УДК 662.2

ОБОБЩЕННАЯ ЗАМКНУТАЯ МОДЕЛЬ ДЛЯ АНАЛИЗА АСИММЕТРИЧНЫХ КУМУЛЯТИВНЫХ ЗАРЯДОВ

А. Махдиан, Дж. Х. Лиахат*, М. Гайур

Исфаханский технологический университет, 84156-83111 Исфахан, Иран * Тарбиат модаррес университет, Тегеран, Иран E-mails: a.mahdian@me.iut.ac.ir, ghlia530@modares.ac.ir, ghayour@cc.iut.ac.ir

Представлена модель, имеющая меньше ограничений по сравнению с существующими моделями и описывающая явление коллапса при любой геометрической асимметрии облицовки заряда и при наличии как симметричной, так и асимметричной формы фронта волны. В модели развита наиболее полная обобщенная классическая теория формирования струй. В симметричном случае известные модели достаточно точно описывают процесс формирования струи и песта, однако асимметрия облицовки, окружающего заряда и фронта волны детонации, а также технические требования, в частности производственные допуски, могут оказывать влияние на коллапс облицовки и поведение кумулятивной струи и песта. Некоторые известные модели, описывающие асимметричные процессы, либо не являются замкнутыми, либо применимы при определенных ограничениях (таких, как малая асимметрия и плоский фронт волны). Представленная модель позволяет оценить влияние выпуклого, плоского и вогнутого фронтов волны на отклонение направления скорости струи от оси, определить другие параметры струи и песта, а также исследовать влияние асимметричного фронта волны на формирование струи в случае абсолютно симметричных облицовки и окружающего заряда.

Ключевые слова: асимметричный кумулятивный заряд, теория формирования струй, асимметричный фронт волны детонации, явление схлопывания облицовки.

Введение. Клиновидная облицовка (вкладыш) изготовлена из двух тонких пластин, соединенных под углом 2α . С внешней стороны облицовка окружена взрывчатым материалом. При взрыве заряда фронт детонационной волны падает на лицевую часть каждой пластины, вследствие чего элементы облицовки ускоряются. Элементы двух пластин встречаются в движущейся точке контакта, которая может быть расположена на номинальной оси симметрии облицовки. В этой точке образуются высокоскоростная плоская струя и низкоскоростной пест.

В работах [1, 2] предложена модель, описывающая поведение симметричных облицовок. Вследствие асимметрии облицовки или заряда, а также наличия других дефектов точка соударения элементов может находиться вблизи оси, при этом появляется поперечная составляющая скорости, что уменьшает глубину проникания струи.

В работе [3] предложена модель для описания асимметрии в кумулятивном заряде, но вследствие многочисленных допущений, принятых при построении модели, в последующих исследованиях она не использовалась. Позднее большое внимание уделялось исследованию формирования асимметричной струи и песта. Экспериментальные методы применяются

для определения допустимых допусков при проектировании кумулятивного заряда, но они должны быть дополнены соответствующей теорией [4].

Параметры асимметрии и их влияние на глубину проникания исследованы в работе [5]. В модели, представленной в [5], основное движение струи и составляющие скорости, направленные от оси, а также струйные потоки, выходящие из точки контакта, являются важными характеристиками рассматриваемого явления. В работе [6] исследовано влияние асимметрии на инициирование кумулятивного заряда.

В работе [7] впервые предложена простая замкнутая модель Пака (Pack) — Кюртиса (Curtis) (РС-модель), являющаяся обобщением модели Биркгофа при некоторых ограничениях. Например, скорости элементов облицовки на каждой ее стороне постоянны, не меняются вдоль нее и различаются незначительно. В дальнейшем модель [7] была модифицирована за счет некоторых упрощений. В работе [8] предложены некоторые формулы для описания процесса формирования струи в трехмерном случае. В работе [9] учтено ускорение движущегося элемента. В [10] предложена другая модель и использовано понятие линии тока. Также проведены исследования столкновения двух асимметричных потоков [11–15]. В ряде исследований разрабатывались необходимые нормативы на изготовление кумулятивных зарядов [16–19]. В [20] с помощью программного обеспечения Autodyn исследовано поведение струи и песта в различных асимметричных кумулятивных зарядах.

Настоящая работа является обобщением классической теории формирования струи для линейных кумулятивных зарядов, которое позволяет описать схлопывание облицовки (коллапс) при наличии асимметрии и объяснить влияние на этот процесс симметричного и асимметричного вогнутого, выпуклого и плоского волновых фронтов [21–23].

