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В статье представлены результаты аналитического решения задачи о распространении тепла внутри 

массивного твердого образца при концентрированном теплоподводе к поверхности этого образца. С использо-

ванием интегральных косинус-преобразования Фурье и преобразования Ганкеля получены аналитические 

выражения для нестационарного распределения температуры внутри тела. Представлены примеры применения 

решений для оценки характерных времен достижения точек Чернова Ac1 и Ac3 модельных гипоэвтектоидных 

сталей при воздействии на них лазерного излучения. Продемонстрировано приложение указанного решения 

для расчета динамики охлаждения керамических образцов Al2O3 и SiO2 под воздействием импактных воздуш-

ной и водяной струй. 

Ключевые слова: импактное охлаждение, воздушные и водяные струи, косинус-преобразование Фурье, 

преобразование Ганкеля, гипоэвтектоидная сталь, точки Чернова, нагрев лазерным пучком.   

Введение 

В настоящее время наблюдается большой интерес к новым технологиям создания 

функциональных материалов с заданным свойствами. В связи с этим вопросы теплопе-

реноса при тепловом воздействии на керамики, гипоэвтектоидные стали и металлы, 

склонные к аморфизации, представляются важными, в особенности такими современ-

ными методами локального воздействия, как электронные и лазерные пучки, струи низ-

котемпературной плазмы, импактные газовые или жидкостные струи. 

Обработка поверхностей с помощью струй низкотемпературной плазмы широко 

распространена, основные аспекты этой технологии рассматривались в работах [1, 2]. 

К таковым следует отнести процессы межфазного обмена импульсом, тепло- и массопе-

ренос в пылевых плазменных струях и взаимодействие между частицами, находящимися 
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в различных агрегатных состояниях, и поверхностью. Большое внимание в указанных 

работах уделялось экспериментальным и теоретическим исследованиям процессов в гомо-

генных и гетерогенных плазменных струях. 

Лазерный нагрев поверхностей включает в себя широкий класс методов обработки 

материалов, таких как закалка, отжиг, поверхностная переплавка и сплавление. Отме-

тим, что высокоэнергетичные пучки, в том числе лазерные, используются для нагрева 

поверхности, а для эффективного ее охлаждения применяются воздушные или жидкост-

ные импактные струи [3 – 8]. И в том и в другом случае важно иметь возможность пред-

сказывать динамику изменения температуры и время достижения определенных ее зна-

чений. Так, в случае нагрева гипоэвтектиодной стали для этого используются темпера-

тура плавления и точки Чернова [9]. При охлаждении электронных устройств важно из-

бегать температуры перегрева, при которой происходит потеря рабочих свойств полу-

проводников. Например, это происходит в случае, когда при повышении температуры 

диод начинает проводить ток в обоих направлениях, что может сохраняться даже 

при последующем его охлаждении [10, 11]. Такое явление объясняется тем, что при по-

вышении температуры ток, проходящий через полупроводниковое устройство, увеличи-

вается, что приводит к большей диссипации тепла на нем и, следовательно, дальнейше-

му повышению температуры. Очевидно, что предсказание такого поведения устройств 

является актуальной задачей.  

Аналитические решения позволяют проводить априорный анализ, который дает 

возможность предсказывать нежелательные тепловые режимы и, соответственно, избе-

гать их. 

Таким образом, целью настоящего исследования является построение аналитичес-

кого решения для задачи распространения тепла от концентрированного источника 

внутри различных материалов. Это решение должно быть одинаково справедливо как 

для режима нагрева, так и охлаждения материала. 

1. Постановка задачи и математическая модель 

Локализованные источники позволяют нагревать порошковые и композитные ма-

териалы с минимальными затратами энергии. Кроме того, отдельные части конструкций 

и устройств, изготовленные из некоторых материалов, например, титана, могут быть 

соединены только путем сварки струей низкотемпературной плазмы или электронным 

пучком. Данный подход требует точного контроля температуры образцов. На основе 

этих соображений и будем искать аналитическое решение для распределения темпера-

туры в общей постановке. 

