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Бор является одним из наиболее ценных компонентов ракетного топлива. Однако высокая тем-
пература кипения оксида бора (B2O3) на его поверхности (1 860 ◦C) затрудняет контакт между
активным бором и окислителем в ходе процессов горения и воспламенения. В результате энергия
воспламенения бора оказывается выше, а скорость горения — ниже. Для повышения эффектив-
ности воспламенения, а также реакционной способности бора его поверхность была модифи-
цирована путем очистки растворителем, наращивания поверхности, а также изготовления его
композита с алюминием, имеющим высокую температуру кипения. Композитные частицы, со-
стоящие из бора, очищенного при помощи этанола, и толстых хлопьев алюминия, обозначаемые
EB/TF-Al, продемонстрировали наилучшую реакционную способность, на 96.6 % большую в

сравнении с композитными частицами, состоящими из чистого бора и толстых хлопьев алю-
миния (RB/TF-Al). Композитные частицы, состоящие из бора с наращенной поверхностью и

толстых хлопьев алюминия (KHB-3/TF-Al), имеют минимальную энергию воспламенения, на
29.1 % ниже в сравнении с чистым бором. Поскольку модификация поверхности бора приводит к
улучшению воспламеняемости, а также к увеличению его реакционной способности, ожидается,
что такой подход позволит улучшить характеристики ракетного топлива на основе бора.
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ракетное топливо на основе бора.
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СПИСОК СОКРАЩЕНИЙ

B — бор,
RB — необработанный бор,
WB — бор, поверхность которого очищена

водой,
EB — бор, поверхность которого очищена

этанолом,
EAB — бор, поверхность которого очище-

на этилацетатом,
KHB — бор с наращенной поверхностью,
AP — перхлорат аммония,
KH550 — 3-аминопропилтриэтоксисилан,
RAl — необработанный алюминий,
TF-Al — алюминий в виде толстых хло-

пьев,
XPS — рентгеновская фотоэлектронная

спектроскопия,
FESEM — полевая эмиссионная сканиру-

ющая электронная микроскопия,
DSC — дифференциальная сканирующая

калориметрия,
TG — термогравиметрия.
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ВВЕДЕНИЕ

Ракетные топлива оказывают критическое

влияние на качество ракетных двигателей и их

эксплуатационные характеристики [1–3]. Со-
гласно классификации по добавкам, ракетные
топлива делятся на топлива на основе алюми-
ния, магния и бора [4–8]. Теоретически рассчи-
танное самое большое количество тепла выде-
ляется при использовании богатых смесей топ-
лива на основе B [9–11]. Однако слой окси-
да B2O3 на поверхности B, характеризуемый
сильно различающимися температурами плав-
ления (450 ◦C) и кипения (1 860 ◦C), блокирует
контакт активного B и окислителя [12–14]. В
ходе воспламенения частиц B возможны испа-
рение B2O3 и диффузия внутреннего активно-
го B и окислителя внутри оксида B2O3 [15–17].
Вследствие контакта активного B и окислителя
происходит химическая реакция [18, 19]. Одна-
ко температура кипения B2O3 слишком высока

для того, чтобы данное вещество испарилось,
что замедляет скорость диффузии B и окисли-
теля в оксиде B2O3 [20, 21]. Таким образом, бор
плохо воспламеняется и имеет низкую скорость

горения.



J. Liu, D. Q. Wang, Z. M. Zhang, F. S. Li 119

Для решения проблем высокой энергии

воспламенения и низкой реакционной способно-
сти B, возникающих из-за образования B2O3,
были разработаны и исследованы подходы, за-
ключающиеся в очистке поверхности, наращи-
вании поверхности и изготовлении композита

с реакционноспособными толстыми хлопьями

алюминия (TF-Al) [22]. Процедуры очистки и

наращивания поверхности позволили бы сокра-
тить содержание B2O3 на поверхности B и тем
самым уменьшить влияние B2O3 на процессы

горения и воспламенения В. Кроме того, TF-Al
характеризуется большой удельной поверхно-
стью и высоким содержанием реакционноспо-
собного Al, что может ускорить процесс гази-
фикации B2O3 на поверхности B за счет тепла,
выделяющегося при горении.