Схлопывание облицовки. Рассмотрим модель схлопывания облицовки. Направим ось x по номинальной оси симметрии, ось y — перпендикулярно ей, начало координат расположим в вершине клина (рис. 1). Фронт клиновидной волны детонации моделируется двумя плоскими волнами, перемещающимися с постоянной скоростью U. Фронты волны образуют постоянные углы ψ_1 и ψ_2 с осью y.

Предполагается, что элементы, расположенные в точках P_1 и P_2 , ускоряются мгновенно до постоянных скоростей V_{01} и V_{02} в направлениях P_1C и P_2C и встречаются в точке C. Схлопывание любых элементов, расположенных на обеих сторонах облицовки, не зависит

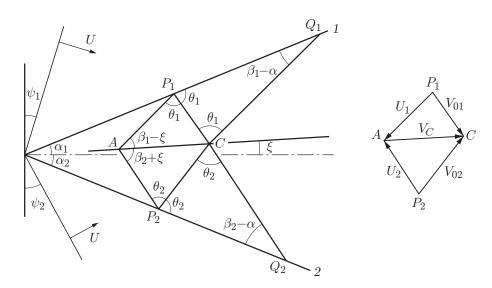


Рис. 1. Схема процесса схлопывания в кумулятивном заряде: 1, 2 — поверхности облицовки

от соседних элементов. В течение промежутка времени, за который элементы, расположенные в точках P_1 и P_2 , достигают точки C, элементы, расположенные на линиях P_1Q_1 и P_2Q_2 , попадают на линии CQ_1 и CQ_2 , параллельные линиям AP_1 и AP_2 . Кроме того, в течение указанного промежутка времени точка A достигает точки C со скоростью V_C , а детонационная волна сообщает ускорение пластине 1 (или пластине 2) и перемещается из точек P_1 и P_2 в точки Q_1 и Q_2 .

Описание предложенной модели. В основе модели лежит движение элементов, принадлежащих поверхностям 1 и 2 облицовки, и их столкновение в движущейся точке — точке стагнации (ядре). Обычно предполагается, что направление движения точки стагнации образует угол ξ с номинальной осью симметрии. В предлагаемой модели не накладывается каких-либо ограничений на вид асимметрии: любой параметр асимметрии может быть учтен в модели. В частном случае ($V_{01} = V_{02}, \psi_1 = \psi_2 = 0$) или в случае полностью симметричного кумулятивного заряда эта модель сводится к модели Биркгофа. Для замыкания модели и получения оценки вогнутости или выпуклости фронта детонационной волны используется детонационная волна клиновидной формы. Таким образом, в простейшем случае данная модель позволяет исследовать волновые фронты, которые приходят на каждую сторону облицовки под постоянным углом.

Элементы, принадлежащие поверхностям 1 и 2 облицовки, имеют различные, но постоянные скорости V_{01} и V_{02} . Кроме того, скорость фронта волны в направлениях ψ_1 и ψ_2 равна U (см. рис. 1). Таким образом, необходимо определить следующие шесть неизвестных: углы β_1 , β_2 наклона потоков элементов с поверхностей 1 и 2 к номинальной оси симметрии соответственно, углы θ_1 , θ_2 наклона потоков элементов с поверхностей 1 и 2 к этим поверхностям, угол ξ между направлением движения точки стагнации (ядра) и номинальной осью симметрии, скорость ядра V_C .

Для треугольников AP_1C и AP_2C справедливы соотношения

$$\frac{V_{01}}{\sin(\beta_1 - \xi)} = \frac{V_C}{\sin\theta_1}, \qquad \frac{V_{02}}{\sin(\beta_2 + \xi)} = \frac{V_C}{\sin\theta_2},\tag{1}$$

а для треугольников P_1CQ_1 и P_2CQ_2 — соотношения

$$\frac{V_{01}}{\sin(\beta_1 - \alpha_1)} = \frac{U}{\cos(\alpha_1 + \psi_1)\sin\theta_1}, \qquad \beta_1 - \alpha_1 = 180 - 2\theta_1,
\frac{V_{02}}{\sin(\beta_2 - \alpha_2)} = \frac{U}{\cos(\alpha_2 + \psi_2)\sin\theta_2}, \qquad \beta_2 - \alpha_2 = 180 - 2\theta_2.$$
(2)

