
	25 (<i>B</i> ₁)	76	—	$9,4 \cdot 10^{-2}$	21 (<i>B</i> ₁)	76		
Ca(thd) ₂	29 (E)	54	0,04	$1,9 \cdot 10^{-2}$	27 (E)	52	1,25	
	$32(A_2)$	68			29 (A_2)	64		
	32 (<i>B</i> ₁)	68	—	$8,7 \cdot 10^{-3}$	29 (<i>B</i> ₁)	64		
Sc(acac) ₃	100 (E)	70	1,28	$1,5 \cdot 10^{-2}$	92 (<i>E</i>)	69	1,31	
	$100(A_2)$	66	1,23		92 (<i>A</i> ₂)	66	1,19	
	109 (E)	84	0,011	$9,8 \cdot 10^{-3}$	100 (E)	85	0,018	
	$109(A_1)$	84		$1,6 \cdot 10^{-2}$	101 (A_1)	84		
Sc(hfa) ₃	$20(A_2)$	18	0,11		16 (A ₂)	12	0,074	
	25 (E)	57	0,43	$1,3 \cdot 10^{-1}$	21 (E)	51	0,006	
	26 (E)	75	0,004	$1,8 \cdot 10^{-2}$	21 (E)	68	0,29	
	$26(A_1)$	78		$6.1 \cdot 10^{-2}$	22 (A_1)	72		
	28 (A ₂)	18	0,14		23 (A ₂)	12	0,14	
Sc(thd) ₃	23 (A ₂)	18	0,26		21 (A ₂)	12	0,25	
	30 (E)	56	0,24	$5,4 \cdot 10^{-3}$	28 (E)	51	0,17	
	$32(A_1)$	66		$3,7 \cdot 10^{-3}$	30 (<i>A</i> ₁)	66		
	32 (E)	66	0,002	$2,8 \cdot 10^{-3}$	31 (E)	60	0,002	
	$33(A_2)$	30	0,87		$30(A_2)$	30	0,65	

Частоты колебаний в молекулах ML_n со значительным вкладом v_{rot} — крутильных колебаний групп CX₃

 $^{\rm a}$ $E_{\rm rot}$ — вклад в величину потенциальной энергии данного нормального колебания от торсионных координат.

⁶ Интенсивность полос в СКР выражена в % от наиболее интенсивной полосы в спектре.

Однако можно отметить высокую степень характеристичности частот v_{rot} для определенных групп СХ₃. К сожалению, низкие значения этих частот и невысокая их интенсивность в ИКС и СКР не позволяют надеяться на спектроскопическое подтверждение проведенных расчетов.

РАСЧЕТ ЭФФЕКТИВНЫХ УГЛОВ ВНУТРЕННЕГО ВРАЩЕНИЯ РАДИКАЛОВ-ЗАМЕСТИТЕЛЕЙ

Рассчитанные функции внутреннего вращения *V*(ϕ) одной группы CX₃ для каждого из шести комплексов были аппроксимированы разложением в ряд

 $V(\phi) = V_0/2 + V_3\cos(3\phi) + V_6\cos(6\phi) + V_9\cos(9\phi) + V_{12}\cos(12\phi),$

коэффициенты которого определены по формулам, представленным в [21]. В табл. 5 приведены значения коэффициентов $V_0 - V_{12}$, а на рис. 4 — примеры полученных функций. Можно отметить, что в случае $CX_3 = CH_3$ или CF_3 уже величина V_6 оказывается пренебрежимо малой.

