2017. Том 58, № 1

Январь – февраль

C. 190 – 194

КРАТКИЕ СООБЩЕНИЯ

УДК 548.4:548.736.5:548.734.8

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА СИНТЕТИЧЕСКОГО ВОЛЬТАИТА $[K_{0,90}(NH_4)_{0,10}]_2(Fe^{2+}_{3,190}Fe^{3+}_{1,124}Mg_{1,686})(Fe^{3+}_{0,938}Mg_{0,062})_2(Al_{0,98}Fe^{3+}_{0,02})(SO_4)_{12}\cdot 18,9H_2O$

В.Х. Сабиров

Южно-Казахстанский государственный университет им. М. Ауэзова, Шымкент, Казахстан E-mail: v_sabirov@mail.ru

Статья поступила 12 января 2015 г.

С доработки — 6 мая 2016 г.

Вольтаит $[K_{0,90}(NH_4)_{0,10}]_2(Fe_{3,190}^{2+}Fe_{1,124}^{3+}Mg_{1,686})(Fe_{0,938}^{3+}Mg_{0,062})_2(Al_{0,98}Fe_{0,02}^{3+})(SO_4)_{12}$ ·18,9H₂O* был получен в ходе сернокислотной обработки полиметаллического образца. Кристаллическая структура вещества построена из октаэдров (Fe³⁺,Mg)O₆ и (Fe²⁺,Fe³⁺,Mg)O₄(H₂O)₂, а также 12-вершинника (K⁺,NH⁺₄)O₁₂, объединенных в трехмерный каркас благодаря мостиковой функции иона SO₄²⁻. В пустотах каркаса расположены катионы [(Fe³⁺,Al)(H₂O)₆]³⁺ с разупорядоченными по нескольким позициям аква-лигандами.

DOI: 10.15372/JSC20170125

Ключевые слова: вольтаит, каркасная структура, изовалентное и гетеровалентное замещения, октаэдрическая координация.

Вольтаит относится к фумарольным минералам и описывается общей формулой $M_2^I M_5^{II} M_3^{III} M'^{III} (SO_4)_{12} \cdot 18H_2O$, где M^I — однозарядные катионы (K⁺, Rb⁺, NH₄⁺, Tl⁺, Li⁺), M^{II} — двухзарядные катионы (Fe²⁺, Mg²⁺, Mn²⁺, Co²⁺, Zn²⁺, Cd²⁺), M^{III} и M'^{III} — трехзарядные катионы (в основном Fe³⁺ и Al³⁺) [1]. Первый вольтаит, изученный методом PCA, имеет состав K₂Fe₈Al(SO₄)₁₂ · 18H₂O (II) и аномально большие для обычных сульфатов параметры кристаллической решетки (a = 27,254 Å), принадлежит к кубической сингонии и пространственной группе $Fd\bar{3}c$ [2]. PCA и мессбауэровская спектроскопия II показали, что катионы Fe²⁺ и Fe³⁺ занимают позицию M(1), соответствующую позиции Вайкоффа 32*c*, катион Fe³⁺ — позицию M(2), отвечающую позиции Вайкоффа 96*g*, а атомы K и Al расположены в позициях 32*b* и 16*a* соответственно. Структурная формула K_2^{M2} (Fe²⁺₅Fe³⁺)^{M1} Fe³⁺₂Al(SO₄)₁₂ · 18H₂O описывает распределение катионов Fe²⁺ и Fe³⁺ в октаэдрических позициях M(1) и M(2) [3].

Широкая вариация состава вольтаита благодаря полным или частичным изо- и гетеровалентным замещениям катионов Fe^{2+} и Fe^{3+} на другие парамагнитные катионы делает его перспективным магнитным материалом для использования в физике сверхнизких температур, как это имеет место в случае железоаммонийных квасцов [4].

В настоящей работе обсуждаются результаты РСА нового синтетического вольтаита $[K_{0,90}(NH_4)_{0,10}]_2(Fe_{3,190}^{3+}Fe_{1,124}^{3+}Mg_{1,686})(Fe_{0,938}^{3+}Mg_{0,062})_2(Al_{0,98}Fe_{0,02}^{3+})(SO_4)_{12} \cdot 18,9H_2O$ (I), в котором реализуются изовалентное и гетеровалентное замещения катионов Fe^{2^+} и Fe^{3^+} .

