2010. Том 51, № 1

Январь – февраль

C. 105 – 112

УДК 542.91:546.96:548.736

ПЕРВЫЙ ПРИМЕР МОНОАММИНОКОМПЛЕКСА НИТРОЗОРУТЕНИЯ. СТРОЕНИЕ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА [Ru(NO)(NH₃)₃(H₂O)Cl][Ru(NO)(NH₃)₃(OH)Cl][Ru(NO)(NH₃)Cl₄]₂Cl·2H₂O

© 2010 М.А. Ильин^{1,2}*, В.А. Емельянов^{1,2}, И.А. Байдина¹

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

Статья поступила 12 января 2009 г.

Проведено исследование строения продуктов взаимодействия раствора (NH₄)₂[Ru(NO)Cl₅] с ацетатом аммония при нагревании. Установлена кристаллическая структура соединения [Ru(NO)(NH₃)₃(H₂O)Cl][Ru(NO)(NH₃)₃(OH)Cl][Ru(NO)(NH₃)Cl₄]₂Cl·2H₂O (соединение **I**), содержащего ранее неизвестный анион нитрозомоноамминового ряда: пр. гр. *Cc*; a = 33,530(7), b = 8,202(2), c = 11,844(2) Å; $\beta = 101,54(3)^{\circ}$.

Ключевые слова: рутений, нитрозокомплексы, амминокомплексы, хлорокомплексы, рентгеноструктурный анализ, ИК спектроскопия.

введение

Возрождение интереса к нитрозоамминокомплексам рутения связано с открывшимися в последние годы широкими перспективами получения и применения медицинских препаратов на их основе [1—4], а также с использованием этих комплексов в качестве прекурсоров полифункциональных фотомагнитных материалов [5—8] и порошков металлических сплавов [9, 10]. Для успешного развития всех этих направлений необходимо, прежде всего, иметь фундаментальную информацию о строении, свойствах и реакционной способности комплексовпредшественников.

В настоящее время доподлинно известны амминокомплексы нитрозорутения с числом молекул аммиака во внутренней сфере от двух до пяти. Наиболее изучены их хлоридные производные. Строение таких соединений однозначно установлено методом рентгеноструктурного анализа [11—16]. В то же время, сведения о комплексах рутения нитрозомоноамминового ряда ограничиваются данными единственной работы [17], в которой описан продукт с предполагаемой формулой [Ru(NO)(NH₃)(H₂O)Cl(OH)₂]. Продукт был получен упариванием раствора морфолиниевой соли нитрозотетрахлорогидроксорутенат-иона в 1 М растворе NH₃ с последующим высаливанием ацетоном. Состав внутренней сферы этого комплекса был предложен авторами на основании данных элементного анализа и ИК спектроскопии. Других исследований полученного вещества они не проводили. Поскольку взаимодействие нитрозохлорокомплексов рутения с аммиаком сопровождается образованием набора комплексных форм, в том числе и полимерного строения [13, 18, 19], мономерность и индивидуальность описанного в работе [17] моноамминокомплекса нитрозорутения вызывает большие сомнения.

Как было нами показано в работе [19], при взаимодействии раствора $(NH_4)_2[Ru(NO)Cl_5]$ с трехкратным избытком карбоната аммония при pH ~ 10 получается комплекс нитрозорутения тетраамминового ряда *транс*-[Ru(NO)(NH₃)₄OH]Cl₂ с близким к количественному выходом.

^{*} E-mail: max ilyin@ngs.ru

Снижение количества $(NH_4)_2CO_3$ и уменьшение pH приводят к понижению выхода тетраамминокомплекса. По данным ЯМР, в маточном растворе осаждения *mpaнc*-[Ru(NO)(NH₃)₄OH]Cl₂, полученном при pH ~ 7, на один атом рутения в среднем приходится полторы молекулы координированного аммиака. Эти данные показывают, что растворы, полученные взаимодействием нитрозохлорокомплексов рутения с солями аммония в нейтральной области pH, могут содержать нитрозомоноамминокомплекс.