Молекула	V_0	V_3	V_6	V_9	V ₁₂	Молекула	V_0	V_3	V_6	V_9	V ₁₂
	Вращение одной группы CX ₃				Одновременное вращение всех групп CX ₃						
$Ca(acac)_2$						$Ca(acac)_2$					
HF	0,636	-0,310	-0,005	-0,001		HF	2,686	-1,334	0,003	-0,004	
B3LYP	0,564	-0,304	0,005	0,0003		B3LYP	2,348	-1,196	0,015	0,00009	
Ca(hfa) ₂						Ca(hfa) ₂					
HF	0,981	-0,478	-0,0096	-0,002		HF	4,213	-2,113	0,017	-0,008	
B3LYP	0,828	-0,393	-0,013	-0,0009		B3LYP	2,980	-1,558	0,050	0,004	
Ca(thd) ₂						Ca(thd) ₂					
HF	1,248	-0,437	-0,186	0,003	-0,0009	HF	5,387	-2,004	-0,684	0,013	0,003
B3LYP	1,037	-0,371	-0,172	-0,0007	-0,0002	B3LYP	4,402	-1,611	-0,614	0,014	-0,001
$Sc(acac)_3$						$Sc(acac)_3$					
HF	0,725	-0,353	-0,007	-0,002		HF	4,439	-2,268	0,071	-0,010	
B3LYP	0,548	-0,304	0,017	0,005		B3LYP	3,850	-1,972	0,050	-0,011	
Sc(hfa) ₃						Sc(hfa) ₃					
HF	1,017	-0,500	-0,012	0,00007		HF	6,663	-3,292	-0,025	-0,015	
B3LYP	0,712	-0,357	0,007	0,003		B3LYP	4,591	-2,341	0,025	-0,010	
Sc(thd) ₃						Sc(thd) ₃					
HF	1,243	-0,500	-0,142	0,026	-0,004	HF	8,056	-3,386	-0,765	0,143	-0,006
B3LYP	1,258	-0,390	-0,145	-0,008	-0,039	B3LYP	6,492	-2,665	-0,709	0,124	0,002

Коэффициенты разложения потенциальной функции внутреннего вращения групп CX_3 в молекулах ML_n в ряд вида $V = V_0/2 + V_3\cos(3\varphi) + V_6\cos(6\varphi) + V_9\cos(9\varphi) + V_{12}\cos(12\varphi)$, ккал/моль -

-

1

Описание $V(\phi)$ для групп С(CH₃)₃ может быть достаточно точным с использованием потенциала вида $V = V_0/2 + V_3 \cos(3\varphi) + V_6 \cos(6\varphi)$. Отметим, что величина V_9 в случае Sc(thd)₃ оказывается достаточно большой.

Полученные математические выражения для потенциала вращения *V*(ϕ) одной группы CX₃ были использованы при расчете значений эффективных торсионных углов. Как было показано выше, вращение групп CX₃ во всех комплексах ML_n можно принять независимым. Поэтому относительная потенциальная энергия конформации с произвольной ориентацией групп СХ3 может быть определена простым суммированием относительных энергий соответствующих ориентаций каждой из групп CX₃. В этом случае значение эффективного угла может быть определено путем усреднения по всем возможным ориентациям групп CX₃ с учетом весового фактора Больцмана для каждой конформации:

$$\begin{split} \phi_{9\phi} &= \sum_{\phi_1} \sum_{\phi_2} \sum_{\phi_3} \sum_{\phi_4} \phi_1 \cdot \frac{\exp[E(\phi_1, \phi_2, \phi_3, \phi_4) / RT]}{\sum \exp[E(\phi_1, \phi_2, \phi_3, \phi_4) / RT]} - \text{для бис-комплексов,} \\ \phi_{9\phi} &= \sum_{\phi_1} \sum_{\phi_2} \sum_{\phi_3} \sum_{\phi_4} \sum_{\phi_5} \sum_{\phi_6} \phi_1 \cdot \frac{\exp[E(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6) / RT]}{\sum \exp[E(\phi_1, \phi_2, \phi_3, \phi_4, \phi_5, \phi_6) / RT]} - \text{для mpuc-комплексов,} \\ E(\phi_1, \phi_2, \phi_3, \phi_4) = V(\phi_1) + V(\phi_2) + V(\phi_3) + V(\phi_4) \end{split}$$

И

 $E(\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6) = V(\varphi_1) + V(\varphi_2) + V(\varphi_3) + V(\varphi_4) + V(\varphi_5) + V(\varphi_6).$

Суммирование проводили с шагом по $\phi = 0.5^{\circ}$ для комплексов кальция и $\phi = 1.0^{\circ}$ для комплексов скандия.