Оксид B2O3 на поверхности B легко погло-
щает влагу из воздуха, образуя борную кисло-
ту (B(OH)3). Бор не растворим в воде, кислоте,
этаноле, эфирах и т. д., в то время как B2O3 и

B(OH)3 растворимы в воде, этаноле и этилаце-
тате. Таким образом, вода, этанол и этилаце-
тат способны удалить примеси с поверхности

B без потери активного компонента внутри [12,
23, 24].

3-аминопропилтриэтоксисилан (KH550)
является широко используемым модификато-
ром поверхности [25–27]. В ходе химической

реакции KH550 с примесями на поверхности

B (B2O3 и B(OH)3) органические группы

соединяются с поверхностью B, изменяя тем
самым состав и свойства его поверхности.

Более того, присоединенные группы на по-
верхности могут увеличить силу взаимодей-
ствия частиц, что сделает соединение компо-
зитных частиц B/Al более плотным. Таким об-
разом, эффективность переноса массы и тепла
между частицами увеличивается, и, следова-
тельно, воспламеняемость и реакционная спо-
собность B улучшаются. Температура горения
Al очень высокая по сравнению с другими топ-
ливами на основе металлов, что может спо-
собствовать испарению B2O3 с поверхности B
[28–31]. Таким образом, композитные частицы
B/Al могут улучшить эффективность воспла-
менения и реакционную способность B.

1. ЭКСПЕРИМЕНТ

1.1. Материалы

Аморфный порошок бора (D50 = 2 мкм,
чистотой 95 %) был приобретен в Пекин-

ском институте цветных металлов (Beijing
Institute of Nonferrous Metals). Сферический
алюминиевый порошок (D50 = 25 мкм, чисто-
той 99 %) предоставлен компанией «Gaizhou
Heli Aluminum Powder Co., Ltd». Диаметр

циркониевых шариков для шлифовки со-
ставлял D = 1.10 мм. Перхлорат аммония

(D50 = 10 мкм) приобретен в компании

«Sinopharm Chemical Reagent Co., Ltd». Без-
водный этанол и этилацетат предоставлены

компанией «Nanjing Chemical Reagent Co.,
Ltd». 3-аминопропилтриэтоксисилан (KH550)
приобретен в компании «Shanghai McLean
Biochemical Technology Co., Ltd».

1.2. Подготовка образцов

1.2.1. Очистка порошка бора

Вначале проводилась очистка исходного

порошка бора (RB) растворителем. RB и рас-
творитель (деионизированная вода, этанол и
этилацетат) в соотношении 1 : 10 перемешива-
лись в колбе со скоростью 500 об/мин при 60 ◦C
в течение 4 ч. Затем следовали процедура вса-
сывающей фильтрации, промывка и сушка. В
конечном счете получали чистый бор. В зави-
симости от используемого растворителя, т. е.
деионизированной воды, этанола и этилацета-
та, будем обозначать его как WB, EB и EAB
соответственно.

1.2.2. Наращивание поверхности порошка бора

Связующий агент 3-аминопропилтриэток-
сисилан (KH550) использовался для модифика-
ции поверхности бора. Предварительно KH550
был полностью гидролизован в спиртоводной

жидкости определенного состава и добавлен по

каплям в реакционную колбу для получения

образцов с модифицированной поверхностью и

различным массовым соотношением. Обозна-
чения KHB-1, KHB-3, KHB-5 и KHB-10 соот-
ветствуют массе KH550 1, 3, 5 и 10 % от мас-
сы RB.

1.2.3. Композитные частицы B/Al

Композитные части B/Al готовились сле-
дующим образом (рис. 1). Сначала путем из-
мельчения в шаровой мельнице получали тол-
стые хлопья алюминия (TF-Al). Затем TF-Al,
бор (в 5 раз большей массы, чем TF-Al) и
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Рис. 1. Процесс подготовки композитных частиц B/Al с использованием шаровой мельницы

шарики из циркония (в 120 раз большей мас-
сы, чем TF-Al) добавляли в резервуар шаро-
вой мельницы с этанолом в качестве диспер-
гирующего агента и охлаждающей жидкости.
Измельчение проводилось в планетарной ша-
ровой мельнице (QM-3SP4, «Nanjing University
Instrument Factory») со скоростью 300 об/мин
в течение 4 ч. Смешанная суспензия пропус-
калась через стандартное сито для отделения

гранул и дисперсных частиц. Твердую фазу,
полученную после диспергирования, помеща-
ли в центрифугу (CT14D, «Tianmei (China)
Scientific Instrument Co., Ltd»), а затем про-
водилась вакуумная сушка при температуре

60 ◦C в течение 12 ч, после чего получились
композитные частицы B/Al.