^{*} Трехзначные значения заселенностей катионов (Fe³⁺, Mg) приведены для обеспечения электронейтральности вещества.

[©] Сабиров В.Х., 2017

Таблица 1

Атом	Позиция		Заселенности	x/a	y/b	z/c	$U_{ m _{3KB}}$
M(1)	32 <i>c</i>	. 3.	0,938(8)Fe + 0,062(8)Mg	0	0	0	4,4(3)
M(2)	96g	2	0,719(6)Fe + 0,281(6)Mg	2500	1031(2)	-1031(2)	6,4(2)
Al	16 <i>a</i>	23.	0,98(1)Al + 0,02(1)Fe	1250	1250	1250	3,3(7)
Κ	32 <i>b</i>	.32	0,90(1)K + 0,10(1)N	2500	2500	2500	23,4(6)
S	192 <i>h</i>	1	1	2375(1)	2752(1)	1186(1)	7,2(2)
O(1)	192 <i>h</i>	1	1	2499(1)	2464(1)	740(1)	14,7(4)
O(2)	192 <i>h</i>	1	1	2247(1)	3257(1)	1044(1)	20,3(5)
O(3)	192 <i>h</i>	1	1	1955(1)	2538(1)	1433(1)	28,6(6)
O(4)	192 <i>h</i>	1	1	2800(1)	2752(1)	1518(1)	19,7(5)
$O_w(1)$	192 <i>h</i>	1	1	1809(1)	1218(1)	-792(1)	20,5(1)
$H(1)_{w1}$	192 <i>h</i>	1	1	170	152	-85	5,0
$H(2)_{w1}$	192 <i>h</i>	1	1	176	107	-51	5,0
$O_w(2)$	96 <i>f</i>	2	0,24(1)	1806(3)	889(3)	1468(4)	23(3)
$O_w(3)$	192 <i>h</i>	1	0,18(1)	1940(6)	1250	1250	17(6)
$O_w(4)$	192 <i>h</i>	1	0,24(1)	1795(3)	1611(3)	1467(4)	21(3)

Координаты атомов (Å×10⁴, для H×10³), заселенности позиций и эквивалентные изотропные тепловые параметры атомов U_{экв} (Å²×10³, для H×10²) в структуре I

Экспериментальная часть. Кристаллы I были выделены в ходе сернокислотной обработки полиметаллического образца из сильнокислого раствора. В растворе присутствовали также сульфаты калия и аммония, которые были добавлены с целью повышения температуры кипения раствора. Полуколичественный анализ продуктивного раствора, проведенный на массспектрометре "Agilent", показал, что в нем содержатся калий, железо, цинк, алюминий, магний, титан, а также следы других металлов.

Мелкие темно-зеленые октаэдрические кристаллы I, обладающие жирным блеском, были получены путем упаривания продуктивного раствора при комнатной температуре: кристаллы кубические, a = 27,246(2) Å, V = 20225,3(2) Å³, $d_{выч} = 2,595$ г/см³, пр. гр. $Fd\overline{3}c$, Z = 16. Рентгеновский эксперимент проведен на дифрактометре Xcalibur, Ruby (λ Cu K_{α} -излучение, комнатная температура, $4,59 \le \theta_{\text{max}} \le 76,30^{\circ}$, $-7 \le h \le 33$, $-22 \le k \le 14$, $-30 \le l \le 14$, 890 отражений с $I \ge 2\sigma(I)$). Сбор и обработка экспериментальных данных, внесение эмпирических поправок на поглощение, фактор Лорентца, а также поляризации введены по программе CrysAlis^{Pro} [5]. Все расчеты проведены программой SHELXL-97 [6]. Структура уточнена в полноматричном анизотропном приближении для всех неводородных атомов. Атомы H молекулы H₂O, входящие в координационный октаэдр атома Fe(2), локализованы из разностного синтеза Фурье, но не уточнялись. В табл. 1 приведены основные кристаллографические данные и характеристики эксперимента. Окончательные значения факторов расходимости равны $R_1 = 0,0268$ и $R_w = 0,0346$. Координаты атомов, симметрия их позиций, заселенности и эквивалентные изотропные параметры приведены в табл. 2.

Вещества I и II изоструктурны, и по этой причине в начальной стадии уточнения структуры были использованы координаты атомов, полученные в работе [2]: атом Fe был размещен в позициях 32*c* и 96*g*, а Al и K — в позициях 32*b* и 16*a* соответственно.

