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1. Введение

Стохастические методы моделирования для решения системы уравнений Ламе, клас-
сической системы уравнений второго порядка, описывающей напряженное состояние изо-
тропного упругого тела, сталкиваются с определенными трудностями, собственно, как
и традиционные детерминированные приближенные методы решения этих уравнений,
в частности в силу плохой обусловленности матриц, связанных с сеточными аппрокси-
мациями для задач со сложными границами. В стохастических алгоритмах случайного
блуждания это отражается в поведении дисперсии соответствующих случайных оценок
[10, 14–17]. В связи с этим в недавней работе [1] нами был предложен итерационный
метод решения уравнения Ламе, где на каждом шаге итерации решаются независимые
уравнения анизотропной диффузии с помощью стохастических методов типа блуждания
по сферам и сеткам [7, 11, 16]. Однако и этот подход имеет свои сложности, поскольку
на каждом шаге приходится вычислять вторые производные от решения диффузионных
задач, что приводит к заметной потере точности.

В данной работе используется иной подход, который оказался свободным от пере-
численных выше трудностей. Основная идея этого подхода может быть сформулирована
следующим образом: (1) решение уравнения Ламе ищется в виде представления Сло-
бодянского [8, 18], куда входят только неизвестные гармонические функции, (2) гармо-
нические функции в методе фундаментальных решений приближаются в виде конечной
суммы фундаментальных решений уравнения Лапласа с неизвестными коэффициентами,
(3) после подстановки этих конечных сумм в представление Слободянского и согласова-
ния с заданными граничными функциями мы приходим к системе линейных алгебраиче-
ских уравнений (СЛАУ) на неизвестные коэффициенты, (4) полученная СЛАУ решает-
ся с помощью стохастического проекционного метода. Замечательным свойством такого
метода является то, что вычислив один раз эти неизвестные коэффициенты, мы имеем
представление решения в любой внутренней точке области.

Отметим, что данный подход позволяет решать уравнения Ламе со всеми известными
граничными условиями. Для простоты изложения мы рассматриваем здесь первую кра-
евую задачу теории упругости (задачу Дирихле), а распространение метода на другие
граничные условия не представляет труда.

2. Постановка краевой задачи
и представление Слободянского

Рассмотрим первую краевую задачу для системы уравнений Ламе в ограниченной
области Ω в пространстве IRd

µ∆u(r) + (λ+ µ)∇(∇ · u) = 0, r ∈ Ω, (1)

u(r) = G, r ∈ ∂Ω, (2)

где принята запись u = (u1, . . . , ud), G = (G1, . . . , Gd). Область Ω ограничена грани-
цей ∂Ω, λ, µ > 0, и предполагаются выполненными условия существования и единствен-
ности решения данной краевой задачи [5,6].

Общее решение уравнения Ламе может быть записано в виде представления Слобо-
дянского [18]

u = γw + (r · ∇)w − r divw, (3)
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где w = (w1, . . . , wd) — вектор, компоненты которого — гармонические функции, γ —
константа, которая явно выражается через d и константы λ и µ. В данной работе мы
выбираем константы λ = µ, тогда в двумерном случае γ = 2, в трехмерном случае γ = 3.
В этом можно убедиться при прямом выводе представления (3) из системы уравнений
Ламе. Например, в трехмерном случае получим γ = 2(2µ+ λ)/(λ+ µ), если подставим в
систему уравнений Ламе следующие представления:

I1 = (r · ∇)w, divI1 = (r · ∇) divw + divw, ∆I1 = (r · ∇) ∆w + 2∆w,

I2 = r divw, div I2 = (r · ∇) divw + 3 divw, ∆I2 = r∆ divw + 2∇ divw .
(4)

Перейдем далее к явной покомпонентной записи представления Слободянского в дву-
мерном случае.

3. Двумерный случай

Для двумерного случая представление Слободянского имеет вид

u = 2w + (r · ∇)w − r divw, (5)

где w = (w1, w2), w1 и w2 — две гармонические функции. Положим r = (x, y). После
некоторых простых преобразований получаем

(r · ∇)w =

(
x
∂w1

∂x
+ y

∂w1

∂y
, x
∂w2

∂x
+ y

∂w2

∂y

)
и

r divw = (x, y)

(
∂w1

∂x
+
∂w2

∂y

)
=

(
x
∂w1

∂x
+ x

∂w2

∂y
, y
∂w1

∂x
+ y

∂w2

∂y

)
,

так что
u1 = 2w1 + x

∂w1

∂x
+ y

∂w1

∂y
− x∂w1

∂x
− x∂w2

∂y

и
u2 = 2w2 + x

∂w2

∂x
+ y

∂w2

∂y
− y∂w1

∂x
− y∂w2

∂y
.