1.3. Характеристики

1.3.1. Композиционные и морфологические
характеристики

Поверхностный состав очищенного бора

определялся методом рентгеновской фотоэлек-
тронной спектроскопии (XPS, Thermo Scientific
K-Alpha+, монохроматизированный источник
рентгеновского излучения Al Kα, 1 486.6 эВ).
Структура функциональной группы поверх-
ностной присадки определялась с помощью ИК

фурье-спектрометра (Thermo Scientific Nicolet
6700). Морфология образцов изучалась с по-
мощью полевой эмиссионной сканирующей

электронной микроскопии (FESEM, Thermo
Scientific Quanta 250FEG).

1.3.2. Термические характеристики

Термические характеристики образцов

определялись при помощи дифференциального

сканирующего калориметрического анализа в

потоке воздуха (DSC, TA, SDT 650), при этом
диапазон температур составлял 50 ÷ 900 ◦C,
скорость потока воздуха — 20 мл/мин,
скорость нагрева — 5, 10, 15 и 20 ◦C/мин.

Рис. 2. Схема оборудования для испытаний на
воспламеняемость и горючесть

1.3.3. Испытания на воспламеняемость
и горючесть

Схема оборудования для испытаний на

воспламеняемость и горючесть показана на

рис. 2. Образец представлял собой смесь мо-
дифицированного топлива (15.3 % по массе)
и перхлората аммония (AP). Перед испытани-
ем 40 мг порошка образца наносили на пла-
стинку диаметром 13 мм. Образцы нагревали

и поджигали в режиме постоянного давления

с помощью нихромовой проволоки, подключен-
ной к внешнему источнику питания постоянно-
го тока. Для каждого образца проводилось по
три измерения и результаты осреднялись с це-
лью уменьшения экспериментальной погреш-
ности. В испытаниях на воспламеняемость вре-
мя, проходящее от генерации электрического
тока до внезапного увеличения интенсивности

светового сигнала, вызванного горением образ-
ца, считалось временем задержки воспламене-
ния данного образца.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Композиционные и морфологические
характеристики образцов

2.1.1. Очистка бора

Для анализа поверхностного состава необ-
работанного бора и очищенного растворителем
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Рис. 3. XPS-спектры поверхности образцов (а) и спектры высокого разрешения B1s образцов
RB (б), WB (в), EB (г) и EAB (д)

Та блиц а 1

Состав поверхности бора, обработанного различными растворителями

Образец B1, % B2, % B2O3, % B, % O, % B/O

RB 30.35 62.59 7.06 61.91 14.70 4.2116

WB 35.27 58.77 5.95 58.88 13.74 4.2853

EB 30.70 65.90 3.40 65.08 14.02 4.6419

EAB 38.33 56.79 4.88 57.44 12.78 4.4945

использовался метод рентгеновской фотоэлек-
тронной спектроскопии. Как видно из рис. 3,а,
характерные пики для O1s, C1s и B1s наблю-
даются при энергии E = 531.9, 284.8 и 187.9 эВ
соответственно. Спектры высокого разреше-
ния B1s необработанного бора (RB) и очи-
щенного деионизированной водой (WB), этано-
лом (EB) и этилацетатом (EAB) показаны на

рис. 3,б–д соответственно. Пиковые значения
интенсивности исследуемых образцов и доля