Из уравнений (1), (2) можно определить следующие шесть величин:

$$\cos \theta_{1} = \sin \delta_{1} = \frac{V_{01}}{2U} \cos (\alpha_{1} + \psi_{1}), \qquad \beta_{1} = 180 - 2\theta_{1} + \alpha_{1},$$

$$\cos \theta_{2} = \sin \delta_{2} = \frac{V_{02}}{2U} \cos (\alpha_{2} + \psi_{2}), \qquad \beta_{2} = 180 - 2\theta_{2} + \alpha_{2},$$

$$\operatorname{tg} \xi = \frac{A \sin \beta_{1} - \sin \beta_{2}}{A \cos \beta_{1} + \cos \beta_{2}} \qquad \left(A = \frac{\sin (\beta_{2} + \xi)}{\sin (\beta_{1} - \xi)} = \frac{V_{02}}{V_{01}} \frac{\sin \theta_{2}}{\sin \theta_{1}} \right),$$

$$V_{C} = V_{02} \frac{\sin \theta_{2}}{\sin (\beta_{2} + \xi)} = V_{01} \frac{\sin \theta_{1}}{\sin (\beta_{1} - \xi)}.$$

Для определения потоков, вытекающих из ядра, при скоростях U_1 и U_2 потоков, втекающих в ядро, имеем

$$U_1 = V_{01}\cos\theta_1 + V_C\cos(\beta_1 - \xi) = V_{01}(\cos\theta_1 + \sin\theta_1/\operatorname{tg}(\beta_1 - \xi)),$$

$$U_2 = V_{02}\cos\theta_2 + V_C\cos(\beta_2 + \xi) = V_{02}(\cos\theta_2 + \sin\theta_2/\operatorname{tg}(\beta_2 + \xi)).$$

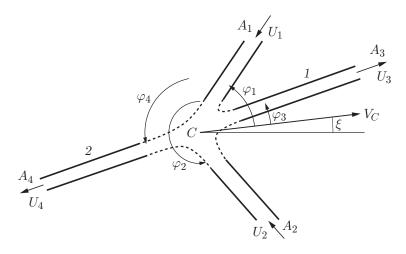


Рис. 2. Схема течения струи: 1 — струя, 2 — пест

Направления этих двух течений по отношению к номинальной оси симметрии (углы β_1 , β_2) были определены выше. Для углов между направлениями потоков и направлением движения ядра имеем следующие соотношения:

$$\varphi_1 = \beta_1 - \xi, \qquad \varphi_2 = -\beta_2 - \xi.$$

Если в интервале времени t расстояния от двух поверхностей до ядра равны S_1 и S_2 , то можно записать соотношение

$$\frac{A_1 U_1}{m_1 S_1} = \frac{A_2 U_2}{m_2 S_2},$$

или

$$\frac{A_1}{A_2} = \frac{m_1 S_1 U_2}{m_2 S_2 U_1},$$

где m_1, m_2 — массы на единицу длины потоков с поверхностей облицовки. Тогда площади A_1, A_2 потоков, втекающих в основной поток (в точку C) (рис. 2), можно найти из соотношений

$$\rho A_1 U_1 = \frac{\rho w t_1 U S_1}{S_2 \cos \alpha_1}, \qquad \rho A_2 U_2 = \frac{\rho w t_2 U}{\cos \alpha_2}$$

 $(t_1, t_2$ — толщины сторон 1 и 2 облицовки; w — поперечный размер каждой стороны облицовки).

Длины путей S_1 , S_2 , пройденных элементами, принадлежащими поверхностям 1 и 2, до момента их столкновения через определенный промежуток времени, можно определить следующим образом. Координаты точек P_1 , P_2 (см. рис. 1) есть X_{P_1} , X_{P_2} . Таким образом,

$$\frac{S_1}{S_2} = \frac{X_{P1}}{X_{P2}} = \frac{\operatorname{tg} \xi + \operatorname{tg} (\theta_1 - \alpha_1)}{\operatorname{tg} \alpha + \operatorname{tg} (\theta_1 - \alpha_1)} \frac{\operatorname{tg} \alpha + \operatorname{tg} (\theta_2 - \alpha_2)}{\operatorname{tg} (\theta_2 - \alpha_2) - \operatorname{tg} \xi}.$$