Целью настоящей работы являлось исследование строения продуктов взаимодействия нитрозопентахлорорутенат-иона с буферным раствором ацетата аммония, pH которого близок к нейтральному.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез [Ru(NO)(NH₃)₃(H₂O)Cl][Ru(NO)(NH₃)₃(OH)Cl][Ru(NO)(NH₃)Cl₄]₂Cl·2H₂O (соединение I). Навеску ~0,7 г ($2 \cdot 10^{-3}$ моль) (NH₄)₂[Ru(NO)Cl₅], синтезированного по методике, описанной в [20], помещали в стакан, добавляли ~100 мл дистиллированной воды и 2,3 г ($3 \cdot 10^{-2}$ моль) или 4,6 г ($6 \cdot 10^{-2}$ моль) ацетата аммония. Стакан, накрытый часовым стеклом, нагревали на водяной бане при $t \sim 90$ °C в течение 8 ч, после чего раствор упаривали до минимального объема (~10 мл) и охлаждали до комнатной температуры. К образовавшемуся вязкому раствору добавляли ~10 мл конц. HCl и снова нагревали раствор на бане в течение 2—3 ч, по мере испарения восстанавливая объем смеси конц. HCl. Затем раствор упаривали до минимального объема (~10 мл), охлаждали до комнатной температуры и добавляли ~5 мл дистиллированной воды для растворения выпавшего осадка NH₄Cl. Красно-коричневый осадок, остаюцийся на дне стакана, отфильтровывали, промывали ~10 мл водного раствора этанола (~85 %) и сушили в токе воздуха.

Полученный осадок промывали на фильтре дистиллированной водой (~10 мл) до тех пор, пока промывные воды не переставали быть окрашенными. На фильтре после этого остается светло-коричневый осадок, дифрактограмма и ИК спектры которого совпадают с описанными в [16] для *oc*-[Ru(NO)(NH₃)₂Cl₃] (выход ~30—50 %).

К растворам, полученным в результате частичного растворения первоначальных осадков, добавляли равный объем конц. HCl и оставляли растворы при комнатной температуре. В случае, когда для проведения реакции с $(NH_4)_2[Ru(NO)Cl_5]$ использовали бо́льшее количество ацетата аммония, из раствора выделялся осадок, данные РФА и ИК для которого совпадают с описанными в [13] для [Ru(NO)(NH₃)₃(H₂O)Cl]Cl₂ (выход ~50 %). В случае использования ме́ньшего количества ацетата аммония через несколько дней из раствора выпадали красновато-коричневые кристаллы соединения I, пригодные для исследования методом PCA.

ИК спектры синтезированных комплексов регистрировали на Фурье-спектрометре Scimitar FTS 2000 в области 4000—375 см⁻¹. Образцы для съемки готовили по стандартной методике прессованием навесок в таблетки с KBr.

Рентгенографические исследования соединений проведены на дифрактометре ДРОН-3М (R = 192 мм, Cu K_{α} -излучение, Ni-фильтр, детектор сцинтилляционный с амплитудной дискриминацией) в области углов 20 от 5 до 50° при комнатной температуре. Дифрактограмма I полностью проиндицирована по данным монокристальных исследований, что подтверждает однофазность выделенного продукта.

Параметры элементарных ячеек и экспериментальные интенсивности для расшифровки кристаллических структур измерены при комнатной температуре на автоматическом четырех-кружном дифрактометре CAD-4 (МоК_а-излучение, графитовый монохроматор).

Структура расшифрована стандартным методом тяжелого атома и уточнена в анизотропноизотропном (для H) приближении, атомы водорода заданы геометрически. Все расчеты проведены по комплексу программ SHELX-97 [21].

Кристаллографические характеристики и основные показатели уточнения представлены в табл. 1, координаты атомов с величинами эквивалентных тепловых колебаний — в табл. 2.

Таблица 1

Кристаллографические данные и условия дифракционного эксперимента

Характеристика	Значение	Характеристика	Значение	
Температура, К	293(2)	Число измеренных рефлексов	2092	
Пр. группа	Сс	Число независимых рефлексов [R(int)]	2092 [0,0000]	
<i>a</i> , Å	33,530(7)	Диапазон <i>h</i> , <i>k</i> , <i>l</i>	$0 \le h \le 39, \ 0 \le k \le 9,$	
<i>b</i> , Å; β, град.	8,202(2); 101,54(3)		$-14 \le l \le 13$	
<i>c</i> , Å	11,844(2)	Область съемки по θ, град.	24,96	
Ζ	12	Полнота сбора данных	73,8 %	
V, Å ³	3191,4(11)	Метод уточнения	полноматричный	
$\rho_{\rm выч}, \Gamma/cm^3$	2,315		МНК по F^2	
μ, мм ⁻¹	2,826	Число уточняемых параметров	227	
F(000)	2124	S -фактор по F^2	0,663	
Диапазон Ө, град.	2,48—24,96	<i>R</i> 1; <i>wR</i> 2 [$I > 2\sigma(I)$]	0,0362; 0,0757	
		<i>R</i> 1; <i>wR</i> 2 (все данные)	0,0719; 0,0840	