площади каждого пика приведены в табл. 1.
Три пика спектров высокого разрешения B1s
191.8, 187.9 и 186.6 эВ указывают соответ-
ственно на три вида связи бора: B—B (B1); не
полностью окисленный B (BxO, 1 < x < 6, B2);
B2O3 [32, 33]. Содержание B2O3 соответству-
ет следующей закономерности: EB < EAB <
WB < RB. Это указывает на то, что деиони-
зированная вода, этанол и этилацетат позво-
ляют снизить содержание B2O3 на поверхно-
сти B. При этом использование этилацетата

дает самое низкое содержание B2O3, которое
на 51.84 % ниже, чем в случае RB. Соотноше-
ние B/O оказывается максимальным в случае

EB. Эти результаты показали, что этанол мо-
жет уменьшить количество примеси B2O3 на

поверхности бора и, таким образом, очистить
его.

2.1.2. Наращивание поверхности бора

На рис. 4 показаны инфракрасные фурье-
спектры образцов. Образец RB имеет широкий

пик при 3 552 ÷ 3 223 см−1, что вызвано об-
разованием борной кислоты в результате реак-
ции B2O3 с H2O на поверхности B в окружаю-
щей среде. Борная кислота B(OH)3 на поверх-
ности B образует пики поглощения при 737,
2 223 и 2 931 см−1, а колебательные пики по-
глощения для связи B—O в B2O3 наблюдались

при 1 086 и 1 633 см−1 соответственно. В спек-
тре исходного материала KH550 пики поглоще-
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Рис. 4. ИК фурье-спектры RB, KH550 и KHB

ния для связи Si—O—C наблюдаются при 957 и
763 см−1, а пик для Si—O зарегистрирован при

1 050 см−1 [34]. Пики между 2 972 и 2 883 см−1,
а также при 2 359 см−1 соответствуют связям

C—H и C—C в KH550, а пик при 1 442 см−1

есть пик поглощения NH2. В спектре KHB пи-
ки находятся между 2 972 и 2 883 см−1, а так-
же при 1 442 см−1, т. е. соответствуют харак-

Рис. 5. FESEM-изображения RB (а), RAl (б), EB (в), KHB (г), TF-Al (д, е), EB/TF-Al (ж) и
KHB/TF-Al (з)

терным пикам для KH550. Кроме того, харак-
терный для связи Si—O—B пик при 1 062 см−1

указывает на то, что KH550 успешно присоеди-
няется к поверхности B.

2.1.3. Морфология композитных частиц B/Al

Морфология образцов показана на рис. 5.
На рис. 5,а,в,г видно, что RB образуется путем
агломерации различных частиц неправильной

формы и морфология обработанного этанолом

EB и KHB, модифицированного KH550, прак-
тически не меняется по сравнению с RB. Это
свидетельствует о том, что как очистка, так
и модификация поверхности приводят к изме-
нению B2O3 на поверхности B и не влияют на

структуру и морфологию внутреннего актив-
ного B. Как показано на рис. 5,б,д,е, частицы
необработанного Al имеют сферическую фор-
му, а измельченного Al — хлопьевидную, что
обеспечивает основу для композитных частиц

B/Al. На рис. 5,ж представлена морфология

композитных частиц EB/TF-Al. Видно, что
часть EB прикрепляется к поверхности TF-Al,
а часть EB рассеивается вокруг TF-Al. По
сравнению с EB/TF-Al, как показано на

рис. 5,з, KHB почти полностью покрывает по-
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верхность TF-Al, что указывает на то, что по-
верхностная прививка KH550 может эффектив-
но способствовать контакту между B и TF-Al.
Это делает комбинацию KHB и TF-Al более од-
нородной.

2.2.1. Термические свойства
композитных частиц B/Al

Термогравиметрические (TG) кривые для
необработанного бора и бора с поверхностной

присадкой показаны на рис. 6. Как видно из
рис. 6,а, увеличение массы m в результате

окисления очищенных образцов бора и образ-
цов с наращенной поверхностью происходит бо-
лее эффективно по сравнению с необработан-
ным бором. Конечная масса RB, WB, EB, EAB,
KHB-1, KHB-3, KHB-5 и KHB-10 после высоко-
температурного окисления составила m = 174,
179, 188, 187, 182, 185, 181 и 179 % соответ-
ственно. Конечная масса EB была самой боль-
шой среди образцов бора, поверхность кото-
рых очищалась растворителем, а конечная мас-
са KHB-3 оказалась самой большой среди об-
разцов, подвергнутых процедуре наращивания
поверхности. Кроме того, температура, при ко-
торой наблюдалось увеличение массы образ-
цов очищенного бора и с наращенной поверхно-
стью, была ниже, чем у образцов необработан-
ного бора. Это указывает на то, что как очист-
ка В, так и наращивание поверхности В могут
улучшить окислительную активность В.