Полученные таким образом значения эффективных углов внутреннего вращения групп СХ₃ приведены в табл. 6.

Таблица б

<i>Т</i> , К	Ca(acac) ₂	Ca(hfa) ₂	Ca(thd) ₂	Sc(acac) ₃	Sc(hfa) ₃	Sc(thd) ₃				
	HF									
300	23,8	20,7	20,2	22,9	20,3	19,4				
500	26,2	24,2	24,2	25,6	23,9	23,5				
ЭГ				24,9	20,5	22,1				
	B3LYP									
300	24,0	22,2	21,6	24,0	22,9	21,0				
500	26,3	25,2	25,1	26,3	25,6	24,7				
$T_{\Im\Gamma}^*$				25,7	23,1	23,5				

Эффективный угол поворота групп CX3 $\phi_{9\varphi},$ град.

* $T_{\Im\Gamma}$ — температура электронографического эксперимента: 428 К для Sc(acac)₃, 310 К для Sc(hfa)₃ и 409 К для Sc(thd)₃.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Выполненное квантово-химическое исследование показало, что динамика вращения радикалов-заместителей CX_3 в β -дикетонатах практически не зависит от природы центрального атома металла и количества лигандов в комплексе. Вращение групп CX_3 (X = H, F, CH₃) является заторможенным. Теоретическая оценка высоты потенциального барьера определяется видом заместителя X, а также несколько варьирует в зависимости от уровня квантово-химического расчета. Интересно отметить, что независимо от электроотрицательности заместителя X в радикале наиболее энергетически выгодной является конфигурация, в которой связь C_X —X, лежащая в плоскости хелатного кольца, "заслоняет" связь С—C_r лиганда (угол поворота групп $CX_3 \phi = 0^\circ$). Незначительные отличия величин $\phi_{\text{расч}}$ от 0° (0,2—1,6°), полученных при квантовохимических расчетах для молекул некоторых β -дикетонатов (см. табл. 1), связаны, вероятно, с так называемым числовым шумом процедуры оптимизации.

Таким образом, следует признать ошибочными принятые в ранних электронографических исследованиях ацетилацетонатов [1—4] представления об ориентации метильных групп, в которой связь С—Н, лежащая в плоскости, "заслоняет" связь С—О лиганда (угол поворота групп CH₃ $\phi = 60^{\circ}$). Однако следует отметить, что из-за малой рассеивающей способности атомов водорода определение их положения на основании электронографических данных представляется достаточно сложным. Вероятно, этим же объясняется заметное отличие углов $\phi_{3\phi}$, определенных для ацетилацетонатов цинка [22] и скандия [10] от рассчитанных в настоящей работе (см. табл. 6). Отметим, что из-за малой рассеивающей способности атомов водорода принятая в работах [1—4] неверная гипотеза об ориентации групп CH₃ не могла существенно повлиять на найденные величины основных структурных параметров исследованных молекул.

Энергетическая предпочтительность конфигурации с торсионным углом $\varphi = 0^{\circ}$ может быть связана с наличием особых взаимодействий групп CX₃ с хелатным кольцом. Проведенный для комплексов CaL₂ (L = acac, hfa, thd) NBO-анализ показывает, что во всех трех случаях существует заметное гиперсопряжение между связывающей орбиталью $\sigma(C_X - X)$ (связь $C_X - X$ лежит в плоскости лиганда и "заслоняет" связь C—C_r) с разрыхляющей орбиталью $\sigma^*(C - O)$, а также между орбиталями $\sigma(C_X - X')$ (связь $C_X - X'$ не лежит в плоскости кольца) и разрыхляющей орбиталью $\pi^*(C - O)$ (см. пример для Ca(acac)₂ на рис. 5, *a*, *б* и для Ca(hfa)₂ на рис. 6). При повороте групп CX₃ на $\varphi = 60^{\circ}$ взаимодействие орбиталей $\sigma(C_X - X')$ и $\pi^*(C - O)$ остается достаточно заметным (см. пример для Ca(acac)₂ на рис. 5, *в*), в то время как взаимодействия орбитали $\sigma(C_X - X)$ для связи C_X - X, "заслоняющей" связь C—O, с $\pi^*(C - O)$ практически исчезают.