С помощью приведенных выше соотношений определяются величины $A_1, A_2, U_1, U_2, \varphi_1, \varphi_2$. Затем с использованием модели, предложенной в [8], можно определить $U_3, U_4, \varphi_3, \varphi_4, A_3, A_4$:

$$U_3^2 = U_4^2 = \frac{m_1 S_1 U_1^2 + m_2 S_2 U_2^2}{m_1 S_1 + m_2 S_2},$$

$$\varphi_3 = \varphi_4 - \pi = \arctan \frac{m_1 S_1 U_1 \sin \varphi_1 + m_2 S_2 U_2 \sin \varphi_2}{m_1 S_1 U_1 \cos \varphi_1 + m_2 S_2 U_2 \cos \varphi_2}, \qquad \varphi_4 = \varphi_3 + \pi,$$

$$A_3 = \frac{1}{2} \left(\frac{m_1 S_1 + m_2 S_2}{U_3} - \frac{\sqrt{m_1^2 S_1^2 U_1^2 + 2m_1 m_2 S_1 S_2 U_1 U_2 \cos (\varphi_1 - \varphi_2) + m_2^2 S_2^2 U_2^2}}{U_3^2} \right),$$

$$A_4 = \frac{m_1 S_1 + m_2 S_2}{U_3} - A_3.$$

Наконец, для скоростей струи и песта получаем выражения

$$V_{jx} = U_3 \cos(\xi + \varphi_3) + V_C \cos \xi, \qquad V_{jy} = U_3 \sin(\xi + \varphi_3) + V_C \sin \xi,$$

$$V_{sx} = V_C \cos \xi - U_3 \cos(\xi + \varphi_3), \qquad V_{sy} = V_C \sin \xi - U_3 \sin(\xi + \varphi_3),$$

$$\varphi_j = \operatorname{arctg}(V_{jy}/V_{jx}), \qquad \varphi_s = \operatorname{arctg}(V_{sy}/V_{sx}),$$

где V_C — скорость ядра в направлении ξ .

Результаты исследования и их обсуждение. Согласно РС-модели [7], если асимметрия скорости элементов, принадлежащих двум сторонам облицовки, мала, т. е. $V_{01} = V$, $V_{02} = V + \delta V$, то величины S_2 , β_2 зависят только от вариации первого порядка скорости V. Следовательно,

$$\beta_2 = \beta + \delta \beta$$
, $S_2 = S + \delta S$ $(\beta_1 = \beta, S_1 = S)$.

В РС-модели это предположение позволяет выразить величины $\delta\beta$, δS , ξ и др. через β , α , V, δV , ψ , S. Поскольку при этом пренебрегается вариациями второго порядка, данные результаты не могут быть использованы в общем случае, но в случае $\delta V \ll V$ (например, $\delta V/V \leqslant 0.05$) получаются вполне приемлемые результаты.

В предлагаемой модели отсутствуют указанные выше ограничения, что позволяет исследовать каждый параметр асимметрии с использованием вариаций необходимого порядка. Проведем сравнение представленной модели и РС-модели. Для этого рассмотрим следующие случаи.

Случай 1. Как и в случае, описанном в [7], задаются следующие параметры кумулятивного заряда: $m_1=m_2$, $2\alpha=44^\circ$, $\psi_1=\psi_2=0$, U=5564 м/c, V=2700 м/c, $\beta=48^\circ$.

Сравним результаты, полученные с использованием РС-модели и представленной модели при указанных параметрах.

Скорости элементов, принадлежащих поверхностям 1 и 2, равны V и $V+\delta V$ (0 < $\delta V/V < 0.05$) соответственно. Таким образом, углы β наклона потоков элементов с поверхностей 1 и 2 к номинальной оси симметрии различаются на величину $\delta \beta$, что обусловлено вариацией первого порядка величины V. Длине пути S, пройденного элементами, принадлежащими поверхности 1, до столкновения в момент времени t, соответствует длина пути $S+\delta S$, пройденного элементами, принадлежащими поверхности 2. Вариация δS также соответствует вариации первого порядка скорости V.

В [7] определены величины ξ , φ_3 , V_{jx} , V_{jy} , V_{sx} , V_{sy} , φ_j , φ_s . При сравнении приведенных в [7] результатов с результатами, полученными с использованием предлагаемой модели, для каждой указанной величины вводится степень различия $D_X = (X|_{\text{PC}} - X)/X$ (X — значение величины, соответствующее предлагаемой модели; $X|_{\text{PC}}$ — значение, соответствующее PC-модели).

Очевидно, что при $\delta V=0,\,\psi=0$ результаты, полученные с использованием указанных моделей, совпадают. При увеличении δV все величины будут различаться незначительно. Однако, поскольку $V_{sy}=0$, величины V_{sy} и φ_s , определенные по обеим моделям, существенно различаются и при $\delta V/V=0.01$ степень различия приближенно равна 96 %.