Таблица 2

TC	``	~						< 2	1
KOO	กลับบลทน	DADICULIY	amomog u	<i>```QUQUIQUIDUUUUUUUUUUUUUUUUUUUUUUUUUUUU</i>	monnalio	папамот	ทนา (Δ-	۱
100	pounumoi	ousachoix	um0.m00 u	SKouousienninoie	mennoone i	upumem	poi	<u> </u>	,

Атом	x/a	y/b	z/c	$U_{\scriptscriptstyle m 3KB} \! imes \! 10^3$	Атом	x/a	y/b	z/c	$U_{ m _{3KB}} imes 10^3$
Ru(1)	3874(1)	1258(8)	7158(3)	15(1)	N(15)	4376(18)	1470(90)	7950(50)	150(20)
Ru(2)	2800(1)	3712(9)	2556(3)	24(2)	O(15)	4667(9)	1460(40)	8660(30)	42(9)
Ru(3)	4(1)	11232(8)	6600(4)	29(2)	N(21)	2789(10)	1190(60)	2830(30)	17(8)
Ru(4)	1075(1)	16290(9)	6213(3)	22(2)	N(22)	3282(16)	4130(70)	3490(40)	78(17)
Cl(1)	1973(12)	11176(13)	6940(60)	125(5)	O(22)	3589(7)	4060(30)	4050(20)	10(6)
O(1W)	1693(11)	8620(70)	9350(40)	110(16)	N(24)	3041(10)	3420(40)	1050(30)	19(9)
O(2W)	2348(9)	11350(50)	9850(30)	51(8)	O(25)	2256(7)	3550(30)	1577(19)	8(6)
Cl(11)	3914(5)	-1600(20)	7395(9)	25(4)	N(26)	2765(8)	6250(50)	1930(20)	30(8)
Cl(12)	3863(5)	4120(20)	6869(15)	34(4)	O(35)	-253(14)	10950(70)	8170(40)	55(14)
Cl(13)	3522(5)	1450(30)	8703(14)	36(5)	N(36)	-456(6)	11320(30)	5637(18)	0(5)
Cl(16)	3255(5)	980(30)	5933(14)	32(5)	O(36)	-731(9)	11040(40)	4980(30)	38(9)
Cl(23)	2463(6)	4270(30)	4069(14)	39(5)	N(42)	834(10)	16940(40)	7720(20)	18(9)
Cl(31)	56(5)	14080(20)	6879(13)	29(4)	O(43)	1628(10)	16670(40)	7360(30)	43(10)
Cl(32)	-6(5)	8360(20)	6405(16)	59(6)	N(44)	611(8)	16110(40)	5320(20)	0(6)
Cl(33)	663(5)	10980(30)	7853(12)	27(4)	O(44)	334(11)	15750(50)	4520(30)	72(14)
Cl(34)	351(5)	11570(30)	5037(12)	30(4)	N(45)	1158(8)	13740(50)	6530(20)	21(7)
Cl(41)	1416(6)	15710(30)	4662(14)	42(6)	N(46)	1135(11)	18830(60)	5760(30)	30(10)
O(14)	4122(12)	1020(60)	5730(30)	42(11)					

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При растворении ацетата аммония в воде протекают следующие процессы:

$$\begin{array}{l} \mathrm{CH_3COONH_4} \rightarrow \mathrm{NH_4^+} + \mathrm{CH_3COO^-},\\ \mathrm{CH_3COO^-} + \mathrm{H_2O} \leftrightarrows \mathrm{CH_3COOH} + \mathrm{OH^-},\\ \mathrm{NH_4^+} + \mathrm{H_2O} \leftrightarrows \mathrm{NH_{3aq}} + \mathrm{H_3O^+}. \end{array}$$

В водных растворах при нагревании на водяной бане происходит акватация нитрозопентахлорорутенат-иона с образованием аквахлорокомплекса, проявляющего свойства слабой кислоты (p $K_a \sim 6,0$) [22, 23]:

