Литература

1. Бергельсон В. И., Немчинов И. В. Параметры плазмы, образуемой под действием микросекундных импульсов излучения лазеров на алюминиевую преграду в вакууме. — Кvant. Электроника, 1978, т. 5, № 10.
2. Добкин А. В., Косарев И. Б., Немчинов И. В. Излучение плазмы, образованной при ударе быстрых частиц о преграду. — ЖТФ, 1979, т. 49, № 7.
6. Бузин В. П., Добкин А. В., Косарев И. Б. Коэффициенты поглощения излучения, спектральные и интегральные характеристики излучения алюминиевой плазмы в диапазоне температур (8—240)·104 К и относительных плотностей 3·10-3—4·10-4. — Деп. в ВИНИТИ, № 370—79 от 30.01.1979.
7. Немчинов И. В. Об оценках уравнений переноса излучения в их использовании при решении газодинамических задач. — ПММ, 1976, т. 34, № 4.
8. Немчинов И. В., Орлова Т. И., и др. О роли излучения при процессах в атмосфере метеоритов с очень большими скоростями. — ДАН СССР, 1976, т. 331, № 3.
10. Немчинов И. В., Светлов В. В., Шукалов В. В. О яркости сильных ударных волн в воздухе ионизованной плотности. — Янр. прикл. спектроскопии, 1979, т. 30, № 6.

УДК 629.76.015.3

Ускорение и взаимодействие неоднозначных потоков

В. И. Блазовсков, В. М. Кузнецов, И. И. Липатов,
А. Н. Миняйло, А. Л. Стаценко, В. Ф. Чеховский
(Москва)

Исследования неравновесных многофазных течений представляют интерес в связи с различными приложениями, в частности с созданием высокогазонаполненных установок [1], газодинамических лазеров (ГДЛ) [2], активных способов теплоносителей и т. д. Как следует из работы [2], многофазные системы обладают рядом преимуществ по сравнению с обычными газодинамическими аналогами, которые в традиционных ГДЛ не реализуют. Некоторые газодинамические проблемы газоразрядных многофазных лазеров рассмотрены в работе [3]. В данной работе эти исследования продолжены.

Рассмотрим задачу о максимальной возможно разгоне частицы твердой или жидкой фазы, поток которых \( \rho \dot{v} \) составляет существенную величину, сравнимую с потоком газа-носителя \( \dot{m} c = \dot{v} \rho_0 / \rho_0 \sim 1 \). В качестве носителя можно использовать легкие газы, например водород или гелий. В двумерной постановке такая задача впервые рассматривалась в работе [3]. Было показано, что разгон целесообразно осуществлять в соях с затянутым трансзвуковым участком и небольшим углом раскрытия сверхзвуковой части. При этих условиях обмен импульсом между ускоряющим газом и частицами происходит наиболее интенсивно, так как характерное время релаксации скорости частиц (для размеров, наиболее вероятных в массовом спектре) относительно газовой фазы много меньше основного
газодинамического времени течения, и параметры смеси стремятся к равновесным, соответствующим эффективному показателю адиабаты ξ = (ν + νε)/(1 + νε) (ν = c/εν — относительная теплоемкость материала частицы). Если массовый спектр разгоняемых частиц таков, что равновесные условия достигаются, параметр ξ может быть использован для оценки сверху возможных скоростей разгона различными газами. Хотя легкие газы (такие, как водород или гелий) при прочих равных условиях являются наилучшими, их использование может быть затруднительным по ряду технологических причин. Поэтому интерес представляют также и другие газы, например метан или воздух. На фиг. 1 приведены сравнительные данные по разгону в различных газах в зависимости от ε при равновесных условиях.