Рис. 5. Взаимодействия молекулярных орбиталей в молекуле Ca(acac)₂: a и δ — для конфигурации, соответствующей углу поворота метильных групп $\phi = 0^{\circ}$, s для конфигурации, соответствующей $\phi = 60^{\circ}$

Рассчитанные значения потенциальных барьеров вращения можно сравнить с величинами, полученными по данным электронографических экспериментов. Авторами [10, 11] на основании экспериментальных значений торсионных углов φ для Sc(acac)₃ [10] и Sc(hfa)₃ [11] определены величины барьеров вращения групп CX₃ — 0,65(65) и 1,1(0,2) ккал/моль соответственно. Можно отметить, что эти величины близки к полученной в настоящей работе. Данный факт подтверждает сделанный вывод о возможности описания внутреннего вращения групп CH₃ и CF₃ потенциальной функцией, содержащей лишь cos(3 φ).

Авторами [23] при исследовании гексафторацетилацетона также было отмечено, что следующий член ряда V_6 — пренебрежимо мал. Полученный в [23] из электронографических данных барьер вращения групп CF₃ в гексафторацетилацетоне равен 0,75 ккал/моль, что достаточно близко к значению, найденному нами. Авторы [23] отмечают, что это значение несколько меньше, чем для других соединений, включающих CF₃. Попытка определить барьер внутреннего вращения метильных групп в ацетилацетоне из электронографических данных предпринята в работе [24]. Полученная величина торсионного угла $\varphi = 30\pm 2^\circ$ соответствует барьеру 2,5 ккал/моль, что существенно выше найденного в настоящей работе.

Рис. 6. Взаимодействия молекулярных орбиталей в молекуле Ca(hfa)₂ для конфигурации, соответствующей углу поворота групп CF₃ $\phi = 0^{\circ}$

Внутреннее вращение трет-бутильных групп (поворот всей группы С(СН₃)₃ относительно связи С—С_х) носит более сложный характер, нежели вращение метильных и трифторметильных групп. Потенциальная функция внутреннего вращения групп С(СН₃)₃ содержит два мини-

мума, соответствующих торсионным углам $\phi(C_r - C - C_X - C(H_3))$ 0 и 60°, и может быть достаточно хорошо описана лишь более сложной функцией: $V = V_0/2 + V_3\cos(3\varphi) + V_6\cos(6\varphi)$. Максимумы потенциальной энергии поворота трет-бутильных групп соответствуют торсионным углам φ(C_r—C—C_X—(H₃)) 45 и 75°. Появление этих дополнительных максимумов на кривой потенциальной энергии V(ф) может быть связано с наличием стерических затруднений вращения *трет*-бутильных групп. Так, при повороте $C(CH_3)_3$ на $\phi = 45$ и 75° расстояния между атомами водорода трет-бутильных групп и атомом водорода, связанным с атомом С, хелатного кольца, становятся гораздо более короткими (около 2,1 Å), чем при других значениях ф. Повидимому, сильное отталкивание атомов Н в этом положении и является причиной появления дополнительных максимумов на кривой $V(\phi)$. Рассчитанные значения потенциальных барьеров врашения *трет*-бутильной группы — $C(CH_3)_3$ (отвечающих конфигурациям с $\phi = 45^\circ$) составляют: 0,94 ккал/моль (HF) и 0,74 ккал/моль (B3LYP) для Ca(thd)₂; 1,01 ккал/моль (HF) и 0,80 ккал/моль (B3LYP) для Sc(thd)₃. Таким образом, как и в случаях ацетилацетонатов и гексафторацетилацетонатов, для дипивалоилметанатов можно говорить о близких значениях барьеров внутреннего вращения групп СХ₃ независимо от природы центрального атома и числа лигандов в комплексе. Отметим, что характер вращения *трет*-бутильных групп в комплексах дипивалоилметанатов существенно отличается от вращения C(CH₃)₃, например, в *трет*-бутилбензоле [25], где вращение *трет*-бутильной группы описывается функцией вида $V = V_0/2(1 - V_0/2)$ $-\cos 6\phi$) с максимумом, соответствующим повороту С(CH₃)₃ на 30° от положения с минимальной энергией.