 $[Ru(NO)Cl_5]^{2-} + H_2O \leftrightarrows [Ru(NO)(H_2O)Cl_4]^- + Cl^-,$

107

$[Ru(NO)(H_2O)Cl_4]^- \leftrightarrows [Ru(NO)(OH)Cl_4]^{2-} + H^+.$

В реакционных растворах, полученных при нагревании $(NH_4)_2[Ru(NO)Cl_5]$ с ацетатом аммония, возможно образование комплексов, содержащих во внутренней сфере нитрозогруппу, координированные хлорид- и ацетат-ионы, молекулы воды и аммиака. Методом ИК спектроскопии нами было установлено, что сухой остаток, полученный упариванием досуха такого реакционного раствора, содержит смесь нитрозоамминокомплексов рутения с ацетат-ионом во внутренней сфере: 3549 ср, 3264 с, 3140 с, 3046 ср (v(OH), v(NH)), 2807 сл (v(CH)), 1876 ос (v(NO)), 1642 ср ш пл, 1562 (δ (OH), δ (NH)), 1404 ос (v(COO)), 1298 ср (δ (NH)), 1103 ср, 1082 ср (δ (CH₃)), 937 сл (v(CC)), 878 сл (ρ (NH)), 688 сл, 625 ср (δ (OCO), v(Ru—NO)), 485 сл (v(Ru— NH₃)). Отнесение полос поглощения проведено нами на основании данных [24, 25]. Попытка закристаллизовать такие комплексы с целью установления их точного состава и строения методом рентгеноструктурного анализа была безуспешной — образовывались карамелеподобные стекловидные массы красновато-коричневого цвета.

Для разделения образовавшейся смеси и выделения индивидуальных нитрозоамминокомплексов мы обработали растворы соляной кислотой. При взаимодействии полученных растворов с HCl с выходом, не превышающим 50 %, был выделен *oc*-[Ru(NO)(NH₃)₂Cl₃].

Интересно, что при взаимодействии раствора $(NH_4)_2[Ru(NO)Cl_5]$ с недостатком карбоната аммония [19] получается граневой изомер этого же состава *гран*-[Ru(NO)(NH₃)₂Cl₃]. Такое различие в образовании изомерных диамминокомплексов, по нашему мнению, объясняется конкурентным комплексообразованием с ацетат-ионом. В случае карбоната аммония замещение происходит в полном соответствии с закономерностью о *mpaнc*-влиянии: на двух координатах Cl—Ru—Cl в октаэдре исходного хлорокомплекса, за счет бо́льшего *mpaнc*-влияния хлоридионов по сравнению с молекулами NH₃, происходит образование *цис*-диамминокомплекса. При наличии в системе молекул NH₃ и ацетат-ионов образуются ацетатоамминокомплексы (с моноили бидентатно координированным ацетат-ионом), последующая обработка которых концентрированной HCl приводит к протонированию координированных ацетат-ионов и дальнейшему их замещению на хлорид-ионы. Одна из возможных схем протекающих при этом превращений:

Помимо осадка *ос*-[Ru(NO)(NH₃)₂Cl₃] из маточных растворов был выделен сложный комплекс **I**. Этот же комплекс образовывался в одном из опытов при взаимодействии раствора (NH₄)₂[Ru(NO)Cl₅] с карбонатом аммония [19]. В спектре ЯМР ¹⁴N маточного раствора, оставшегося после отделения *транс*-[Ru(NO)(NH₃)₄OH]Cl₂, наблюдалось три сигнала — нитрозогруппы ($\delta \sim -40$ м.д), координированного аммиака ($\delta = -398$ м.д.) и иона аммония ($\delta = -354$ м.д.). Соотношение интегральных интенсивностей линий нитрозогруппы и координированных молекул аммиака в этом спектре составляло 1:1,5. Выяснить строение твердой фазы соединения **I**, образовавшегося после обработки маточного раствора концентрированной HCl при нагревании, нам на тот момент не удалось. Строение этого соединения в настоящее время установлено нами методами ИК спектроскопии и PCA.

В ИК спектре соединения I присутствует две полосы валентных колебаний нитрозогруппы (при 1910 и 1875 см⁻¹), что указывает на присутствие как минимум двух неравноценных групп

NO, входящих в состав соединения (полосу при ~1880 см⁻¹ обычно относят к нитрозогруппе, находящейся в *транс*-положении к хлорид-иону [25, 26], при ~1910 см⁻¹ — в *транс*-положении к координированной молекуле H₂O [27, 28]), расщеплены также полосы v(Ru—NO) (600 и 585 см⁻¹). В спектре присутствует полоса валентных колебаний координированной молекулы H₂O (при 2850 см⁻¹), связанной сильными водородными связями. Подобная особенность в этой же области ИК спектра отмечалась для нитрозотриамминокомплекса [Ru(NO)(NH₃)₃(H₂O)Cl]Cl₂ [29]. Помимо уже перечисленных полос, в спектре также присутствуют (см⁻¹): 3510 (v(OH)); 3260 и 3160 (v(NH₃)); 1580, 1535, 1300 и 1280 (δ (NH₃)); 840 и 805 (ρ (NH₃)); 500 и 470 (v(Ru—NH₃)).

ОПИСАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ СОЕДИНЕНИЯ І

По данным PCA соединение I содержит две молекулы кристаллизационной воды, один внешнесферный хлорид-ион и четыре кристаллографически независимых комплексных иона. Основные межатомные расстояния в комплексных частицах приведены в табл. 3, валентные углы — в табл. 4. Строение комплексных частиц с нумерацией атомов показано на рис. 1.

Все центральные атомы рутения имеют искаженно-октаэдрическое окружение, валентные углы при атомах Ru отклоняются от 90° на $\pm 10^{\circ}$. Геометрические характеристики нитрозогрупп, входящих в состав всех комплексов, обычные и хорошо согласуются с литературными данными [2, 11, 29—31]: средняя величина длин связей Ru—N(NO) равна 1,7 Å, расстояний N—O 1,15 Å. Однако отметим весьма необычное заметное отклонение углов Ru—N—O от 180° (изменяются в пределах 164—166°). Со схожей проблемой столкнулись авторы работ [17, 32]. По всей видимости, в структуре имеет место статистическое расположение двух аксиальных лигандов (NO и ее *транс*-лиганда), что и приводит к искажениям при расчете параметров. Расстояния Ru—Cl во всех четырех комплексных частицах попадают в интервал 2,29—2,411 Å, что согласуется с приведенными в литературе значениями [31, 32].

Атомы Ru(2) и Ru(4) имеют схожее между собой координационное окружение, образованное атомом хлора, четырьмя атомами азота, принадлежащими трем молекулам аммиака и нитрозогруппе, и атомом кислорода. Отметим заметное различие в значениях длин связей Ru(2)— O(25) (1,96(2) Å) и Ru(4)—O(43) (2,09(3) Å), что говорит о неравноценности кислородсодержащих лигандов при атомах рутения. Обычно, когда в *транс*-положении к нитрозогруппе находится координированная молекула воды, расстояния Ru—O лежат в пределах 2,062—2,080 Å [33, 34], если в *транс*-положении к NO находится координированный гидроксид-ион, это расстояние заметно короче (~1,96 Å) [14, 29]. Следовательно, один из триамминокатионов в полученном нами соединении — [Ru(NO)(NH₃)₃(OH)Cl]⁺ (для Ru(2)), а другой — [Ru(NO)(NH₃)₃× ×(H₂O)Cl]²⁺ (для Ru(4)). Наличие в полученном соединении и координированных молекул воды, и гидроксид-ионов подтверждается данными ИК спектроскопии, которые мы обсуждали ранее.

Таблица З

Расстояние	<i>d</i> , Å						
Ru(1)—N(15)	1,76(6)	Ru(2)—N(22)	1,80(5)	Ru(3)—N(36)	1,3(2)	Ru(4)—N(44)	1,70(3)
Ru(1)—N(14)	2,04(4)	Ru(2)—O(25)	1,96(2)	Ru(3)—O(35)	2,1(4)	Ru(4)—O(43)	2,09(3)
Ru(1)—Cl(16)	2,293(18)	Ru(2)—N(21)	2,09(5)	Ru(3)—Cl(31)	2,36(2)	Ru(4)—N(45)	2,13(4)
Ru(1)—Cl(11)	2,365(19)	Ru(2)—N(24)	2,11(3)	Ru(3)—Cl(32)	2,37(2)	Ru(4)—N(42)	2,17(3)
Ru(1)—Cl(12)	2,37(2)	Ru(2)—N(26)	2,1(4)	Ru(3)—Cl(34)	2,390(17)	Ru(4)—N(46)	2,17(5)
Ru(1)—Cl(13)	2,375(16)	Ru(2)—Cl(23)	2,48(18)	Ru(3)—Cl(33)	2,411(18)	Ru(4)—Cl(41)	2,397(16)
N(15)—O(15)	1,16(6)	N(22)—O(22)	1,11(5)	N(36)—O(36)	1,11(3)	N(44)—O(44)	1,22(4)