Выражение для максимальной скорости

\[ u_m = \left( \frac{2 \rho_0 T_0 (\nu + \nu \epsilon)}{\mu (\nu - 1) (1 + \epsilon)} \right)^{1/2} \]

получено из уравнения энергии при условии, что расширение дисперсной смеси происходит до ее полного остывания (μ — молекулярный вес, R — универсальная газовая постоянная, ε = \approx 1,35 \cdot 10^3 Дк/кг-град для частиц CO₂, T₀ = \approx 250 К). Полученные данные свидетельствуют о том, что без применения легких газов (H₂, Ne) разгонять частицы до скоростей > \approx 10^6 м/с невозможно без повышения начальной температуры. Увеличивать же температуру можно только тогда, когда разгоняются несвязанные частицы.

Из данных, приведенных на фиг. 1, следует, на первый взгляд, странный результат, свидетельствующий о том, что воздух разгоняет частицы тем лучше, чем выше массовое отношение ε. Происходит это при оставлении за счет теплоемкости частиц, вклад которой при больших значениях ε и, следовательно, больших абсолютных количествах твердой фазы становиться значительным.

Учет явлений, связанных с испарением в процессе разгона, также является важной задачей, поскольку этот процесс может привести к ухудшению несущих свойств легкого газа. Решение этой задачи было получено на основе программы работ [5, 6] с учетом диффузионного механизма испарения и конденсации частиц. На фиг. 2, 3 показаны результаты расчетов по разгону сферических частиц CO₂ с начальными радиусами a₀ = = 1—15 мкм водородом при давлении в форкамере p₀ = 7 МПа, температуре газа T₀ = 250 К, температуре частиц T₀ = 150 К в сошли с полушарной критической сечением yₙ = 10⁻³ м и затянутым трансвальной участком. Угол полураствора сверхзвуковой части сошла равен 5°, ε \ll 1. Предполагалось, что в концеонной части сошла края втраектории частицы направлены вдоль стенок. Расчеты показали, что испарение частиц при разгоне незначительно. На фиг. 2 штриховыми линиями показано относительное изменение радиусов a₁/a₀ частиц различных фракций в процессе испарения вдоль сошла. Подчеркнем, что в рассматриваемых условиях испарение играет малую роль вследствие низких значений T₀ и, следовательно, малых конечных скоростей разгона частиц. Видно, в частности, что относительное изменение радиуса для самых мелких частиц
\( \sim 1 \text{ мкм} \Delta \tilde{a} / \tilde{a}_0 \leq 5\% \) на расстояниях от критического сечения \( x/y_b \leq 10^2 \). Поэтому, если \( \varepsilon \leq 1 \) и основу массового спектра составляют частицы с \( \tilde{a}_0 \sim 5 - 10 \text{ мкм} * \), влиянием испаряющейся массы на параметры несущего газа в указанных условиях можно пренебречь. Из данных фиг. 2 видно также, что крупные частицы \( \tilde{a}_0 \geq 9 \text{ мкм} \) не успевают развернуться от оси после прохождения критического сечения и могут попасть на противоположную стенку. Для исследования их дальнейшей эволюции необходимо уточнение модели взаимодействия частиц с твердыми поверхностями и пограничным слоем.

На фиг. 3 показано распределение скоростей по спектру частиц в сечении \( x/y_b = 10^3 \), из которого следует значительный разброс \( \sim 10^3 \text{ м}/\text{s} \) скоростей различных фракций \( \tilde{a}_t \). Горизонтальные линии соответствуют скорости газа в рассмотренном сечении.

Таким образом, в реальных условиях при наличии функции распределения частиц по размерам равновесные условия по скорости во всем спектре могут быть достигнуты даже в соплах с малыми углами расширения потока. Сравнение расчетов по разгону частиц гелием и водородом при одинаковых начальных условиях показывает, что во втором случае достигается большая абсолютная скорость частиц (фиг. 3), несмотря на меньший молекулярный вес и плотность водорода.