Интересно сравнить полученные барьеры вращения групп СХ₃ с величиной тепловой энергии RT. Так, для температур электронографических экспериментов для комплексов скандия RT составляет 0,850 ккал/моль (Sc(acac)₃), 0,616 ккал/моль (Sc(hfa)₃), 0,811 ккал/моль (Sc(thd)₃), что соизмеримо с потенциальным барьером вращения одной группы СХ₃. Таким образом, при условиях проведенных электронографических экспериментов можно считать вращение групп СН₃ практически свободным, а групп CF₃ и C(CH₃)₃ — слегка заторможенным. Данный вывод подтверждают также значения эффективных торсионных углов вращения групп CX₃ — ϕ_{ab} , полученные на основании квантово-химических расчетов (см. табл. 6).

Как следует из табл. 6, полученные на основании квантово-химических расчетов (см. раздел "Расчет эффективных углов внутреннего вращения радикалов-заместителей") значения $\phi_{2\Phi}$ для всех трех изученных заместителей близки к 20° , независимо от температуры эксперимента или уровня квантово-химического расчета. Отметим, что рассчитанные в настоящей работе значения эффективных торсионных углов внутреннего вращения радикалов-заместителей в β-дикетонатах достаточно близки к величинам, получаемым в электронографических экспериментах в случае, если фэф является независимо варьируемым параметром. Значительное отличие $\phi_{3\phi}$ для некоторых молекул (см. табл. 1) от рассчитанных в настоящей работе (см. табл. 6), вероятно, связано с тем, что структурный анализ для этих молекул проводили методом последовательных уточнений с фиксированием угла $\phi_{3\phi}$ на первоначальных стадиях анализа.