Рассмотрим полубесконечный образец, на поверхности которого (z = 0, ось z на-

правлена вниз) локализованный осесимметричный тепловой источник радиуса R прила-

гается в момент времени t = 0. В общем случае плотность теплового потока q = q0 f (t, r), 

где f (t, r) — безразмерная функция, описывающая распределение теплового потока 

по нагреваемой поверхности. Начальная температура образца постоянна и равна T0. 

Уравнение теплопроводности в цилиндрических координатах (t, r, z), описывающее 

динамику поля температуры внутри образца, может быть записано в форме: 

2 2

2 2

1
,

T T T T
a

t r rr z

    
       

                                              (1) 
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где a = ( )c   — коэффициент температуропроводности,  — плотность, c — теплоем-

кость. 

Начальные и граничные условия для описываемой задачи имеют вид: 

T(0, r, z) = T0,                                                          (2) 

0

0

( , ).
z

qT
f t r

z 


 


                                                    (3) 

Для приведения краевой задачи к безразмерному виду введем следующие зависи-

мые и независимые переменные:  = (T – T0)/T0, число Фурье Fo = at/R2, r* = r/R, z* = z/R. 

Тогда уравнения (1) – (3) можно записать как  

2

2

1
,

Fo
r

r r r z

      
  

   
                                               (4) 

 (r, z, 0) = 0,                                                          (5) 

 /z
z = 0

 = – Bif (Fo, r),                                                 (6) 

где Bi = q0R/(T0) — число Био (здесь и далее мы опускаем звездочку на безразмерных 

величинах). 

2. Аналитическое решение 

Последовательно применяя к задаче (4) – (6) косинус-преобразование Фурье по пе-

ременной z  

 (r, Fo) =

0

2
( , ,Fo)cos( )r z z dz 





                                        (7) 

и преобразование Ганкеля нулевого порядка по переменной r 

,  (Fo) = 0

0

( ,Fo) ( ) ,r r J r dr 



                                           (8) 

получим 

 , 2 2
, (Fo),

Fo

d
F

d

 
  


                                               (9) 

,  (0) = 0,                                                            (10) 

где  F (Fo) = Bi 0

0

( , Fo) ( ) .rf r J r dr



  

Для вывода уравнения (9) после применения преобразования Ганкеля к слагаемому 

1
r

r r r

  
 
  

 последнее было дважды проинтегрировано по частям с учетом следующих 

свойств функций Бесселя: 

0 1 1
1 0

( ) ( ) ( )
( ), .

dJ x dJ x J x
J x J

dx dx x
                                          (11) 



Федорченко А.И., Терехов В.В., Ян Лун Н. 

544 

Решая уравнения (9) и (10) методом вариации произвольной постоянной, получаем 

Fo
2 2 2 2( )Fo ( )

,

0

(Fo) e e ( ) .F d    
                                           (12) 

После использования обратных преобразований Фурье и Ганкеля имеем 

 (z, r, Fo) = 

Fo
2 2 2 2( )Fo ( )

0

0 0 0

2
e e ( ) cos ( ) ( ) .F d z J r d d    

       


 

  
 
 
 
 

         (13) 

В случае стационарной плотности теплового потока на поверхности решение, дан-

ное уравнением (13), упрощается: 

 (z, r, Fo) =
2 2( )Fo

02 2

0 0

2
1 e cos ( ) ( ) .

F
z J r d d

       
  

 

  
              (14) 

Обычно распределение плотности теплового потока q = q0 f (r) при использовании 

плазменной струи или лазерного пучка описывается гауссовым профилем: Q(r) = q/q0 = 

= exp (–k r
2
), где k — безразмерный коэффициент фокусировки. В этом случае преобра-

зование Ганкеля от Q(r) является первым экспоненциальным интегралом Вебера: 

F = Bi 
2 2 4

0

0

Bi
( )e e .

2

kr krJ r dr
k





                                      (15) 

Подстановка (15) в (14) дает 

 (z, r, Fo) = Bi

2 2 2( )Fo

4
0 2 2

0 0

1 1 e
( )e cos ( ) .

2

kJ r z d d
k

  

    
  

    

             (16) 

Для удобства сравнения профилей температуры и радиуса локального нагрева бу-

дем принимать, что при r = R функция exp (–k r
2
) уменьшается в e раз, т.е. k r

2
 = 1. В этом 

случае безразмерный коэффициент фокусировки равен 1, так что k* = kR
2
 = 1. 