Заселенность атомных позиций уточнялась совместно с другими параметрами структуры в предположении, что суммарная заселенность каждой позиции равна 1. Координаты атомов, их заселенности и тепловые параметры в I приведены в табл. 2.

Вначале были уточнены индивидуальные заселенности позиций неупорядоченных молекул воды $O_w(2)$, $O_w(3)$ и $O_w(4)$ наряду с другими структурными параметрами, а позиции остальных атомов считались занятыми полностью. В результате уточнения структуры в изотропном при-

Таблица 2

Связь	d Угол*		ω	Угол	ω
Связь $M(1) - O(1)^i$ $M(2) - O_w(1)$ $M(2) - O(2)^j$ $M(2) - O(4)^k$ $Al - O_w(4)$ K - O(3) K - O(4) S - O(1) S - O(2) S - O(3)	<i>d</i> 2,019(2) 2,055(2) 2,058(2) 2,110(2) 1,877(8) 3,266(3) 2,881(2) 1,484(2) 1,474(2) 1,450(2)	$y_{\Gamma O I I}^*$ $O(1)^i - M(1) - O(1)^l$ $O_w(1) - M(2) - O_w(1)^m$ $O_w(1) - M(2) - O(2)^n$ $O_w(1) - M(2) - O(2)^p$ $O(2)^r - M(2) - O(4)^s$ $M(1) - O(1)^i - S^i$ $M(2) - O(2)^j - S^j$ $M(2) - O(4)^k - S^k$	ω 87,09(8) 87,20(12) 94,51(9) 89,29(9) 88,08(8) 142,36(13) 143,68(15) 134,74(13)	Угол O(1)—S—O(2) O(1)—S—O(3) O(1)—S—O(4) O(2)—S—O(4) O(2)—S—O(4) O(3)—S—O(4)	 ω 109,43(12) 110,31(13) 109,00(12) 108,04(14) 110,33(13) 109,72(14)

Важнейшие длины связей (d, Å) и валентные углы (ω, град.) в структуре I

* Атомы, связанные с исходными преобразованиями симметрии: ⁱ –*x*+1/4, –*y*+1/4, *z*; ^j –*x*+1/2, –*y*+1/2, –*z*; ^k –*y*+1/2, *x*–1/4, *z*+1/2; ^l*z*, –*x*+1/4, –*y*+1/4; ^m –*x*+1/2, –*z*, –*y*; ⁿ –*x*+1/2, –*y*+1/2, –*z*; ^p *x*, *z*, *y*–1/2; ^r –*x*+1/2, –*y*+1/2, –*z*; ^s –*y*+1/2, *x*+3/4, *z*+1/2.

ближении были получены довольно низкие значения факторов расходимости: $R_1 = 0,061$ по 724 независимым отражениям с $F_0 > 4\sigma(F_0)$ и $R_w = 0,071$ по всем 890 независимым отражениям в изотропном приближении.

Дальнейшие уточнения структуры до полного определения типа катионов были проведены также в изотропном приближении в последовательности Al, K, Fe(2) и Fe(1).

Изотропный тепловой параметр атома Al имел завышенное значение, что могло быть обусловлено заселенностью позиции статистической смесью Al+Fe. В других вольтаитах позиция 16*a* обычно занимается атомами Al или Fe [1—3]. При частичном замещении атома Al атомом Fe изотропный тепловой параметр принял обычные значения.

Заселенность позиции 32b атомом К была меньше единицы, и поэтому в эту позицию был заселен также катион NH_4^+ . Уточнение структуры привело к незначительному уменьшению факторов расходимости.

Аналогичная ситуация была и с заселенностью атома Fe(2) в позиции 96g. В кристаллах других вольтаитов было найдено, что данная позиция частично или полностью занята атомами двухвалентных металлов [3, 7]. В кристалле I этими атомами могли быть атомы Mg и Zn, которые содержались в продуктивном растворе в достаточном количестве. Заселение позиции атомами Fe и Mg привело к снижению фактора расходимости до $R_1 = 0,053$ и $R_w = 0,062$, а в случае введения атома Zn уточнение структуры стало неустойчивым.

Предпочтительность вхождения магния в состав I по сравнению с цинком может быть объяснена правилом полярности Гольдшмидта, согласно которому в случае изовалентных замещений ион с меньшим радиусом будет входить в общую кристаллическую структуру легче, чем ион с большим радиусом, занимающий ту же позицию [8]. Ионный радиус магния равен 0,72 Å, а цинка — 0,74 Å [9].