Рис. 6. TG-кривые очищенного бора (a) и бора с наращенной поверхностью (б)

На рис. 7 показаны кривые, полученные
при помощи дифференциальной сканирующей

калориметрии (DSC). Для очищенного B при

скорости нагрева 10 ◦C/мин пиковая темпе-
ратура реакции RB, WB, EB и EAB состав-
ляла 768, 763, 760 и 765 ◦C соответственно

(рис. 7,б). Самое низкое ее значение оказа-
лось у EB, что свидетельствует о наиболь-
шей реакционной способности EB среди образ-
цов очищенного B. Способность этанола эффек-
тивно снижать содержание B2O3 на поверх-
ности B, в свою очередь, приводит к ослаб-
лению влияния B2O3 на окисление B. Таким
образом, EB обладает самой высокой реакци-
онной способностью среди образцов очищенно-
го B. Термические характеристики и воспла-
меняемость EB/TF-Al были также исследова-
ны в данной работе. DSC-кривые, полученные
для B с наращенной поверхностью при скоро-
сти нагрева 10 ◦C/мин, приведены на рис. 7,в.
Значения пиковой температуры реакции RB,
KHB-1, KHB-3, KHB-5 и KHB-10 составляли
768, 772, 771, 772 и 771 ◦C соответственно.
KHB-3 обладает самой низкой пиковой темпе-
ратурой и самой высокой реакционной способ-
ностью. DSC-кривые для RB/TF-Al, EB/TF-Al
и KHB/TF-Al при скоростях нагрева 5, 10, 15,
20 ◦C/мин представлены на рис. 7,г,д,е соот-
ветственно.

Данные о кинетике реакций для изучен-
ных образцов получены методом Киссиндже-
ра [35, 36] по формуле
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Рис. 7. DSC-кривые необработанного бора (а), очищенного бора (б), бора с наращенной поверх-
ностью (в), RB/TF-Al (г), EB/TF-Al (д), KHB/TF-Al (е)

Та блиц а 2

Химико-кинетические параметры образцов

Образец Линейное уравнение аппроксимации R2 Ea, кДж/моль A, с−1

RB/TF-Al y = 26.982 − 39 991x 0.996 332.488 2.089 · 1016

EB/TF-Al y = 27.639 − 40 733x 0.998 338.658 4.107 · 1016

KHB-3/TF-Al y = 27.338 − 40 676x 0.994 338.178 3.034 · 1016

ln
( β
T 2
a

)
= − Ea

RTa
+ ln

(AR
Ea

)
, (1)

где β — скорость нагрева, K/мин; Ta —
максимальная экзотермическая температу-
ра образцов, K; R — газовая постоянная

(8.314 Дж/(моль ·K)); Ea — энергия актива-
ции, Дж/моль; A — предэкспоненциальный

множитель.
Химико-кинетические параметры образ-

цов приведены в табл. 2. Значение R2 линейно-
го уравнения, использованного для аппрокси-
мации, для всех образцов превышало 0.99, что
свидетельствует о надежности расчетов. Энер-
гия активации Ea для RB/TF-Al, EB/TF-Al и
KHB-3/TF-Al оказывалась одинаковой. Одна-
ко предэкспоненциальный множитель A в слу-

чае EB/TF-Al равнялся 4.107 · 1016 с−1, что
больше на 96.6 % соответствующей величины

для RB/TF-Al и на 35.4 % больше по сравне-
нию с KHB-3/TF-Al. Это указывает на то, что
EB/TF-Al обладает самой высокой реакцион-
ной способностью. Также нужно отметить, что
реакционная способность композитных частиц

B/Al может быть эффективно улучшена путем
удаления B2O3 с поверхности B.