После упрощения имеем окончательно

u1 = 2w1 + y
∂w1

∂y
− x∂w2

∂y
, (6)

u2 = 2w2 − y
∂w1

∂x
+ x

∂w2

∂x
. (7)

Теперь можно переформулировать исходную первую краевую задачу для уравнения
Ламе (1), (2) с учетом выведенного представления Слободянского следующим образом.
Необходимо найти две гармонические функции w1 и w2 с неизвестными граничными
условиями, если заданы граничные функции G1 и G2 исходной краевой задачи, которые
связаны между собой соотношением Слободянского. Сказанное можно записать в виде
системы соотношений

u1 = 2w1 + y
∂w1

∂y
− x∂w2

∂y
, (8)

u2 = 2w2 − y
∂w1

∂x
+ x

∂w2

∂x
, (9)

u1 = G1, (x, y) ∈ ∂Ω, (10)
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u2 = G2, (x, y) ∈ ∂Ω, (11)

∆w1 = 0, (12)

∆w2 = 0. (13)

Понятно, что из соотношений (8)–(13) и заданных функций на границе (10), (11)
в принципе можно извлечь граничные значения для гармонических функций w1 и w2.
Однако эта задача оказалась не простой, а попытка вычислять эти функции итерацион-
ным методом натыкается на неустойчивый процесс передачи вычисленных производных
от итерации к итерации. Нам удалось построить безытерационный процесс вычисления
решения u1, u2, не прибегая к промежуточному отысканию граничных значений для гар-
монических функций, используя метод фундаментальных решений. Этот процесс описан
в виде четырех шагов во введении. Прежде чем перейти к описанию этого метода в де-
талях, выпишем еще систему вида (8)–(13) для трехмерного случая.

4. Трехмерный случай

Для трехмерного варианта в случае λ = µ представление Слободянского для решения
уравнения Ламе имеет вид

u = 3w + (r · ∇)w − r divw, (14)

где w — вектор из трех гармонических функций w = (w1, w2, w3), r = (x, y, z). В первой
краевой задаче заданы граничные функции ui(r) = Gi(r) (i = 1, 2, 3) для r ∈ ∂Ω.

Как и в двумерном случае, перейдем к покомпонентной записи представления Сло-
бодянского. Имеем

(r · ∇)w =

(
x
∂w1

∂x
+ y

∂w1

∂y
+ z

∂w1

∂z
, x
∂w2

∂x
+ y

∂w2

∂y
+ z

∂w2

∂z
, x
∂w3

∂x
+ y

∂w3

∂y
+ z

∂w3

∂z

)
, (15)

r divw = (x, y, z)

(
∂w1

∂x
+
∂w2

∂y
+
∂w3

∂z

)
=

(
x
∂w1

∂x
+ x

∂w2

∂y
+ x

∂w3

∂z
, y
∂w1

∂x
+ y

∂w2

∂y
+ y

∂w3

∂z
, z
∂w1

∂x
+ z

∂w2

∂y
+ z

∂w3

∂z

)
. (16)

Используя эти соотношения, переписываем векторное представление Слободянско-
го (14) в покомпонентной форме

u1 = 3w1 + x
∂w1

∂x
+ y

∂w1

∂y
+ z

∂w1

∂z
− x∂w1

∂x
− x∂w2

∂y
− x∂w3

∂z
, (17)

u2 = 3w2 + x
∂w2

∂x
+ y

∂w2

∂y
+ z

∂w2

∂z
− y∂w1

∂x
− y∂w2

∂y
− y∂w3

∂z
, (18)

u3 = 3w3 + x
∂w3

∂x
+ y

∂w3

∂y
+ z

∂w3

∂z
− z ∂w1

∂x
− z ∂w2

∂y
− z ∂w3

∂z
. (19)

После упрощения приходим к окончательному виду представления Слободянского в
нужной нам форме

u1 = 3w1 + y
∂w1

∂y
+ z

∂w1

∂z
− x∂w2

∂y
− x∂w3

∂z
, (20)

u2 = 3w2 + x
∂w2

∂x
+ z

∂w2

∂z
− y∂w1

∂x
− y∂w3

∂z
, (21)

u3 = 3w3 + x
∂w3

∂x
+ y

∂w3

∂y
− z ∂w1

∂x
− z ∂w2

∂y
. (22)
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Теперь мы можем выписать аналог первой краевой задачи в форме, выписанной для
двумерного случая в виде системы (8)–(13):

u1 = 3w1 + y
∂w1

∂y
+ z

∂w1

∂z
− x∂w2

∂y
− x∂w3

∂z
, (23)

u2 = 3w2 + x
∂w2

∂x
+ z

∂w2

∂z
− y∂w1

∂x
− y∂w3

∂z
, (24)

u3 = 3w3 + x
∂w3

∂x
+ y

∂w3

∂y
− z ∂w1

∂x
− z ∂w2

∂y
, (25)

u1 = G1, (x, y, z) ∈ ∂Ω, (26)

u2 = G2, (x, y, z) ∈ ∂Ω, (27)

u3 = G3, (x, y, z) ∈ ∂Ω, (28)

∆w1 = 0, (29)

∆w2 = 0, (30)

∆w3 = 0. (31)

Отметим еще раз, что три последних уравнения в этой системе показывают, что w1,
w2, w3 — это гармонические в области Ω функции, которые должны удовлетворять пер-
вым шести уравнениям данной системы.