$\delta V/V$	V_{sy} , м/с	$V_{sy} _{\mathrm{PC}}$, m/c	V_{sx} , м/с	$V_{sx} _{\mathrm{PC}},\mathrm{m/c}$	φ_s , град	$ \varphi_s _{\mathrm{PC}}$, град
0	0	0	-563,940	-563,940	0	0
0,01	-0,0267	-0,0523	-567,050	-563,033	0,00270	0,005 30
0,02	-0,2647	-0,3694	-570,188	-570,087	$0,\!02660$	0,03694
0,03	-0,7158	-0,9488	-573,334	$-573,\!105$	0,07153	0,09485
0,04	-1,3821	-1,7989	-576,498	-576,087	0,13730	0,178 90
0,05	-2,2654	-2,9208	-579,680	-579,034	0,22390	0,289 00

Характеристики песта при малых значениях $\delta V/V$

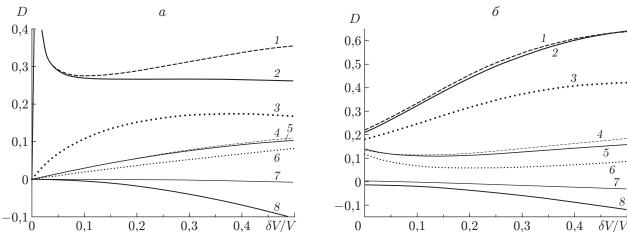


Рис. 3. Зависимость степени различия D от величины $\delta V/V$ при различных значениях ψ :

$$a-\psi=0,\ \delta-\psi=15^{\circ};\ 1-\varphi_{s},\ 2-V_{sy},\ 3-\varphi_{3},\ 4-\varphi_{j},\ 5-V_{jy},\ 6-\xi,\ 7-V_{jx},\ 8-V_{sx}$$

В дальнейшем с увеличением δV степень различия между величинами $\varphi_s|_{PC}$ и φ_s , $V_{sy}|_{PC}$ и V_{sy} будет уменьшаться. В таблице приведены значения V_{sy} , V_{sx} , φ_s , полученные с использованием двух моделей при различных значениях $\delta V/V$. При $\delta V/V=0.01$ степень различия величин $\varphi_s|_{PC}$ и φ , $V_{sy}|_{PC}$ и V_{sy} составляет 96 %, при $\delta V/V=0.05$ — 29 % (рис. 3,a).

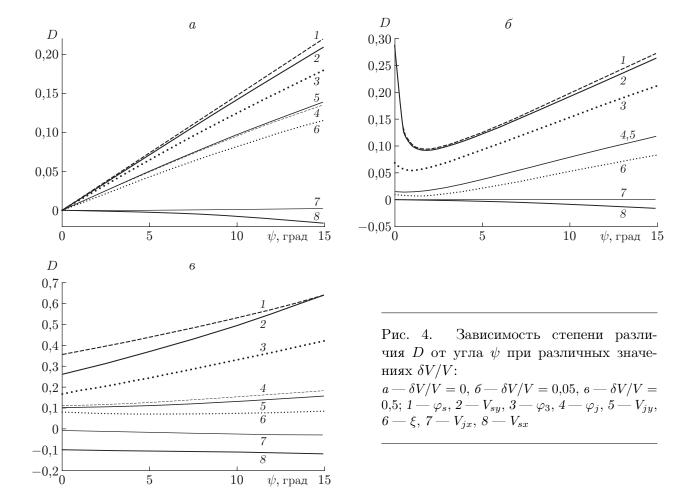
В силу малости величины V_{sx} степени различия величин $V_{sy}|_{PC}$ и $V_{sy}, \varphi_s|_{PC}$ и φ_s приблизительно одинаковы. Различие величин $\varphi_j|_{PC}$ и $\varphi_j, V_{jy}|_{PC}$ и V_{jy} незначительно.

Анализ полученных результатов позволяет сделать вывод, что РС-модель удовлетворительно описывает поведение струи, если $\psi=0$ и $0<\delta V/V<0.05$. В этих условиях максимальное различие характеристик струи приближенно равно 1,5 %. При $\psi=0$, $\delta V/V=0.5$ максимальное различие характеристик струи достигает 11 %.

Максимальное различие характеристик песта больше.