2.2.2. Воспламеняемость композитных частиц B/Al

Типичные сигналы от воспламенения и

диаграммы энергии воспламенения образцов

при атмосферном давлении показаны на рис. 8.
Как следует из рис. 8,а, в экспериментах вре-
мя задержки воспламенения определяется как
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Рис. 8. Типичная диаграмма сигнала воспламенения (а), диаграмма для расчета энергии вос-
пламенения образцов (б) и результаты расчета энергии воспламенения (в)

время, прошедшее между генерацией тока, вы-
званного горением образца, и внезапным уве-
личением светового сигнала. Энергия воспла-
менения образца рассчитывалась по форму-
ле [37, 38]

Eign =

∫ t

0
UIdtign [Дж], (2)

где tign — время задержки воспламенения, с;
U — напряжение, В; I — сила тока, A.

Согласно рис. 8,в энергия воспламене-
ния RB, EB/TF-Al и KHB-3/TF-Al составля-
ет Eign = 27.36, 28.91, 19.4 Дж соответствен-
но. Как энергия воспламенения, так и вели-
чина ошибки оказались самыми большими у

EB/TF-Al, что может быть вызвано неплот-
ным соединением EB и TF-Al (как показано
на рис. 5,ж, EB был рассыпан вокруг TF-Al).
В соответствии с реакционными характери-
стиками бора (температура его воспламенения
обычно выше 1 800 К), Al (температура его
воспламенения обычно выше 1 400 К) и AP
(начальная температура его разложения около
580 К), возможный процесс воспламенения по-
средством электрического нагрева может быть

следующим. Первой реакцией является терми-
ческое разложение AP, которое обеспечивает
необходимое количество тепла и компонентов-
окислителей. За ней следует реакция возгора-
ния Al и B. Однако, поскольку Al воспламеня-
ется легче, чем B, возможно, что Al воспламе-
няется и сгорает первым, выделяя значитель-
ное количество тепла, а затем воспламеняет-
ся и сгорает B. Если частицы прочно связа-
ны друг с другом, тепло, выделяемое в резуль-
тате реакции предварительно окисленных ча-
стиц, может быстро передаваться неокислен-

ным частицам в твердой фазе. Когда неокис-
ленные частицы нагреваются до определенной

температуры, начинается реакция окисления с
выделением тепла, что приводит к окислению
близлежащих частиц. Однако если соединение
частиц образца относительно рыхлое, то меж-
ду ними находится больше компонентов газо-
вой фазы, что препятствует теплообмену меж-
ду частицами и, в свою очередь, затрудня-
ет воспламенение. Следовательно, энергия вос-
пламенения EB/TF-Al оказывается выше. Од-
нако из-за непрочного соединения частиц окис-
ленные компоненты, образующиеся при разло-
жении AP, легко диффундируют к поверхности
частиц, что способствует протеканию химиче-
ской реакции. Из-за влияния множества фак-
торов на процесс воспламенения результаты

измерения энергии воспламенения EB/TF-Al с
более слабыми связями между частицами име-
ют большую погрешность. По сравнению с

EB/TF-Al, модификатор KHB-3 плотно приле-
гает к поверхности TF-Al, что позволяет лег-
че передавать тепло близлежащим частицам.
Так, энергия воспламенения KHB-3/TF-Al ока-
залась наименьшей, 19.41 Дж, что на 29.1 %
меньше аналогичной величины для RB. При
этом погрешность определения энергии воспла-
менения KHB-3/TF-Al также была небольшой.

ВЫВОДЫ

Для улучшения воспламеняемости и реак-
ционной способности бора были приготовлены

и исследованы очищенный В, частицы В с на-
ращенной поверхностью и композитные части-
цы В/Al. Очистка бора этанолом способству-
ет уменьшению содержания примеси B2O3, что
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делает бор более реакционноспособным. А на-
ращивание поверхности приводит к изменению

состава и свойств поверхности бора и дела-
ет соединение композитных частиц B/Al более
прочным, облегчая тем самым передачу тепла
соседним частицам. Это приводит к тому, что
энергия воспламенения KHB-3/TF-Al снижает-
ся на 29.1 % по сравнению с RB.
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