ПРИМЕНЕНИЕ ДИСКРЕТНО-КОНТИНУАЛЬНОЙ МОДЕЛИ РАСТВОРИТЕЛЯ В КВАНТОВО-ХИМИЧЕСКОМ ИССЛЕДОВАНИИ ДЕКАРБОНИЛИРОВАНИЯ ПЕНТАКARBONИЛБРОМИДА ТЕХНИЦИЯ

Д.А. Мальцев, В.И. Барановский

Институт химии Санкт-Петербургского государственного университета
E-mail: baranovs256@mail.ru

Статья поступила 4 июля 2014 г.

Термодинамику и кинетику декарбонилирования пентакарбонилбромида техниция исследовали методом сканирования путей реакции и расчета кинетических параметров в рамках вариационной теории переходного состояния. Расчеты проводили в газовой фазе и при учете растворителя двумя методами: континуальным (РСМ) и дискретно-континуальным, с прямым квантово-химическим учетом ближайшей сольватной оболочки. В качестве растворителей использовали четыреххлористый углерод и воду.

Ключевые слова: пентакарбонилбромид техниция, вариационная теория скоростей реакций, квантово-химический расчет, метод функционала плотности.

ВВЕДЕНИЕ

Большая часть химических реакций протекает в жидкой фазе (растворах), поэтому для теоретического исследования их механизмов и скоростей реакций необходимо иметь, в числе прочего, соответствующие расчетные методы. Обычно учет растворителя производится в рамках различных беструктурных моделей, например модели поляризованного континуума (РСМ), что явно недостаточно в случае, если растворитель может принимать участие в реакции.

В таких случаях естественно использовать приближение супермOLEкулы, в котором реагирующая система дополняется небольшим числом молекул растворителя (в подавляющем большинстве случаев этот подход применяется при исследовании водных растворов). Число молекул растворителя при этом обычно составляет от одной до шести. Такой подход весьма эффективен при изучении механизмов реакций. Фактически в центре уравнения входящих в него активных функций реакции, введенных в реакцию, ведет смысл разработанных для реакции с небольшой сольватной оболочкой производится квантово-химический расчет, а основная "инертная" масса растворителя описывается методами молекулярной механики или молекулярной динамики. Некоторые связанные с таким подходом проблемы рассмотрены, например, в работе [1]. Особую проблему составляет учет взаимодействия между "квантово-химической" и "молекулярно-механической" подсистемами [2]. Обычно целью расчета является оценка величины актизированных барьеров, соответствующих отдельным стадиям реакции. Так, в работе [3], в которой рассматривались гидроксид алюминия Al^{3+}, Fe^{3+} и Si^{4+}, было установлено, что имеется корреляция между рассчитанными энергиями депротонирования и экспериментальными значениями pK_a.

В данной работе супермOLEкула включает галогенкарбонильный комплекс переходного металла и такое число молекул раствора, которое даёт возможность построить близайшую сольватную сферу и в то же время выполнить для этой супермOLEкулы прямой квантово-хими-
ческий расчет. Это позволяет как проанализировать механизм реакции, так и использовать классические схемы расчета константы скорости рассматриваемой реакции.

В качестве объекта исследования был выбран пентакарбонилбромид технеция (I). Недавно было обнаружено, что пентакарбонилидиод технеция может быть использован в качестве радиофармпрепарата для исследования легких [4]. Вследствие этого потребовалось изучение устойчивости его и его аналогов в седе организма, которая определяется кинетикой обмена карбонила. Кинетику замещения карбонила в пентакарбонилгалогенидах технеция в четыреххлористом углероде и ацетонитриле экспериментально исследовали в работе [5]. Кроме того, значительно раньше были исследованы аналогичные реакции для марганца и рения [6—9].

Во всех случаях реакция имела первый порядок скорости, что свидетельствует о том, что лимитирующей стадией является отрыв цис-карбонилной группы. Пентакарбонилидиод является наиболее инертным, а пентакарбонилхлорид — наименее инертным комплексом.

Ввиду сложности расчетов при использовании дискретно-континуальной модели из трех экспериментально изученных пентакарбонилгалогенидов технеция был выбран только один — пентакарбонилбромид, как имеющий промежуточную лабильность. Скорость реакций пентакарбонилбромидов металлов 7-й группы в вышеуказанных работах имеют порядок 10−6—10−4 с−1 в зависимости от температуры и растворителя, а экспериментальные энергии активации составляли 28—30 ккал/моль (117—125 кДж/моль) для марганца, 29—32 ккал/моль (121—134 кДж/моль) для рения и 72 кДж/моль для технеция.