Межатомные расстояния в комплексных частицах соединения I

Таблица 4

Угол Угол ω, град. Угол ω, град. ω, град. N(15)—Ru(1)—O(14)87(2) N(21)—Ru(2)—N(24)92,2(13) N(36)—Ru(3)—Cl(33) 176,1(10) N(15)—Ru(1)—Cl(16)173,0(18) N(22)—Ru(2)—N(26)90.3(19) O(35)—Ru(3)—Cl(33) 86,4(13) N(14)—Ru(1)—Cl(16)86,2(12) O(25)—Ru(2)—N(26)83,4(11) Cl(31)—Ru(3)—Cl(33) 88,1(7) 90(2) N(21)-Ru(2)-N(26) 169,4(12)Cl(32)—Ru(3)—Cl(33) N(15)—Ru(1)—Cl(11)88,2(8) 80,1(12) N(14)—Ru(1)—Cl(11)89,0(15) N(24)—Ru(2)—N(26)Cl(34)—Ru(3)—Cl(33)87,7(6) N(15)—Ru(1)—Cl(12)88(2) N(22)—Ru(2)—Cl(23)90,4(16) O(36) - N(36) - Ru(3)165(3) O(25)—Ru(2)—Cl(23)86,1(8) N(44)—Ru(4)—O(43)N(14)—Ru(1)—Cl(12)88,3(15) 175,5(13)N(15)—Ru(1)—Cl(13)98,8(18) N(21)—Ru(2)—Cl(23) 92,8(10) N(44)—Ru(4)—N(45)95,6(13) O(43)-Ru(4)-N(45) 174,2(12) N(24)—Ru(2)—Cl(23) 172,0(10) N(14)—Ru(1)—Cl(13)87,9(12) 94,1(9) Cl(11)—Ru(1)—Cl(12)177,0(5) N(26)—Ru(2)—Cl(23) N(44)—Ru(4)—N(42)95,0(12) Cl(16) - Ru(1) - Cl(11)90,1(8) O(22) - N(22) - Ru(2)166(5) O(43)—Ru(4)—N(42)81,8(12) 94,6(10) Cl(16) - Ru(1) - Cl(12)91,1(8) N(36)—Ru(3)—Cl(31)N(45)—Ru(4)—N(42)98,8(11) Cl(16)—Ru(1)—Cl(13) O(35)—Ru(3)—Cl(31) 90,9(15) N(44)—Ru(4)—N(46)88,1(6) 92,7(14) Cl(11)—Ru(1)—Cl(13) 90,0(7) N(36)—Ru(3)—Cl(32) 89,1(10) O(43)-Ru(4)-N(46) 84,4(13) 96,4(14) Cl(12)—Ru(1)—Cl(13)92,8(7) N(36)—Ru(3)—O(35)N(45)—Ru(4)—N(46)165,7(12) O(15) - N(15) - Ru(1)164(5)O(35)—Ru(3)—Cl(32)88,7(15) N(42)—Ru(4)—N(46)92,0(12) 176,3(6) N(22)—Ru(2)—O(25)172,5(19) Cl(31)—Ru(3)—Cl(32)N(44)—Ru(4)—Cl(41)91,4(9) N(22)—Ru(2)—N(21) N(36)—Ru(3)—Cl(34) 89,6(8) O(43)—Ru(4)—Cl(41)98(2) 91,7(9) O(35)—Ru(3)—Cl(34) 173,9(13) O(25)—Ru(2)—N(21)89,0(12) N(45)—Ru(4)—Cl(41)82,9(9) N(22)—Ru(2)—N(24)95,1(18) Cl(31)—Ru(3)—Cl(34) 87,8(7) N(42)—Ru(4)—Cl(41)173,2(11)85,3(11) O(25)—Ru(2)—N(24)87,8(11) Cl(32)—Ru(3)—Cl(34) 92,3(7) N(46)—Ru(4)—Cl(41)O(44) - N(44) - Ru(4)164(3)