Далее можно переходить к построению алгоритма решения этой системы (системы
(8)–(13) в двумерном случае) с помощью метода фундаментальных решений с выбором
либо случайно распределенных точечных источников, описанном нами в работе [13], ли-
бо с регулярным выбором источников, отстоящих на определенном расстоянии от точек
коллокации. В данной работе мы используем последний вариант выбора позиций источ-
ников. Метод фундаментальных решений предложен и обоснован в работах [2, 4].

5. Метод фундаментальных решений. Двумерный случай

Итак, идея предлагаемого метода состоит в следующем. Гармонические функции w1

и w2 ищутся в виде конечных сумм фундаментальных решений уравнения Лапласа, взве-
шенных с неизвестными константами c1, . . . , cN , при этом точечные источники в фунда-
ментальном решении располагаются во множестве точек (x′n, y

′
n) (n = 1, . . . , N), которые

находятся вне области. Эти представления далее подставляются в первые два уравне-
ния системы (8)–(13). Далее эта система записывается для множества точек (xm, ym)
(m = 1, . . . ,M), располагаемых внутри области вблизи границы. Эти точки называют
коллокационными точками. Более того, в случае первой краевой задачи они могут рас-
полагаться и на самой границе области. Поскольку в этой системе в левой части пред-
ставления Слободянского граничные функции заданы, мы приходим к прямоугольной
системе M линейных алгебраических уравнений с N неизвестными c1, . . . , cN . Матрица
этой системы уравнений может быть и квадратной, если число коллокационных точек
выбирается равным числу источников. Перейдем далее к конкретной записи системы
уравнений.

В двумерном пространстве фундаментальное решение уравнения Лапласа имеет вид
E(x, y; x′, y′) = − 1

2π
ln
√

(x− x′)2 + (y − y′)2 , оно является решением уравнения
∆E(x, y; x′, y′) = −δ(x−x′)δ(y−y′). Здесь точечный источник расположен в точке (x′, y′),
а решение записано в точке (x, y). Очевидно, если источник находится вне области, то
E(x, y;x′, y′), как функция от (x, y), является гармонической в данной области.
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Выберем на границе ∂Ω коллокационные точки (xm, ym) (m = 1, . . . ,M) и выберем
вне области Ω точки (x′n, y

′
n) (n = 1, . . . , N), где расположены источники. Ищем гармо-

нические функции w1 и w2 в следующем виде:

w1 (xm, ym) =
N∑
n=1

cnE
(
xm, ym; x′n, y

′
n

)
, w2 (xm, ym) =

N∑
n=1

dnE
(
xm, ym; x′n, y

′
n

)
, (32)

где E (xm, ym; x′n, y
′
n) = − 1

2π
ln
√

(xm − x′n)2 + (ym − y′n)2 , m = 1, . . . ,M .

Частные производные функции V (x, y) = ln
√

(x− x0)2 + (y − y0)2 (x0, y0 — констан-
ты):

∂V

∂x
=

x− x0
(x− x0)2 + (y − y0)2

,
∂V

∂y
=

y − y0
(x− x0)2 + (y − y0)2

.

Подставляя выражение (32) в представление Слободянского (8)–(13), получаем:
– для первого уравнения (8)

2w1 + y
∂w1

∂y
− x∂w2

∂y
= 2

N∑
n=1

−cn
1

2π
ln

√
(xm − x′n)2 + (ym − y′n)2 +

ym

N∑
n=1

−cn
1

2π

ym − y′n
(xm − x′n)2 + (ym − y′n)2

−

xm

N∑
n=1

−dn
1

2π

ym − y′n
(xm − x′n)2 + (ym − y′n)2

= u1 (xm, ym) = G1(xm, ym), m = 1, . . . ,M, (33)

после упрощения получаем

N∑
n=1

(
− 1

π
ln

√
(xm − x′n)2 + (ym − y′n)2 − 1

2π

ym (ym − y′n)

(xm − x′n)2 + (ym − y′n)2

)
cn +

N∑
n=1

(
1

2π

xm (ym − y′n)

(xm − x′n)2 + (ym − y′n)2

)
dn = G1 (xm, ym) , m = 1, . . . ,M, (34)

или в матричном виде
Ic + Jd = f ,

где

I =

 i11 · · · i1N
...

. . .
...

iM1 · · · iMN

 ,

imn = − 1

π
ln

√
(xm − x′n)2 + (ym − y′n)2 − 1

2π

ym (ym − y′n)

(xm − x′n)2 + (ym − y′n)2
,

m = 1, . . . ,M, n = 1, . . . , N,

c = (c1, . . . , cN )>,
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J =

 j11 · · · j1N
...