Случай 2. Рассматривается различие результатов расчетов, выполненных с помощью РС-модели и представленной модели, при $\psi=\psi_2=-\psi_1=15^\circ$. В этом случае, в отличие от случая 1, при $\delta V/V=0$ степень различия соответствующих величин не равна нулю (рис. $3,\delta$).

Согласно рис. 3,6 при $\delta V/V=0$ максимальная степень различия имеет место для характеристик песта. Например, для величины φ_s степень различия составляет 22~%, для величины $V_{sy}-21~\%$. Для характеристик струи степень различия меньше ($D_{\varphi_j}=14~\%$, $D_{V_{jy}}=13,5~\%$, $D_{V_{jx}}=0$). При $\delta V/V=0$, $\psi=15^\circ$ степень различия значений угла ξ составляет приблизительно 12~%. С уменьшением ψ эти различия уменьшаются, и при $\psi=0$, $\delta V/V=0$ все величины совпадают (рис. 4,a).



Иными словами, при $\psi=0,~\delta V/V=0$ обе модели дают одни и те же результаты. На рис. $4, \delta, s$ видно, что с увеличением $\delta V/V$ немонотонность зависимости степени различия φ_s от ψ уменьшается и при $\delta V/V=0,5$ эта зависимость является монотонной.

Случай 3. Предлагаемая модель описывает также различные режимы движения детонационного фронта клиновидной формы (выпуклого, плоского или вогнутого). В этой модели предполагается, что волновой фронт падает на две поверхности облицовки под разными углами ψ_1 и ψ_2 относительно оси y. При $\psi_2 = -\psi_1 = \psi$ эти фронты подобны плоскому волновому фронту, повернутому против часовой стрелки на угол ψ . Этот случай был исследован выше (случай 2).

При $\psi_1=\psi_2=\psi_0>0$ на поверхности 1 и 2 падает симметричный детонационный фронт клиновидной формы с углом при вершине $\pi-2\psi_0$. В этом случае при $\delta V/V=0$, $\psi_0=10^\circ$ (вогнутый фронт волны) скорость струи увеличивается примерно на 5 %, а при $\psi_0=-10^\circ$ (выпуклый фронт волны) уменьшается приблизительно на 3 %.

Следует отметить, что вогнутость фронта волны детонации обусловливает уменьшение нежелательного влияния асимметрии на поведение струи.

На рис. 5 показано отношение $X|_{\psi_0\neq 0}/X|_{\psi_0=0}$ при $\psi_0\neq 0$ и $\psi_0=0$. Согласно рис. 5 в случае симметричного вогнутого фронта волны $(\psi_0>0)$ нежелательное влияние асимметрии на параметры струи φ_j и V_{jy} (отклонение направления скорости струи от плоскости симметрии) с увеличением ψ_0 уменьшается. В то же время в случае выпуклого фронта волны $(\psi_0<0)$ с увеличением $|\psi_0|$ влияние асимметрии на параметры струи φ_j и V_{jy} возрастает.

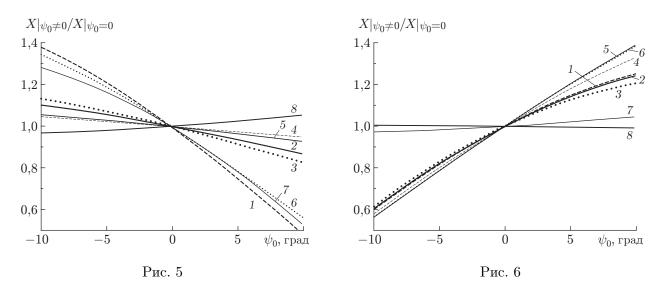


Рис. 5. Влияние симметричных выпуклого, вогнутого и плоского фронтов волны на характеристики струи и песта при $\delta V/V=0.5,\ -10^\circ<\psi_0<10^\circ$: $1-\varphi_s,\ 2-V_{sy},\ 3-\varphi_3,\ 4-\varphi_j,\ 5-V_{jy},\ 6-\xi,\ 7-V_{jx},\ 8-V_{sx}$

Рис. 6. Влияние асимметричных выпуклого, вогнутого и плоского фронтов волны на характеристики струи и песта при $\delta V/V=0, -10^\circ < \psi_0 < 10^\circ, \, \Delta \psi = 1^\circ$: $1-\varphi_s, \, 2-V_{sy}, \, 3-\varphi_3, \, 4-\varphi_j, \, 5-V_{jy}, \, 6-\xi, \, 7-V_{jx}, \, 8-V_{sx}$

Случай 4. С помощью предлагаемой модели можно исследовать влияние асимметрии волнового фронта (вогнутого, плоского, выпуклого) на характеристики струи и песта.