Надо отметить, что также был рассмотрен случай заселения позиции 96g атомом Ti, при котором структура уточнялась до $R_1 = 0,033$ и $R_w = 0,042$. Распределение атомов Ti и Fe по позициям M1и M2 соответствует формуле $K_2^{M2} (Ti_5^{2+}Ti^{3+})^{M1}Fe_2^{3+}Al(SO_4)_{12} \cdot 18H_2O$, что требует присутствия в кристалле катионов Ti²⁺ и Ti³⁺. Завышенные значения тепловых параметров атома Ti, а также невозможность реализации в обычных условиях степеней окисления 2+ и 3+ атома Ti заставили нас отказаться от такой модели. Полученные для такой модели низкие зна-

чения *R*-факторов, вероятно, обусловлены близостью значений атомных факторов рассеяния Fe и Ti [10].

Идентичность атомных факторов рассеяния катионов Fe^{2+} и Fe^{3+} при значениях $\sin\theta/\lambda \ge 0.25$ не позволяет определить индивидуальные заселенности каждого катиона в случае их замещения одних и тех же кристаллографических позиций [11]. Доля катиона Fe^{3+} в позиции 96g была определена на конечной стадии уточнения структуры.

На последних этапах уточнения структуры было выяснено, что расстояние M(1)—О в координационном октаэдре незначительно превышает сумму ионных радиусов ионов Fe³⁺ и O²⁻. Это могло быть обусловлено частичным замещением катиона Fe³⁺ ионом с большим, чем катион Fe³⁺, ионным радиусом. Ранее в работе [3] было показано, что позиция 32*c* может частично замещаться также катионами двухвалентных атомов (Mg, Cd). Частичное замещение атома Fe атомом Mg и уточнение структуры в анизотропном приближении привело к конечным значениям факторов расходимости: $R_1 = 0,0268$ и $R_w = 0,0346$.

Гетеровалентное замещение катиона Fe^{3+} атомом Mg привело к дефициту положительного заряда в структуре. Задание линейных уравнений для обеспечения в позиции 32c единичной заселенности и заряда 3+ не дало положительного результата. Заряд 3+ получался при суммарной заселенности позиции больше, чем единица.

Дефицит положительного заряда в позиции 32c компенсируется за счет гетеровалентого (сопряженного) частичного замещения катиона Fe²⁺ в позиции 96g катионом Fe³⁺. Заселенности катионов Fe²⁺ и Fe³⁺ в позиции 96g были вычислены из системы уравнений для суммарных значений зарядов катионов и их заселенностей в этой позиции. В результате расчетов для I была получена следующая структурная формула:

 $[K_{0,90}(NH_4)_{0,10}]_2^{M2}(Fe_{3,190}^{2+}Fe_{1,124}^{3+}Mg_{1,686})^{M1}(Fe_{0,938}^{3+}Mg_{0,062})_2(Al_{0,98}Fe_{0,02}^{3+})(SO_4)_{12}\cdot 18,9H_2O.$

Результаты и их обсуждение. Кристаллическая структура I построена из сочлененных октаэдров M(1)O₆ [M(1) = (Fe³⁺, Mg)], M(2)O₄(H₂O)₂ [M(2) = (Fe²⁺, Fe³⁺, Mg)] и 12-вершинников (K⁺,NH₄⁺)O₁₂, объединенных в трехмерный каркас благодаря мостиковой функции тетраэдрического иона SO₄²⁻. В пустотах каркаса расположены катионы [(Fe,Al)(H₂O)₆]³⁺ с сильно неупорядоченными аква-лигандами (см. рисунок). Параметр элементарной ячейки *а* кристалла I (*a* = 27,246(2) Å) незначительно сокращен по сравнению с параметром II (27,254(8) Å).