. . .
...

jM1 · · · jMN

 ,

jmn =
1

2π

xm (ym − y′n)

(xm − x′n)2 + (ym − y′n)2
, m = 1, . . . ,M, n = 1, . . . , N,

d = (d1, . . . , dN )>, f = (G1 (x1, y1) , . . . , G1 (xM , yM ))>;

– для второго уравнения (9)

2w2 − y
∂w1

∂x
+ x

∂w2

∂x
= 2

N∑
n=1

−dn
1

2π
ln

√
(xm − x′n)2 + (ym − y′n)2 −

ym

N∑
n=1

−cn
1

2π

xm − x′n
(xm − x′n)2 + (ym − y′n)2

+

xm

N∑
n=1

−dn
1

2π

xm − x′n
(xm − x′n)2 + (ym − y′n)2

= u2 (xm, ym) = G2(xm, ym), m = 1, . . . ,M,

после упрощения получаем

N∑
n=1

( 1

2π

ym

(
xm − x′n

)
(
xm − x′n

)2
+
(
ym − y′n

)2) cn +
N∑
n=1

(
− 1

π
ln

√(
xm − x′n

)2
+
(
ym − y′n

)2
−

1

2π

xm

(
xm − x′n

)
(
xm − x′n

)2
+
(
ym − y′n

)2) dn = G2

(
xm, ym

)
, m = 1, . . . ,M,

или в матричном виде:
Kc + Ld = g,

где

K =

 k11 · · · k1N
...

. . .
...

kM1 · · · kMN

 ,

kmn =
1

2π

ym (xm − x′n)

(xm − x′n)2 + (ym − y′n)2
, m = 1, . . . ,M, n = 1, . . . , N,

c = (c1, . . . , cN )>,

L =

 l11 · · · l1N
...

. . .
...

lM1 · · · lMN

 ,

lmn = − 1

π
ln

√
(xm − x′n)2 + (ym − y′n)2 − 1

2π

xm (xm − x′n)

(xm − x′n)2 + (ym − y′n)2
,
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m = 1, . . . ,M, n = 1, . . . , N,

d = (d1, . . . , dN )>, h = (G2 (x1, y1) , . . . , G2 (xM , yM ))>.

Отсюда общая система в матричном виде выглядит следующим образом:

Ic + Jd = f ,

Kc + Ld = g.
(35)

Матрицы I, J, K, L имеют размерM×N , векторы неизвестных c, d — размер N , векторы
правой части f , g — размер M . Если записать (35) в блочном виде, то получим СЛАУ

Ax = b, (36)

где A =

(
I J
K L

)
, x =

(
c
d

)
, b =

(
f
g

)
.

6. Метод фундаментальных решений. Трехмерный случай

В трехмерном пространстве фундаментальное решение уравнения Лапласа имеет вид

E
(
x, y, z; x′, y′, z′

)
= − 1

4π
√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

Оно определяется как решение уравнения ∆E (x, y, z; x′, y′, z′) = −δ(r − r′), где r =
(x, y, z), r′ = (x′, y′, z′).

Далее все выкладки по построению приближения метода фундаментальных решений
повторяют соответствующие выкладки, приведенные для двумерного случая, они лишь
гораздо более громоздки.

Итак, выберем на границе ∂Ω коллокационные точки (xm, ym, zm) (m = 1, . . . ,M) и
выберем во внешности области Ω точки, куда поместим точечные источники (x′n, y

′
n, z
′
n)

(n = 1, . . . , N). Ищем гармонические функции w1, w2 и w3 в следующем виде:

w1 (xm, ym, zm) =

N∑
n=1

cnE
(
xm, ym, zm; x′n, y

′
n, z
′
n

)
, (37)

w2 (xm, ym, zm) =

N∑
n=1

dnE
(
xm, ym, zm; x′n, y

′
n, z
′
n

)
, (38)

w3 (xm, ym, zm) =

N∑
n=1

enE
(
xm, ym, zm; x′n, y

′
n, z
′
n

)
, (39)

где E (xm, ym, zm; x′n, y
′
n, z
′
n) = − 1

4π
√

(xm − x′n)2 + (ym − y′n)2 + (zm − z′n)2
, m = 1, . . . ,M , n =

1, . . . , N .
Как и в двумерном случае, нам понадобятся выражения для частных производных

от фундаментального решения V (x, y, z) =
1√

(x− x0)2 + (y − y0)2 + (z − z0)2
при фиксиро-

ванной точке источника (x0, y0, z0):
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∂V

∂x
= − x− x0(

(x− x0)2 + (y − y0)2 + (z − z0)2
)3/2 ,

∂V

∂y
= − y − y0(

(x− x0)2 + (y − y0)2 + (z − z0)2
)3/2 ,

∂V

∂z
= − z − z0(

(x− x0)2 + (y − y0)2 + (z − z0)2
)3/2 .