Валентные углы в комплексных частицах соединения I

Комплексные частицы с центральными атомами Ru(1) и Ru(3) имеют одинаковое окружение, образованное четырьмя хлорид-ионами, атомом азота нитрозогруппы и еще одним лигандом. Поскольку суммарный заряд триамминокатионов в структуре полученного соединения составляет величину 3+, то, учитывая один внешнесферный хлорид-ион, на оставшиеся два комплексных аниона приходится суммарный заряд 2– (т.е. каждый из анионов имеет заряд по 1–). Следовательно, шестой лиганд, дополняющий октаэдрическое окружение атомов Ru(1) и Ru(3), является нейтральным. Длина связи между центральным атомом рутения (Ru(1) или Ru(3)) в этих комплексных анионах и координационно-связанным атомом нейтрального лиганда (2,04 Å для Ru(1) и 2,1 Å для Ru(3)) позволяют заключить, что шестой лиганд — молекула NH₃ (интервал расстояний Ru—N(NH₃) 2,03—2,14 Å [11, 28, 29]). Координированную молеку-

лу воды в *цис*-положении к нитрозогруппе следует исключить из рассмотрения, поскольку *цис*-изомер $[Ru(NO)(H_2O)Cl_4]^-$ неустойчив и при нагревании изомеризуется в *транс*-изомер, который в концентрированной HCl превращается в нитрозопентахлорокомплекс $[Ru(NO)Cl_5]^{2-}$ [35—37]. Таким образом, формулу анионов, входящих в состав полученного соединения, можно записать в виде $[Ru(NO) \times (NH_3)Cl_4]^-$.

Рис. 1. Строение комплексных частиц в соединении I

Таблица 5

Кратчайшие расстояния между атомами в комплексных частицах соединения I

Расстояние	<i>d</i> , Å
O(1w)O(43)	2,82
O(1w)O(2w)	3,11
O(2w)O(25)	2,79
O(43)O(25)	2,48
O(1w)Cl(1)	3,03
Ru(1)Ru(2)	5,52
Ru(3)Ru(4)	5,49
O(44)O(15)	2,90
O(22)O(36)	2,83

Рис. 2. Фрагмент структуры и схема водородных связей и некоторых кратчайших расстояний в **I**

На рис. 2 показана связь всех структурных единиц ([Ru(NO)(NH₃)₃(OH)Cl]⁺, [Ru(NO)× \times (NH₃)₃(H₂O)Cl]²⁺, [Ru(NO)(NH₃)Cl₄]⁻, Cl⁻ и H₂O) в кри-

сталле полученного соединения. Структурные единицы связаны между собой водородными связями, в которых участвуют молекулы кристаллизационной и координированной воды. В табл. 5 приведены значения кратчайших расстояний между атомами.

Таким образом, исследование строения продуктов взаимодействия $(NH_4)_2[Ru(NO)Cl_5]$ с раствором ацетата аммония показало, что в этой реакции образуются амминокомплексы нитрозорутения с числом молекул координированного аммиака менее четырех. Обработка полученного раствора соляной кислотой приводит к получению $[Ru(NO)(NH_3)_3(H_2O)Cl]Cl_2$, *oc*- $[Ru(NO) \times (NH_3)_2Cl_3]$ и соединения **I**, содержащего ранее не известный нитрозомоноамминанион $[Ru(NO)(NH_3)Cl_4]^-$. Строение этого комплексного соединения установлено методами PCA и ИК спектроскопии. Комплексы того же состава образуются, если вместо ацетата использовать недостаток карбоната аммония, но получающийся диамминокомплекс в этом случае имеет не осевое, а граневое строение.

Авторы выражают благодарность Н.В. Куратьевой и И.В. Королькову за помощь при проведении рентгеновских исследований, Н.И. Алферовой — за регистрацию ИК спектров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Clarke M.J. // Coord. Chem. Rev. 2002. 232. P. 69.
- 2. Tfouni E., Krieger M., McGarvey B.R., Franco D.W. // Ibid. 2003. 236. P. 57.
- 3. Torsoni A.S., de Barros B.F., Toledo J.C. et al. // Nitric Oxide Biol. Chem. 2002. 6, N 3. P. 247.
- 4. Zanichelli P.G., Estrela H.F.G., Spadari-Bratfisch R.C. et al. // Ibid. 2007. 16, N 2. P. 189.
- 5. Kusch L.A., Plotnikova L.S., Shvachko Yu.N. et al. // J. Phys. IV France. 2004. 114. P. 459.
- 6. Kusch L.A., Kurochkina L.S., Yagubskii E.B. et al. // Eur. J. Inorg. Chem. 2006. 20. P. 4074.
- 7. Kusch L.A., Golhen S., Cador O. et al. // J. Cluster Sci. 2007. 17. P. 303.
- 8. Schaniel D., Woike T., Kusch L., Yagubskii E. // Chem. Phys. 2007. 340, N 1-3. P. 211.
- 9. Плюснина О.А., Емельянов В.А., Байдина И.А. и др. // Журн. структур. химии. 2007. **48**, № 1. С. 114.
- 10. Il'in M.A., Kuratieva N.V., Kirichenko O.A. et al. // Acta Crystallogr. E 61. 2005. Part 06. P. i126.
- 11. Bottomley F. // J. Chem. Soc. Dalton Trans. 1974. 15. P. 1600 1605.
- 12. Ильин М.А., Емельянов В.А., Байдина И.А. и др. // Журн. неорган. химии. 2007. 52, № 1. С. 71.
- 13. Емельянов В.А., Байдина И.А., Громилов С.А. и др. // Журн. структур. химии. 2000. **41**, № 6. С. 1242.