Авторы выражают благодарность проф. Н.И. Гиричевой (Ивановский государственный университет) и с.н.с. В.В. Слизневу (Ивановский государственный химико-технологический университет) за плодотворные дискуссии и помощь в подготовке материала к публикации.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 07-03-00656 а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Shibata S., Ohta M., Iijima K. // J. Mol. Struct. 1980. 67. P. 245.
- 2. Shibata S., Ohta M., Tani R. // J. Mol. Struct. 1981. 73. P. 119.
- 3. Shibata S., Ohta M. // J. Mol. Struct. 1981. 77. P. 265 270.
- 4. *Shibata S., Sasase T., Ohta M.* // J. Mol. Struct. 1983. 96. P. 347.
- 5. *Morris M.L., Hilderbrandt R.L.* // J. Mol. Struct. 1979. **53**. P. 69 80.
- 6. *Thomas B.G., Morris M.L., Hilderbrandt R.L.* // J. Mol. Struct. 1976. **35**. P. 241 252.
- 7. Thomas B.G., Morris M.L., Hilderbrandt R.L. // Inorg. Chem. 1978. 17, N 10. P. 2901 2905.
- 8. Shibata S., Iijima K., Kimura S. // J. Mol. Struct. 1985. 131. P. 113 119.
- 9. Giricheva N.I., Belova N.V., Girichev G.V., Shlykov S.A. // J. Mol. Struct. 1995. 352/353. P. 167 173.
- 10. Белова Н.В., Гиричева Н.И., Гиричев Г.В. и др. // Журн. структур. химии. 2002. 43, № 1. С. 61 68.
- 11. Belova N.V., Girichev G.V., Hinchley S.L. et al. // J. Mol. Struct. 2005. 779. P. 23 29.
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven J.T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Revision B.03, Gaussian, Inc. Pittsburgh PA, 2003.
- 13. Dunning T.H.J., Hay P.J. In: Modern Theoretical Chemistry / H.F. Schaefer, III. New York: Plenum, 1976. P. 1–28.
- 14. Kaupp M., Schleyer P.v.R., Stoll H.H.P. // J. Chem. Phys. 1991. 94, N 2. P. 1360 1366.
- 15. Dolg M., Wedig U., Stoll H., Preuss H. // J. Chem. Phys. 1987. 86, N 2. P. 866 872.
- 16. *Glendening E.D., Badenhoop J.K., Reed A.E. et al.* In: Theoretical Chemistry Institute, U. o. W., Madison, Ed., 2001.
- 17. *Granovsky A.A.* PC GAMESS version 7.1 (Tornado); www.htpp://classic.chem.msu.su/gran/gamess/index.html.
- 18. *Sipachev V.A.* In: Advanced in Molecular Structure Research / Eds.I. Hargittai, M. Hargittai New York: JAI Press, 1999. Vol. 5. P. 263 311.
- 19. Sipachev V.A. // J. Mol. Struct. 2001. 567-568. P. 67 72.
- 20. Sipachev V.A. // J. Mol. Struct. 1985. 121. P. 143 151.
- 21. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1974.
- 22. Антина Е.В., Белова Н.В., Березин М.Б. и др. // Журн. структур. химии. 2009. **50**, № 6. С. 1084 1094.
- 23. Iijima K., Tanaka Y., Onuma S. // J. Mol. Struct. 1992. 268. P. 315 318.
- 24. Iijima K., Ohnogi A., Shibata S. // J. Mol. Struct. 1987. 156. P. 111 118.
- 25. Campanelli A.R., Ramondo F., Domenicano A., Hargittai I. // J. Phys. Chem. 1994. 98. P. 11046 11052.
- 26. Zakharov A.V., Dakkouri M., Krasnov A.V. et al. // J. Mol. Struct. 2004. 701. P. 1 8.
- 27. *Гиричев Г.В., Твердова Н.В., Шлыков С.А. и др.* // Журн. структур. химии. 2006. **47**, № 6. С. 1047 1080.
- Твердова Н.В., Гиричев Г.В., Рыбкин В.В. и др. // Журн. структур. химии. 2008. 49, № 6. С. 1041 1051.
- 29. Brain P.T., Buhl M., Robertson H.E. et al. // J. Chem. Soc., Dalton Trans. 1998. P. 545 551.
- 30. *Гиричева Н.И., Гиричев Г.В., Белова Н.В. и др. //* Журн. структур. химии. 1999. **40**, № 4. С. 647 653.
- 31. *Гиричева Н.И., Гиричев Г.В., Белова Н.В. и др. //* Журн. структур. химии. 1999. **40**, № 6. С. 1067 1073.
- 32. Белова Н.В., Гиричев Г.В., Гиричева Н.И., Кузьмина Н.П. // Журн. структур. химии. 1999. **40**, № 3. С. 477 486.
- 33. Белова Н.В., Гиричева Н.И., Гиричев Г.В. и др. // Журн. структур. химии. 2002. **43**, № 6. С. 1001 1007.
- 34. *Giricheva N.I., Belova N.V., Shlykov S.A. et al.* // J. Mol. Struct. 2002. **605**. P. 171 176.
- 35. Girichev G.V., Giricheva N.I., Haaland A. et al. // Inorg. Chem. 2006. 45, N 13. P. 5179 5186.
- Гиричева Н.И., Белова Н.В., Гиричев Г.В. и др. // Журн. структур. химии. 2003. 44, № 5. С. 843 850.
- 37. Belova N.V., Girichev G.V., Hinchley S.L. et al. // J. Chem. Soc., Dalton Trans. 2004. P. 1715 1718.