Подставим эти выражения в представление Слободянского. В результате для первого
уравнения в этой системе имеем 0mm

3w1+y
∂w1

∂y
−x∂w2

∂y
+z

∂w1

∂z
−x∂w3

∂z
= 3

N∑
n=1

−cn
1

4π

1√
(xm−x′n)2+(ym−y′n)2+(zm−z′n)2

+

ym

N∑
n=1

cn
1

4π

ym − y′n
∆mn

− xm
N∑
n=1

dn
1

4π

ym − y′n
∆mn

+

zm

N∑
n=1

cn
1

4π

zm − z′n
∆mn

− xm
N∑
n=1

en
1

4π

zm − z′n
∆mn

= u1 (xm, ym, zm) =G1 (xm, ym, zm) , m=1, . . . ,M, (40)

где введено обозначение ∆mn =
[
(xm−x′n)2+(ym−y′n)2+(zm−z′n)2

]3/2. После упрощения
эта система запишется в виде

N∑
n=1

(
− 3

4π

1√
(xm − x′n)2 + (ym − y′n)2 + (zm − z′n)2

+
1

4π

ym(ym − y′n)

∆mn
+

1

4π

zm(zm − z′n)

∆mn

)
cn +

N∑
n=1

− 1

4π

xm (ym − y′n)

∆mn
dn +

N∑
n=1

− 1

4π

xm(zm − z′n)

∆mn
en

= G1(xm, ym, zm), m = 1, . . . ,M, (41)

или в матричном виде
Ic + Jd +Ke = f ,

где

I =

 i11 · · · i1N
...

. . .
...

iM1 · · · iMN

 ,

imn = − 3

4π

1√
(xm − x′n)2 + (ym − y′n)2 + (zm − z′n)2

+
1

4π

ym (ym − y′n)

∆mn
+

1

4π

zm (zm − z′n)

∆mn
,

m = 1, . . . ,M, n = 1, . . . , N,

c = (c1, . . . , cN )>,
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J =

 j11 · · · j1N
...

. . .
...

jM1 · · · jMN

 ,

jmn = − 1

4π

xm (ym − y′n)

∆mn
, m = 1, . . . ,M, n = 1, . . . , N,

d = (d1, . . . , dN )>,

K =

 k11 · · · k1N
...

. . .
...

kM1 · · · kMN

 ,

kmn = − 1

4π

xm (zm − z′n)

∆mn
, m = 1, . . . ,M, n = 1, . . . , N,

e = (e1, . . . , eN )>, f =
(
G1 (x1, y1, z1) , . . . , G1 (xM , yM , zM )

)>
.

Для второго и третьего уравнений выкладки аналогичны. Приведем здесь сразу их
запись в матричном виде. Для второго уравнения

Lc + Pd +Qe = g,

где

L =

 l11 · · · l1N
...

. . .
...

lM1 · · · lMN

 ,

lmn = − 1

4π

ym (xm − x′n)

∆mn
, m = 1, . . . ,M, n = 1, . . . , N,

c = (c1, . . . , cN )>,

P =

 p11 · · · p1N
...

. . .
...

pM1 · · · pMN

 ,

pmn = − 3

4π

1√
(xm − x′n)2 + (ym − y′n)2 + (zm − z′n)2

+
1

4π

xm (xm − x′n)

∆mn
+

1

4π

zm (zm − z′n)

∆mn
,

m = 1, . . . ,M, n = 1, . . . , N,

d = (d1, . . . , dN )>,

Q =

 q11 · · · q1N
...

. . .
...

qM1 · · · qMN

 ,

qmn = − 1

4π

ym (zm − z′n)

∆mn
, m = 1, . . . ,M, n = 1, . . . , N,

e = (e1, . . . , eN )>, g = (G2 (x1, y1, z1) , . . . , G2 (xM , yM , zM ))>.

Наконец, для третьего уравнения системы имеем



К.К. Сабельфельд, Д.Д. Смирнов 255

Rc + Sd + Te = h,

где

R =

 r11 · · · r1N
...

. . .
...

rM1 · · · rMN

 ,

rmn = − 1

4π

zm (xm − x′n)

∆mn
, m = 1, . . . ,M, n = 1, . . . , N,

c = (c1, . . . , cN )>,

S =

 s11 · · · s1N
...

. . .
...

sM1 · · · sMN

 ,

smn = − 1

4π

zm (ym − y′n)

∆mn
, m = 1, . . . ,M, n = 1, . . . , N,

d = (d1, . . . , dN )>,

T =

 t11 · · · t1N
...

. . .
...

tM1 · · · tMN

 ,

tmn = − 3

4π

1√
(xm − x′n)2 + (ym − y′n)2 + (zm − z′n)2

+
1

4π

xm (xm − x′n)

∆mn
+

1

4π

ym (ym − y′n)

∆mn
,

m = 1, . . . ,M, n = 1, . . . , N,

e = (e1, . . . , eN )>, h =
(
G3 (x1, y1, z1) , . . . , G3 (xM , yM , zM )

)>
.

В результате общая система уравнений в матричном виде выглядит следующим образом:

Ic + Jd +Ke = f ,

Lc + Pd +Qe = g, (42)

Rc + Sd + Te = h.