С использованием величины $\Delta \psi$, характеризующей поворот первоначально симметричного волнового фронта ($\psi_1 = \psi_2 = \psi_0$), можно исследовать поведение асимметричных вогнутого ($\psi_0 > 0$), плоского ($\psi_0 = 0$) и выпуклого ($\psi_0 < 0$) волновых фронтов.

На рис. 6 видно, что в случае абсолютно симметричной облицовки при $\Delta \psi = 1^\circ$ и $-10^\circ < \psi_0 < 10^\circ$ отношение значений всех величин при $\psi_0 > 0$ к их значениям при $\psi_0 = 0$ больше единицы, а при $\psi_0 < 0$ меньше единицы.

Иными словами, в случае абсолютно симметричной облицовки асимметричный плоский фронт волны более предпочтителен, чем асимметричный вогнутый фронт волны, и менее предпочтителен, чем асимметричный выпуклый фронт волны.

График зависимости степени различия величины V_{sx} от ψ_0 на рис. 6 качественно отличается от графиков зависимостей других величин, что, как правило, не очень существенно.

На рис. 7 приведены зависимости отношений $X|_{\psi_0\neq 0}/X|_{\psi_0=0}$ для величин φ_j и φ_s . Из рис. 7 следует, что для двух углов поворота фронта волны $\Delta\psi=1,\,5^\circ$ в интервале $-10^\circ<\psi_0<10^\circ$ абсолютное значение отношения $X|_{\psi_0\neq 0}/X|_{\psi_0=0}$ увеличивается с увеличением ψ_0 при $\psi_0>0$ и уменьшается с уменьшением отрицательных значений ψ_0 .

Результаты сравнения представленной модели с РС-моделью (в случаях 1 и 2) показывают, что характеристики струи φ_j , V_{jy} , V_{jx} в РС-модели отличаются от тех же характеристик, полученных с использованием данной модели, менее чем на 5 %, если $0 < \delta V/V < 0.05$ и $0 < \psi < 5^\circ$. Однако при этих условиях характеристики песта различаются значительно, но, поскольку характеристики струи более существенны, характеристики песта могут не учитываться.

Таким образом, в случае рассмотренной выше асимметрии использование РС-модели не будет приводить к ошибочным результатам для характеристик струи.

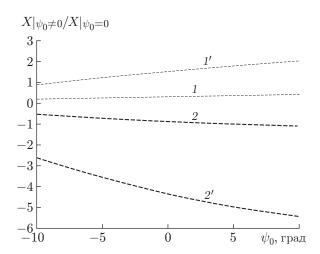


Рис. 7. Влияние величин ψ_0 и $\Delta \psi$ для асимметричных выпуклого, вогнутого и плоского фронтов волны на направление движения струи и песта: 1, $1' - \varphi_i$, 2, $2' - \varphi_s$; 1, $2 - \Delta \psi = 1^\circ$, 1', $2' - \Delta \psi = 5^\circ$

В случае 3 для симметричного вогнутого фронта волны влияние асимметрии уменьшается. Например, при $\delta V/V=0.05$ и симметричном вогнутом фронте волны (180 — $2\psi_0$ и $\psi_0=10^\circ$) величина δV , характеризующая асимметрию, уменьшается на 15–50 %.

Однако в случае абсолютно симметричной облицовки (случай 4) если форма детонационной волны асимметрична, то нежелательное влияние асимметричного плоского фронта волны менее существенно по сравнению с влиянием асимметричного вогнутого фронта и более существенно по сравнению с влиянием асимметричного выпуклого фронта.

Заключение. В работе представлена замкнутая модель формирования струи в асимметричном кумулятивном заряде, которая является обобщением классической теории Биркгофа. С помощью этой модели можно объяснить поведение симметричного и асимметричного фронтов детонационной волны, а также влияние вогнутой, плоской и выпуклой волн детонации на процесс образования кумулятивной струи и песта.