- 14. Саломов А.С., Парпиев Н.А., Шарипов Х.Т. и др. // Журн. неорган. химии. 1984. 29, № 10. С. 2608.
- 15. Emel'yanov V.A., Baidina I.A., Il'in M.A., Gromilov S.A. // Журн. структур. химии. 2006. 47, № 2. С. 385.
- 16. Ильин М.А., Емельянов В.А., Байдина И.А. // Там же. 2008. 49, № 6. С. 1129.
- 17. Балакаева Т.А., Анцышкина А.С., Езерницкая М.Г. и др. // Журн. неорган. химии. 2001. **46**, № 5. С. 751.
- 18. Емельянов В.А., Вировец А.В., Байдина И.А. // Журн. структур. химии. 2008. 49, № 3. С. 585.
- 19. Ильин М.А., Емельянов В.А., Беляев А.В. и др. // Журн. неорган. химии. 2008. 53, № 7. С. 1152.
- 20. Емельянов В.А., Храненко С.П., Беляев А.В. // Там же. 2001. 46, № 3. С. 404.
- 21. Sheldrick G.M. SHELX-97, release 97-1. Germany, University of Göttingen, 1997.
- 22. Mercer E.E., Campbell W.M., Wallace R.M. // Inorg. Chem. 1964. 3, N 7. P. 1018.
- 23. Mercer E.E., Cox A.B. // Inorg. Chim. Acta. 1972. 6, N 4. P. 577.
- Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. N. Y.: John Wiley & Sons, Inc., 1997.
- 25. Светлов А.А., Синицын Н.М., Кравченко В.В. // Журн. неорган. химии. 1989. 34, № 4. С. 953.
- 26. Mercer E.E., McAlister W.A., Durig J.R. // Inorg. Chem. 1966. 5, N 11. P. 1881.
- 27. Emel'yanov V.A., Virovets A.V., Baidina I.A. et. al. // Inorg. Chem. Comm. 2001. 4, N 1. P. 33.
- 28. Bezerra C.W.B., Silva S.C.D., Gambardella M.T.P. et al. // Inorg. Chem. 1999. 38, N 25. P. 5660.
- 29. Емельянов В.А., Байдина И.А., Громилов С.А. и др. // Журн. структур. химии. 2000. 41, № 6. С. 1242.
- 30. Gorelsky S.I., Silva S.C., Lever A.B.P., Franco D.W. // Inorg. Chim. Acta. 2000. 300-302. P. 698.
- 31. Емельянов В.А., Байдина И.А., Громилов С.А. и др. // Журн. структур. химии. 2002. 43, № 2. С. 327.
- 32. Емельянов В.А., Байдина И.А., Храненко С.П. и др. // Там же. 2003. 44, № 1. С. 48.
- 33. Невский Н.Н., Синицын Н.М., Светлов А.А. // Журн. неорган. химии. 1990. 35, № 5. С. 1159.
- 34. *Ходашова Т.С., Порай-Кошиц М.А., Сергиенко В.С. и др. //* Журн. структур. химии. 1972. **13**, № 6. С. 1105.
- 35. Емельянов В.А., Байдина И.А., Громилов С.А. и др. // Там же. 2000. 41, № 3. С. 567.
- Емельянов В.А., Беляев А.В., Федотов М.А. и др. // Тез. докл. XII Конкурс-конф. им. А.В. Николаева. – Новосибирск, 2001. – С. 35.
- 37. *Емельянов В.А., Беляев А.В., Федотов М.А., Храненко С.П.* // Тез. докл. XVII Междунар. Черняевская конф. по химии, аналитике и технологии платиновых металлов. М., 2001. С. 49.