Матрицы I, J,K,L, P,Q,R, S, T имеют размер M × N , векторы неизвестных констант
c,d, e — размер N , векторы правой части f ,g,h — размер M . Если записать (42) в
блочном виде, то получим СЛАУ

Ax = b, (43)

где A =

 I J K
L P Q
R S T

, x =

 c
d
e

, b =

 f
g
h

.

В заключение отметим, что точки коллокации на границе выбираются достаточно
произвольно, например в областях, где граничные функции имеют большой градиент,
точки выбираются более плотно, а в областях, где граничные функции изменяются
плавно, точки коллокации могут выбираться с более низкой плотностью. Что касает-
ся выбора точек за пределами области, где располагаются точечные источники, то они
могут выбираться достаточно регулярно, но могут и выбираться случайно по определен-
ному вероятностному распределению. Именно выбор случайно распределенных позиций
источников оказался наиболее эффективным [13].
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7. Стохастический итерационный проекционный метод
Понятно, что для достаточно сложных областей число коллокационных точек может

быть очень большим, как и число точечных источников. Поэтому матрица A нашей си-
стемы уравнений Ax = b может иметь очень большую размерность. Для таких больших
матриц был разработан специальный рандомизированный алгоритм решения, основан-
ный на случайном выборе столбцов [9]. Для решения больших СЛАУ в рассматриваемом
в данной статье случае наиболее эффективным оказался стохастический проекционный
метод, где на каждом шаге текущая точка итерационного процесса проецируется на слу-
чайно выбранную гиперплоскость, задаваемую соответствующим уравнением линейной
системы. Этот алгоритм был впервые предложен в работе [19] и в настоящее время широ-
ко применяется для решения СЛАУ большой размерности. В работе [12] мы предложили
процесс ускорения этого метода. Отметим, что выбор этого метода для решения систе-
мы уравнений в методе фундаментальных решений представляется особенно разумным,
поскольку на каждой итерации алгоритм оперирует только с одной строкой матрицы. А
поскольку все элементы матрицы A легко вычисляются, нет необходимости записывать в
память всю матрицу, что существенно, поскольку размерности здесь так велики, что для
записи всей матрицы не хватает оперативной памяти. Один такой пример трехмерной
задачи, где размер матрицы не позволял записать его в оперативную память, приводится
ниже в тесте 3.

Пусть матрица A имеет размеры Nr×Nc. Обозначим через ai строку матрицы A под
номером i, тогда a>i — столбец, полученный при транспонировании строки ai.

Стохастический итерационный проекционный метод имеет следующий вид. Пусть
выбрано начальное приближение x0, например x = 0, тогда последующие итерации вы-
числяются по формуле [12]

xk+1 = xk +
bν(i) −

(
aν(i) · xk

)∥∥aν(i)∥∥2 a>ν(i), k = 1, 2, . . . , (44)

где ν (i) — номер строки матрицы A, который выбирается случайно, а в знаменателе
стоит квадрат евклидовой нормы строки, т. е. ‖aj‖2 =

∑Nr
k=1 a

2
jk.

Случайная строка ν (i) выбирается по распределению

pj =
‖aj‖2∑Nr
i=1 ‖ai‖2

, j = 1, . . . Nr,

реализация которого может производиться либо по стандартному методу моделирова-
ния [3], либо с помощью метода Волкера [20] в случае больших размерностей матриц.
Отметим, что на практике можно преобразовать исходную матрицу к матрице, для ко-
торой все pj будут равны между собой, и тогда случайный выбор особенно прост: номер
строки выбирается равновероятно из множества индексов строк. Действительно, доста-
точно исходную систему уравнений домножить слева на диагональную матрицу, где в
j-й строке стоит число 1/‖aj‖, j = 1, . . . , Nr. Следует отметить, что эту процедуру надо
проводить с осторожностью, поскольку свойства преобразованной матрицы могут изме-
ниться не в лучшую сторону для проекционного метода.

8. Результаты численных экспериментов
Тест 1. В качестве тестового примера сравним решение задачи Дирихле для первой кра-
евой задачи для системы уравнений Ламе (1), (2) стохастическим итерационным методом
с точным решением в области Ω = {(x, y) : 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly}. Выберем точное ре-
шение в виде
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u1 = 5xy, u2 = 4x2 − 3y2, (45)

которое удовлетворяет уравнению Ламе (1) и граничным условиям:

u1 (0, y) = 0, u1 (x, 0) = 0, u1 (Lx, y) = 5Lxy, u1 (x, Ly) = 5xLy, vspace ∗ −2mm (46)

u2 (0, y) = −3y2, u2 (x, 0) = 4x2, u2 (Lx, y) = 4L2
x−3y2, u2 (x, Ly) = 4x2−3L2

y. (47)

В методе фундаментальных решений точки коллокации на сторонах прямоугольни-
ка выбирались равномерно, с шагами hx и hy, так что общее число точек коллокации
M = 2 [(Nx − 3) + (Ny − 1)], где Nx =

Lx

hx
, Ny =

Ly

hy
. Источники помещались в точках,

которые располагались во внешности к прямоугольнику на расстоянии 5hx или 5hy от
каждой точки коллокации по внешней нормали к соответствующим границам прямо-
угольника. Общее число источников N = 2 [(Nx − 1) + (Ny − 1)].