В качестве примеров теплового воздействия лазерного пучка рассмотрим два важ-

ных для практики случая: нагрев лазером модельной гипоэвтектоидной стали (C < 0,8 %) 

и молибдена как материала, склонного к аморфизации [12, 13]. В случае нагрева стали 

важны моменты достижения критических температур Ac1 = 727 °C и Ac3 = 820 °C (точки 

Чернова). Точка Ac1 соответствует переходу перлита в аустенит (начало рекристаллиза-

ции), а точка Ac3 соответствует окончанию рекристаллизации, т.е сталь переходит в од-

нофазный аустенит. В общем случае температура Ac3 зависит от содержания углерода 

в стали. Под модельностью в данном случае подразумевается постоянство теплофизичес-

ких свойств в зависимости от температуры. В действительности теплофизические свой-

ства, представленные в табл. 1, изменяются существенно в исследуемом диапазоне тем-

ператур. Поэтому пренебрежение данной зависимостью является приближением. Также 

следует отметить, что точка Кюри для сталей находится в непосредственной близости 

к рассматриваемым температурам, и это необходимо учитывать для реальных приложе-

ний. 
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Во время теплового воздействия на аморфный молибден важно контролировать 

температуру, т.к. кристаллизация возможна в температурном диапазоне 0,4Tm – 0,6Tm, 

что также сопровождается резким изменением теплофизических свойств. 

Проведем расчеты для следующих значений режимных и безразмерных парамет-

ров: q0 = 10
8
 Вт/м

2
, R = 2 мм. Тогда Bi = 11,1 и 4,94 для стали и молибдена соответственно. 

Рисунки 1 и 2 демонстрируют динамику нагрева лазерным пучком гипоэвтектоид-

ной стали и молибдена соответственно. 

3. Включение параметров импактной струи в математическую модель 

В отличие от лазерного пучка, для описания импактной струи в математическую 

модель следует ввести следующие параметры: температуру T и скорость струи u, кине-

матическую вязкость , коэффициент температуропроводности жидкости a = /(c), а так-

же радиус струи R. Температура T может быть учтена путем использования безразмер-

ной температуры в виде  = (T – T0)/( T – T0). 
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Та б лица  1  

Теплофизические свойства гипоэвтектоидной стали (C < 0,8 %) и молибдена 

                                 Параметры 

Материал подложки 
, кг/м

3 c, Дж/(кгK) , Вт/(мK) Tm, K 
a, (м

2
/с) 

Гипоэвтектоидная сталь (C < 0,8 %) 7800 600 70 1758 1,5·10
–5 

Молибден 10210 244 135 2896 5,42·10
–5 

 

Рис. 1. Динамика нагрева 

гипоэвтектоидной стали 

лазерным пучком. 
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Многочисленные теоретические и экспериментальные исследования импактных 

струй [3, 4] предлагают применять закон теплообмена на поверхности, в общем виде 

записываемый следующей формулой: 

Nu = ARemPrn,                                                            (17) 

где A — некоторый коэффициент, Re = uR/  и Pr =  /a — числа Рейнольдса и Прандтля 

соответственно. 

В частности, для учета влияния расстояния от сопла до поверхности на теплоотдачу 

импактной струи жидкости в формулу (17) включается число Фруда [6]: 

Nu = 1,035Re
0,5

Pr
0,5

Fr
–3/4

 для Fr <<1,                                    (18) 

Nu = 0,795Re
0,5

Pr
0,5

 для Fr >>1,                                         (19) 

где Fr = u/(gh)
0,5

 — число Фруда, g — ускорение свободного падения, h — расстояние 

от сопла до подложки.  

Тепловой поток на поверхности подложки может быть рассчитан по формуле q = 

= Nu(T – T0) λ/R. При этом скорость струи, кинематическая вязкость и коэффициент 

температуропроводности включены в модель через критерии Re и Pr.  

С учетом новых безразмерных переменных распределение температуры в подлож-

ке, охлаждаемой жидкой или газовой импактной струей, имеет вид: 

 (z, r, Fo) = 

2 2
2

( )Fo
4

0 2 2

0

Bi 1 e
e ( ) cos( ) .J r az d d

 
   

  

  
 


                   (20) 

В качестве примера рассмотрим результаты охлаждения воздушной и водяной им-

пактными струями двух керамических подложек — Al2O3 и SiО2. Физические свойства 

этих подложек приведены в табл. 2. 
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Рис. 2. Динамика нагрева молибдена лазерным пучком. 