МЕТОДИКА РАСЧЕТА

Расчеты были проведены методом DFT с помощью программы Gaussian 09 [10] на базе ВЦ СПбГУ. Использовали гибридный функционал PBE0 в сочетании с базисным набором SDD(Tc) + DZVP(C, O, H, Br). Для получения потенциальных кривых был рассчитан ряд структур, соответствующих последовательному увеличению расстояния между атомом углерода цис-CO-группы и атомом технеция. В качестве первой точки сканирования были взяты предварительно оптимизированные равновесные геометрии. В каждой точке проводили частичную оптимизацию геометрии при фиксированном расстоянии Tc—C. В каждой точке были рассчитаны частоты нормальных колебаний и термодинамические параметры.

Для выяснения роли прямого учета структуры растворителя расчеты проводили в газовой фазе и в двух растворителях, четыреххлористом углероде и воде, используя две модели — контигнуальную (PCM) и дискретно-континуальную: прямое квантово-химическое описание комплекса технеция и ближайшей сольватной оболочки — 10 молекул CCl4 или 27 молекул H2O. Выбор растворителей обусловлен наличием экспериментальных данных для четыреххлористого углерода и ряда воды в живых организмах.

Для расчета кинетических параметров использовали вариационную теорию переходного состояния в каноническом приближении [11]. В каждой точке s пути реакции вычисляли каноническую константу скорости: $k(T, s) = \frac{h}{\theta} \cdot \frac{Q(T, s)}{kT} \cdot e^{-\frac{E(s)}{kT}} = \frac{h}{\theta} \cdot e^{-\frac{G(s)}{kT}}$ и находили положение минимума на кривой $k(T, s)$. Полученную точку считали переходным состоянием, а соответствующую константу — константой скорости. Значение σ-фактора симметрии для цис-декарбонилирования равно 4.

РЕЗУЛЬТАТЫ

Расчеты в газовой фазе. Результаты сканирования пути реакции декарбонилирования в газовой фазе приведены на рис. 1. Здесь и далее кривая с квадратами отвечает зависимости потенциальной (электронной) энергии, кривая с ромбами — энергии Гиббса, а кривая с треугольниками — логарифму канонической константы скорости, вычисленной в данной точке. Последние две кривые симметричны друг другу, что следует из выражения для канонической константы. Значения логарифма констант на графиках приведены без учета фактора симмет-
считать переходным состоянием. Кривая энергии Гиббса расположена под кривой потенциальной энергии, что связано с положительными объемом и энтальпий — реакционной диссоциативной реакции.

Учет растворителя методом PCM. Результаты сканирования пути реакции декарбонилирования в CCl₄ и H₂O, модель PCM, приведены на рис. 2.

На потенциальной кривой для CCl₄ в районе 3,5 Å присутствует точка перегиба, а на кривой для H₂O наблюдается максимум при 3,2 Å, за которым следует размытый минимум. Это, по-видимому, свидетельствует о том, что при удалении карбонильной группы на достаточное расстояние образовавшуюся полость может проникнуть молекула растворителя и стабилизировать систему за счет электростатических взаимодействий, которые являются единственно возможными в модели PCM. При этом стабилизирующий эффект воды заметно сильнее, чем CCl₄.

На кривой энергии Гиббса для CCl₄ максимум сильно размыт и соответствует расстоянию 3,3—3,9 Å. На кривой для воды максимум выражен более четко и соответствует 3,2—3,3 Å.

Данные об активационных параметрах и константах скорости с учетом фактора симметрии в различных растворителях приведены в таблице.

Все рассчитанные величины слабо зависят от растворителя. Расчетные энергии активации существенно выше экспериментальной, а расчетные константы скорости занижены примерно на 1—2 порядка. Для проверки достаточности выбранного базисного набора провели расчет колебательных частот в базисе aug-CC-PVTZ в двух точках на кривой диссоциации в газовой фазе — исходном и переходном состояниях. Отличие активационных пара-
Сравнение рассчитанных актиационных параметров и констант скорости

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Газ</th>
<th>CCl₄</th>
<th>H₂O</th>
<th>Эксперимент (CCl₄) [5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_a, кДж/моль</td>
<td>125,7</td>
<td>128,2</td>
<td>122,1</td>
<td>72±6</td>
</tr>
<tr>
<td>G_a, кДж/моль</td>
<td>108,5</td>
<td>111,6</td>
<td>107,4</td>
<td>—</td>
</tr>
<tr>
<td>k, с⁻¹</td>
<td>2,4·10⁻⁶</td>
<td>6,8·10⁻⁷</td>
<td>3,8·10⁻⁶</td>
<td>2,2·10⁻⁵</td>
</tr>
</tbody>
</table>

метров составило 5 кДж/моль для потенциальной энергии и 0,4 кДж/моль для энергии Гиббса. Таким образом, можно утверждать, что расхождения с экспериментом не являются следствием выбора базисов.