В стохастическом итерационном проекционном методе для решения СЛАУ начальная
итерация задавалась нулевой.

В первом тестовом примере выбраны единичный квадрат Lx = Ly = 1 и равные шаги
разбиения hx = hy = 0.01.

На рисунке 1 представлены результаты расчетов для решения u1 (x, 0.5) стохасти-
ческим итерационным методом: линия, помеченная точками, — расчет с количеством
итераций Kiter = 10, штрихпунктирная — Kiter = 103 и штриховая — Kiter = 107. Сплош-
ная жирная линия соответствует точному решению.

Рис. 1. Результаты расчетов для решения u1 (x, 0.5) стохастическим итерационным методом:
линия, помеченная точками, — расчет с количеством итераций Kiter = 10, штрихпунктирная —
Kiter = 103, и штриховая — Kiter = 107, сплошная линия — точное решение

В таблице 1 представлены значения относительной погрешности для разного количе-
ства итераций при одинаковом количестве коллокационных точек и источников. Отно-
сительная погрешность в процентах вычисляется в евклидовой норме по формуле

εL2 =

√∑Nx−1
i=1

∑Ny−1
j=1 (u (xi, yj)− ũ (xi, yj))

2√∑Nx−1
i=1

∑Ny−1
j=1 (u (xi, yj))

2
100 %,

где ũ(xi, yj) — вычисленные значения одной из компонент решения, u(xi, yj) — ее точные
значения.
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Таблица 1. Относительная погрешность в процентах для расчетов теста 1

Kiter εL2 для u1 εL2 для u2

10 98.9% 99.3 %

103 48.3% 48.6 %

105 1.6% 1.5 %

107 0.1% 0.1 %

Как видно из таблицы, относительная погрешность в полтора процента достигается
уже при 105.

На рис. 2 представлена вторая компонента решения u2 (x, 0.5) при тех же параметрах.

Рис. 2. Результаты расчетов для решения u2 (x, 0.5) стохастическим итерационным методом:
линия, помеченная точками, — расчет с количеством итераций Kiter = 10, штрихпунктирная —
Kiter = 103 и штриховая — Kiter = 107, сплошная линия — точное решение

В следующем тестовом примере расчеты сделаны также для единичного квадрата с
тем же расположением коллокационных точек и соответствующих позиций источников,
но для разного числа этих точек.
Тест 2. Выберем точное решение уравнения Ламе в виде

u1 = 6x+ 6y − 10 + xexsiny + xeysinx,

u2 = (x+ 2) excosy − 2eysinx − 3y − xeycosx.
(48)

Этому решению соответствуют граничные условия:
u1 (0, y) = 6y − 10, u1 (x, 0) = 6x− 10 + xsinx,

u1 (Lx, y) = 6Lx + 6y − 10 + Lxe
Lxsiny + Lxe

ysinLx,

u1 (x, Ly) = 6x+ 6Ly − 10 + xexsinLy + xeLysinx,

u2 (0, y) = 2cosy − 3y, u2 (x, 0) = (x+ 2) ex − 2sinx − xcosx,

u2 (Lx, y) = (Lx + 2) eLxcosy − 2eysinLx − 3y − LxeycosLx,

u2 (x, Ly) = (x+ 2) excosLy − 2eLysinx − 3Ly − xeLycosx.

(49)

На рис. 3 представлены расчеты для решения u1 (x, 0.5) стохастическим итерацион-
ным методом при количестве итераций Kiter = 107 для различного числа точек коллока-
ции: кривая при Nx = Ny = 20 отмечена точками, при Nx = Ny = 80 — штрихами. Как
видно из рисунка, кривые практически совпадают с точным решением (сплошная).
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Рис. 3. Результаты расчетов для решения u1 (x, 0.5) стохастическим итерационным методом
при количестве итераций Kiter = 107 для различного числа точек коллокации: кривая при Nx =
Ny = 20 отмечена точками, при Nx = Ny = 80 — штрихами, точное решение — сплошная линия

На рис. 4 показан график решений u2 (x, 0.5), все параметры те же, что и для рис. 3.

Рис. 4. Результаты расчетов для решения u2 (x, 0.5) стохастическим итерационным методом
при количестве итераций Kiter = 107.

В табл. 2 представлены значения относительной погрешности в процентах для раз-
ного количества точек коллокации и источников при одинаковом количестве итераций.

Таблица 2. Относительная погрешность в процентах для расчетов теста 2

Nx = Ny εL2 для u1 εL2 для u2

20 0.29% 0.60%

40 0.14% 0.26%

80 0.10% 0.23%

160 0.15% 0.28%

В следующем тесте решалась трехмерная задача в единичном кубе. Выбрано точное
решение уравнения Ламе вида

u1 = 9x+ 20y + 24z − 6− (x− 2)xz,

u2 = 5xyz + y (2z − 3) ,

u3 = 10x2 − 5y2 − (x+ 3) z2 − 3z.