Та б лица  2  

Теплофизические свойства керамических подложек [1] 

                         Параметры 

Материал подложки 
, кг/м

3
 c, Дж/(кгK) , Вт/(мK) Tm, K a, м

2
/с 

Al2O3 3970 775 40 2300 1,3·10
–5

 

SiO2 2200 1052 1,38 2000 6,0·10
–7
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Полный набор данных, использованных ниже для расчетов воздушной и водяной 

импактных струй, включая теплофизические свойства воздуха и воды, представлен 

в табл. 3. 

Критериальные уравнения для вычисления плотности теплового потока, согласно 

работе [3], записываются в виде: 

0,5 0,4Nu 0,715 Re Pr для 0,15 Pr 3,D      

0,5 0,33Nu 0,797 Re Pr для 0,15 Pr 3.D                                      (21) 

В результате вычисления числа Нуссельта по (21) и данным табл. 3 для воздушной 

струи получаем Nu = 19,6, а для водяной — Nu = 47,9. Следующие формулы позволяют 

определить плотность теплового потока и число Био: 

 
 

0
0 0

0

Nu , Bi .
q R

q T T
D T T








   
 

                                (22) 

Соответственно, из уравнения (22) получаем q0 = – 4076,8 Вт/м
2
 — для воздушной струи 

и q0 = –2,31·10
5 Вт/м

2
 — для водяной. Для воздушной струи, охлаждающей подложку 

из SiO2, Bi = – 0,3693, а для водяной струи на образце из Al2O3  Bi = – 0,723.  

Рисунок 3 демонстрирует режимы охлаждения керамической подложки из SiO2 , 

натекающей импактной струей, и подложки из Al2O3 — водяной струей. Из рисунка 

видно, что при равных числах Рейнольдса эффективность охлаждения существенным 

образом определяется числом Прандтля. Кроме того, характерные времена охлаждения 

могут существенно различаться. Так, в рассмотренных примерах при одинаковых числах 

Фурье физическое время остывания отличается больше чем в 20 раз: t (Fo = 0,1) = 0,77 с 

— для Ali2O3 и t (Fo = 0,1) = 16,7 с — для SiO2. 

Заключение 

С использованием интегральных косинус-преобразования Фурье и преобразования 

Ганкеля получены аналитические выражения для нестационарного поля температуры 

внутри образцов, подвергающихся локальному нагреву. Эти решения позволяют проводить 

Та б лица  3  

Использованные в расчетах свойства 

воздушных и водяных импактных струй 

Кинематическая вязкость воздуха air, м
2
/с 15,0·10

–6
 

Кинематическая вязкость воды water, м
2
/с 1,01·10

–6
 

Коэффициент температуропроводности воздуха aair, м
2
/с 21,4·10

–6
 

Коэффициент температуропроводности воды awater, м
2
/с 0,144·10

–6
 

Коэффициент теплопроводности воздуха air, Вт/(м·К) 0,026 

Коэффициент теплопроводности воды water, Вт/(м·К) 0,603 

Число Прандтля для воздуха Prair 0,71 

Число Прандтля для воды Prwater 7,01 

Диаметр струи Dair = Dwater, м 10
–2

 

Температура струи T, K 293 

Начальная температура подложки T0, K 373 

Число Рейнольдса Reair = Rewater 1000 
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априорный анализ режимов нагрева в различных приложениях. Показано, что с исполь-

зованием простых преобразований решение можно адаптировать как для нагрева подло-

жек лазерным или плазменным пучком, так и для охлаждения их импактными струями.  

Продемонстрированы примеры применения полученных выражений для определе-

ния времени достижения точек Чернова Ac1 и Ac3 при лазерном нагреве модельной ги-

поэвтектоидной стали, а также динамики охлаждения керамических подложек из Al2O3 

и SiO2 под воздействием импактных воздушной и водяной струй. 
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Рис. 3. Динамика температуры образцов из SiO2 и Al2O3, 

охлаждаемых импактной воздушной и водяной струями. 
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