Фрагмент каркасной структуры I (штрихами отмечены симметричные атомы)

Октаэдр атома $M(1) = 0,938(8)Fe^{3+} + 0,062(8)Mg$ образован за счет шести атомов О трех SO_4^{2-} ионов, связанных взаимно инверсионной осью третьего порядка. Расстояние M(1)—О в октаэдре равно 2,019(2) Å и лежит в пределах сумм ионных радиусов Fe³⁺ (0,645 Å, KЧ 6, высшее спиновое состояние), $Mg^{2+}(0,72$ Å, KЧ 6) и O^{2-} (1,36 Å, KЧ 3) 2,005 и 2,080 Å соответственно [9]. В II это расстояние равно 2,005 Å [2]. Сумма усредненных ионных радиусов Fe³⁺, Mg и ионного радиуса O^{2-} имеет значение такого же порядка: 0,938(Fe³⁺) · 0,645 Å + 0,062(Mg)0,72 Å + 1,36 Å = 2,01065 Å ≈ 2,011 Å.

Октаэдр атома M(2) = 0,532Fe²⁺ + 0,187Fe³⁺ + 0,281Mg образован за счет атомов О двух молекул H₂O и четырех анионов SO₄²⁻, связанных попарно кристаллографической осью 2. Расстояния M(2)—O в октаэдре (2,055(2)—2,110(2) Å) лежат в интервале сумм ионных радиусов ионов Mg²⁺ (0,72 Å) и Fe²⁺ (0,78 Å, KЧ 6, высшее спиновое состояние) и O²⁻. В II эти расстояния лежат в интервале 2,075—2,116 Å. Сумма усредненных ионных радиусов Fe²⁺, Fe³⁺, Mg и ионного радиуса O²⁻ равна 0,532·0,78 Å + 0,187·0,645 Å + 0,281·0,72 + 1,36 Å = 2,098 Å, что не противоречит значениям, полученным для I.

Координационный многогранник катионов (K⁺, NH₄⁺) образован благодаря бидентатной координации с шестью SO_4^{2-} ионами. Расстояния M⁺—О в полиэдре неравнозначны (2,881(2) и 3,266(3) Å), что также имеет место и в структуре II.

Катионы (Al,Fe³⁺) гидратированы тремя кристаллографически независимыми молекулами H₂O, неупорядоченными в нескольких позициях, одна из которых находится в частной позиции на оси 2. Расстояния M^{3+} —OH₂ в координационном полиэдре (1,877(8) и 1,878(8) Å) близки к сумме ионных радиусов Al³⁺ (0,535 Å, KЧ 6) и O²⁻. Это обстоятельство, по-видимому, связано малой долей включения (~2 %) катиона Fe³⁺ в позиции 16*a*.

Количество молекул H_2O в I составляет 18,9, которое в различных кристаллах вольтаита меняется от 18 до 20 [1].

Выводы. Методом РСА были определены химический состав и кристаллическая структура нового синтетического вольтаита. В кристалле обнаружено частичное замещение катиона Fe³⁺ в позиции 32*c* катионом Mg²⁺. Дефицит заряда, возникающий при таком гетеровалентном замещении, компенсируется за счет гетеровалентного (сопряженного) частичного замещения катиона Fe²⁺ в позиции 96g катионом Fe³⁺. Наблюдается также изовалентное частичное замещение катиона Fe²⁺ катионом Mg²⁺.

СПИСОК ЛИТЕРАТУРЫ

- 1. Broemme B., Poellmann H. // Goldschmidt Conference Abstracts. 2007. A123.
- 2. Mereiter K. // Tschermaks Mineral. Petrogr. Mitt. 1972. 18, N 3. P. 185.
- 3. Majzlan J., Schlicht H., Wierzbicka-Wieczorek M. et al. // Miner. Petrol. 2013. 107, N 4. P. 221.
- 4. Cooke A.H. // Proc. Roy. Soc. 1949. A62, N 2. P. 269.
- 5. Oxford Difraction Ltd. CrysAlisPro. Version.1.171.33.44, 2009.
- 6. *Sheldrick G.M.* SHELX-97, Program for Crystal Structure Refinement. Germany, University of Göttingen, 1998.
- 7. Long G.J., Longworth G., Day P., Beveridge D. // Inorg. Chem. 1980. 19, N 4. P. 821.
- 8. *Петьков В.И., Грудзинская Е.Ю.* Изоморфизм. Твердые растворы. Нижний Новгород: Нижегородский гос. ун-т, 2010.
- 9. Shannon R.D. // Acta Crystallogr. 1976. A32, N 5. P. 751.
- 10. Hawthorne F.C. // Am. Mineral. 1983. 68, N 3. P. 287.
- 11. Hawthorne F.C., Ungaretti L., Oberti R. // Can. Mineral. 1995. 33, N 4. P. 907.