ЛИТЕРАТУРА

- 1. Birkhoff G., MacDougall D. P., Pugh E. M., Taylor G. Explosives with lined cavities // J. Appl. Phys. 1948. V. 19. P. 563.
- 2. Pugh E. M., Eichelberger R. J., Rostoker N. Theory of jet formation by charges with lined conical cavities // J. Appl. Phys. 1952. V. 23. P. 532.
- 3. **Aseltine C. L.** Analytical prediction of the effect of warhead assymmetries on shaped charge performance // Proc. of the 4th Intern. symp. on ballistics. Montery (USA), 17–19 Oct. 1978. V. 1. P. V-4.
- 4. Yiu S. K. Experimental study of the effects of asymmetric variations of an explosive device // Proc. of the 8th Intern. symp. on ballistics. Orlando (USA), 1984. V. 1. P. VI-41.
- 5. **Hirsch E.** A model for predicting the effect of shaped charge asymmetries on its penetration into monolythic steel targets // Proc. of the 8th Intern. symp. on ballistics. Orlando (USA), 1984. V. 1. P. VII-27.
- 6. Mayseless M. Experimental and computational comparison between the effects of asymmetries on peripherally initiated and point initiated shaped charge // Proc. of the 10th Intern. symp. on ballistics. San Diego (USA), 1987. V. 2, ses. V.

- 7. Pack D. C., Curtis J. P. On the effect of asymmetries on the jet from a linear shaped charge // J. Appl. Phys. 1990. V. 67. P. 6701.
- 8. Brown J., Curtis P., Cook D. The formation of jets from shaped charges in the presence of asymmetry // J. Appl. Phys. 1992. V. 72. P. 2136.
- 9. Kelly R. J., Curtis J. P., Bremer M. On analytic modeling of casing and liner thickness variations in a shaped charge // J. Appl. Phys. 1993. V. 75. P. 96.
- 10. **Heider N., Rottenkolber E.** Analysis of the asymmetric jet formation process in shaped charges // Proc. of the 14th Intern. symp. on ballistics. Québec (Canada), 1993. V. 2. P. 203.
- 11. Curtis J. P., Kelly R. J. Circular streamline model of shaped charge jet and slug formation with asymmetry // J. Appl. Phys. 1994. V. 75. P. 7700.
- 12. Curtis J. P. Asymmetric formation of shaped charge jets // Proc. of the 17th Intern. symp. on ballistics. Midrand (South Africa), 1998. V. 2. P. 405.
- 13. Mordehai D., Hirsch E. The problem of two flow collision a generalized extension to the basic model // Proc. of the 20th Intern. symp. on ballistics. Orlando (USA), 2002. V. 1. P. 478.
- 14. Shi Yi-Na, Qin Cheng-Sen. Theoretical prediction of asymmetrical jet formation in two metallic flow collision // Chinese Phys. Lett. 2007. V. 24. P. 2281.
- 15. **Arnold W., Rottenkolber E.** Penetrator / shaped charge system. Pt 1. Simulation of asymmetrical effects // Proc. of the 23rd Intern. symp. on ballistics. Tarragona (Spain), 2007. V. 2. P. 263.
- 16. **Brown J.** Quantitative study of permissible tolerances in shaped charges // Proc. of the 16th Intern. symp. on ballistics. San Francisco (USA), 1996. V. 2. P. 483.
- 17. Schmeidewind P., Majerus M., Lewis S., et al. Quantification of small dimensional variations on the performance of a small caliber shaped charge // Proc. of the 16th Intern. symp. on ballistics. San Francisco (USA), 1996. V. 2. P. 503.
- 18. Brown J., Softley I. D., Edwards P. Experimental study of shaped charges with built-in asymmetries // Propellants, Explosives, Pyrotechnics. 1993. V. 18, iss. 5. P. 255.
- 19. **Brown J., Edwards P. J., Lee P. R.** Studies of shaped charges with built-in asymmetries. Pt 2. Modeling // Propellants, Explosives, Pyrotechnics. 1996. V. 21, iss. 2. P. 59.
- 20. **Ayisit O.** The influence of asymmetries in shaped charge performance // Intern. J. Impact Engng. 2008. V. 35, iss. 12. P. 1399.
- 21. **Owshani S.** Analysis and simulation of jet formation in shaped charges and its penetration. Master sci. thesis. Tehran: Tarbiat modares univ., 1994.
- 22. **Rashidi M.** Theory of explosion and jet formation in shaped charge. Master sci. thesis. Tehran: Tarbiat modares univ., 1996.
- 23. Mahdian A., Liaghat G. H., Ghayour M., et al. A method for shaped charge design and increase its penetrability // Proc. of the 10th conf. of Iran. instit. of aerospace. Tehran: Tarbiat modares univ., 2011.

Поступила в редакцию 19/VII~2011~г., в окончательном варианте — 13/XII~2011~г.