(50)
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В методе фундаментальных решений задавалось
(
Nx =

Lx

hx
, Ny =

Ly

hy
, Nz =

Lz

hz

)
коллокационных точек, расположенных на равномерной сетке на каждой грани куба,
всего таких точек M = 2

(
(Nx − 1) (Ny − 1) + (Nx − 1) (Nz − 1) + (Ny − 1) (Nz − 1)

)
.

Источники располагались, как и в двумерном случае, во внешности куба на рассто-
янии 5h по нормали к соответствующей грани. Общее количество источников N =
2
(

(Nx + 1) (Ny + 1) + (Nx + 1) (Nz + 1) + (Ny + 1) (Nz + 1)
)
.

В стохастическом итерационном проекционном методе для решения СЛАУ начальная
итерация задавалась нулевой.

На рис. 5 показаны результаты расчетов для решения u1 (x, 0.5, 0.5) стохастическим
итерационным методом при количестве итераций Kiter = 107: штрихами показано вычис-
ленное решение, сплошная линия — точное решение; шаг сетки задавался равномерный,
hx = hy = hz = 10−2.

Рис. 5. Результаты расчетов для решения u1 (x, 0.5, 0.5) стохастическим итерационным мето-
дом при количестве итераций Kiter = 107: штрихами показано вычисленное решение, сплошная
линия — точное решение; шаг сетки задавался равномерный, hx = hy = hz = 10−2

На рисунках 6 и 7 показаны результаты того же расчета, что и на рис. 5, но для
второй и третьей компонент решения соответственно. В данном примере была достигнута
относительная погрешность εL2 = 0.04 % для u1, εL2 = 1.07 % для u2 и εL2 = 0.20 % для
u3.

Рис. 6. Результаты того же расчета, что и на рис. 5, но для второй компоненты решения
u2 (x, 0.5, 0.5)
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Рис. 7. Результаты того же расчета, что и на рис. 5, но для третьей компоненты решения
u3 (x, 0.5, 0.5)

Приведем еще один пример решения системы уравнений Ламе, в котором, в отли-
чие от приведенных выше тестов, граничные условия не были заранее согласованы с
граничными условиями для гармонических функций w.
Тест 3. В единичном квадрате выбрано точное решение уравнение Ламе при λ = µ = 4
вида

u1 = 6x2 − 14xy + 2y2, u2 = 8x2 − 20xy + 2y2.

Граничные функции для первой краевой задач определяются значениями решений u1
и u2 на границах квадрата. Выбор коллокационных точек и позиций источников в методе
фундаментальных решений выбирались, как и в двумерных тестах, приведенных выше.
Количество коллокационных точек M = 2 ((Nx − 3) + (Ny − 1)), количество источников
N = 2 ((Nx − 1) + (Ny − 1)). В стохастическом итерационном проекционном методе для
решения СЛАУ начальная итерация задавалась нулевой.

На рис. 8 расчет для решения u1 (x, 0.5) показан штриховой линией, количество ите-
раций Kiter = 107. Точное решение представлено сплошной линией, шаг сетки на границе
задавался равномерным, hx = hy = 10−2. На рис. 9 показаны результаты того же расчета
для второй компоненты решения u2 (x, 0.5).

Рис. 8. Результаты расчетов для решения u1 (x, 0.5) (штриховая линия), количество итераций
Kiter = 107. Точное решение представлено сплошной линией
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Рис. 9. Результаты того же расчета, что и на рис. 8, но для второй компоненты решения
u2 (x, 0.5)

В данном примере достигнута следующая относительная погрешность: εL2 = 0.53 %
для u1, εL2 = 0.34 % для u2.

9. Выводы

Предложенный метод стохастического моделирования для решения двух- и трехмер-
ных задач эластостатики включает в себя четыре основных шага: (1) решение уравне-
ния Ламе ищется в виде представления Слободянского, куда входят только неизвестные
гармонические функции и их производные, (2) гармонические функции в методе фунда-
ментальных решений приближаются в виде конечной суммы фундаментальных решений
уравнения Лапласа с неизвестными коэффициентами, (3) после подстановки этих ко-
нечных сумм в представление Слободянского и согласования с заданными граничными
функциями мы приходим к системе линейных алгебраических уравнений на неизвестные
коэффициенты, (4) полученная система линейных уравнений решается с помощью сто-
хастического проекционного метода. Замечательным свойством такого метода является
то, что вычислив один раз эти неизвестные коэффициенты, мы имеем представление век-
тора решений в произвольном множестве внутренних точек области. Метод не требует
введения сеток внутри области, а лишь на ее границе, что является преимуществом перед
конечно-разностными методами. Кроме того, предложенный метод прост в реализации
и является весьма экономичным.
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