Тем не менее, вопрос о точности расчетных значений остается открытым и требует более детального исследования, поскольку расчетные энергии активации занимают промежуточное значение между приведенными в работе экспериментальными значениями для пентакарбо- нилбромидов марганца и рения, в то время как экспериментальная энергия для тех же реакций обычно выбирается из этого ряда, что может свидетельствовать об ошибках эксперимента в последнем случае. Заниженные значения для констант могут объясняться либо неточностями при расчете колебательных частот в гармоническом приближении, и соответственно, термодинамическими параметрами, либо, возможно, неоптимальностью выбора пути реакции. При переходе к вариационной теории переходного состояния вместо максимума электронной энергии ищется максимум энергии Гиббса, однако сам путь по-прежнему определяется минимумом именно потенциальной энергии. Вполне возможно, что для достаточно сложной системы, какой является комплекс, существуют несколько путей реакции не являющихся оптимальным по E_a, однако имеющий более низкое значение максимума G. Тем не менее, поиск такого пути имеющимися средствами не представляется возможным.

Дисперсионно-континуальную модель. Для исследования возможности учета специфического влияния растворителя применяли дисперсионно-континуальную модель: в качестве реагирующей системы были синтезированы молекулярные кластеры [Tc(CO)₅Br]·10CCl₄ и [Tc(CO)₅Br]·27H₂O, а остальной растворитель учитывали методом RCM. Для молекул растворителя были выбраны базисы 6-31G(d) для атомов кислорода и 6-31G для атомов водорода, хлора и углерода. Оптимизированные структуры кластеров приведены на рис. 3.

Рис. 3. Оптимизированная структура кластера Tc(CO)₅Br·10CCl₄ (a) и Tc(CO)₅Br·27H₂O (b)
Молекулы CCl₄ образуют достаточно рыхлую структуру, что приводит к сложности оптимизации геометрии, так как энергетический минимум является очень размытым. В случае воды отчетливо видна сольватная "клетка", образованная водородными связями между молекулами. Очевидно, что найденная структура — лишь один из множества локальных минимумов. Зависимости $E(R)$ и $G(R)$ реакции декарбонилирования приведены на рис. 4. Для наглядности пунктиром приведены соответствующие кривые для модели ПСМ. Вследствие сложности расчетов для CCl₄ были рассчитаны только равновесное состояние и несколько точек в окрестностях найденного максимума энергии Гиббса для ПСМ.

Для случая CCl₄ график потенциальной энергии практически идентичен графику для ПСМ, а кривая энергии Гиббса лежит в той же области, что и кривая для расчетов методом ПСМ, хотя и не вполне совпадает с последней. Для водной среды графики $E(R)$ и $G(R)$ идентичны для дискретно-континуальной и дискретно-континуальной модели на участке от 2 до 3 \(\text{Å} \), а далее во втором случае происходит резкое понижение энергии, связанное с координацией одной из молекул воды вместо уходящего карбонила. При этом максимум энергии Гиббса понижается, но незначительно. Поэтому расчетные значения константы скорости реакции декарбонилирования будут иметь тот же порядок величин, что и в случае континуальной модели.

ЗАКЛЮЧЕНИЕ

Расчеты в рамках дискретно-континуальной модели позволяют детально описать механизм диссоциативной декарбонилиации рассматриваемого комплекса. Как в четыреххлористом углероде, так и в воде на начальной стадии реакции (до достижения переходного состояния) происходит лишь отход карбонильной группы. В обоих случаях можно утверждать, что специфические взаимодействия не имеют большого влияния на кинетику декарбонилирования: в случае четыреххлористого углерода они пренебрежимо малы, а в случае воды они становятся заметными уже после достижения переходного состояния. Расчеты, проведенные для комплекса в газовой фазе и в рамках континуальной модели, с использованием вариационного метода для констант скоростей реакций, привели к тем же данным о положении переходного состояния и величинах констант скорости, что и полученные в рамках дискретно-континуальной модели. Особо следует отметить, что хотя в расчетах свободной молекулы Tc(CO)₅Br о переходном состоянии можно говорить лишь условно, как о некоторой "точке невозврата" на пути реакции, то при дискретно-континуальном подходе в случае воды как растворителя переходное состояние приобретает наглядный облик в виде появления активационного барьера на потенциальной кривой.
СПИСОК ЛИТЕРАТУРЫ