На фиг. 4 сплошными линиями показаны результаты численного расчёта течения смеси водорода с большим содержанием частиц углекислого газа (\( \varepsilon = 1 \)) в предположении монодисперсности взвеси (\( \tilde{a}_0 = 5 \text{ мкм} \)) при угле раскрытия сверхзвуковой части \( \theta_1 = 5^\circ \). В левой части фиг. 4 приведены распределения осесимметрических компонент скоростей частиц и газа \( u_0 \), в правой части — поперечное распределение этих же величин в одном из сечений \( x = 130 \). Видны эффекты неоднородности течения смеси (в области двухфазного потока скорость газа заметно меньше, чем у границы сопла, скорость частиц также меньше, чем в случае \( \varepsilon = 1 \), см. фиг. 3) и неравномерности (скорость частиц заметно меньше скорости газа). Следовательно, угол раскрытия \( \theta_1 = 5^\circ \) слишком велик и не обеспечивает оптимального разгона, поскольку газ уходит из области двухфазного течения. Уменьшение угла раскрытия

* Как показано в работах [3, 4], такие размеры представляют наибольший интерес при создании инверсионно-насыщенных сред.
(θ₁ = 3° — двойной штрихпунктир, θ₂ = 1° — штриховые линии на фиг. 4) создает более благоприятные условия для разгона, так как при той же длине сопла одинаковые скорости частиц достигаются в сечениях, где есть еще резерв увеличения скорости газа, а следовательно, и частиц. Разумеется, этот резерв может быть реализован лишь при удлинении сопла. При фиксированной длине существует значение θ₁, при котором скорость частиц максимальна. Искривлением стенок сопла можно добиться ее касания с сепаратрисой, при этом весь газ вновь будет участвовать в разгоне частиц. Таким образом, может быть поставлена задача оптимизации формы и длины разгонного сопла.

В тех случаях, когда по технологическим причинам невозможно пропустить заданный расход через щелевое сопло и приходится использовать круглые (квадратные) отверстия той же площади, возникает необходимость применения разгонных сопел с большими углами раскрытия сверхзвуковой части по одной из координат. При этом наиболее отчетливо проявляется специфика неоднозначного течения, заключающегося в появлении резко выраженных сепаратрис — поверхностей, разделяющих области течения чистого газа и неоднозначной смеси [3, 5]. Равновесные условия при этом не достигаются, так как при расширении плотность толкающего газа падает и он уходит вперед, не передавая частицам значительного импульса. Повышения скорости разгона в этом случае можно достичь увеличением расхода легкого газа при одновременном уменьшении размера/гамовных частиц.

Аналогичные ограничения на форму критического сечения могут иметь место и в сопловой системе, являющейся носителем колебательно-возвужденной среды, например N₂. Ясно, что при одной и той же площади критическое сечение щелевого сопла будет обеспечивать лучшие характеристики по замораживаемости колебательной энергии по сравнению с круглым, поскольку эффективность замораживания определяется временем расширения τ ~ h/a, где h — диаметр критического сечения или высота щели, a — скорость звука в этом сечении. После разгона частицы входят в квазиспусковой сверхзвуковой поток через аэродинамический шлюз, в котором взаимодействуют основной рабочий газ и газ — носитель частиц. В простейших шлюзах [7] поворот легкого газа можно организовать с помощью скатия потока или его расширения. В случае использования механизма расширения потока типа течения Прандтля — Майера
давление вдоль контактного разрыва, разделяющего газы, падает, следовательно, рабочий газ должен также расширяться, т.е. контактный разрыв криволинеен даже в случае отсутствия частиц. С точки зрения минимизации возмущений в рабочем газе более целесообразной может оказаться схема со сжатием потока, так как в этом случае тангенциальный разрыв близок к плоской поверхности, давление на которой постоянно*. Однако, как показано в [3], такая схема требует довольно точной регулировки и работает в более узком диапазоне начальных давлений и расходов легкого газа по сравнению со схемой, основанной на расширении. Поэтому при значительных расходах легкого газа схема, основанная на расширении, может оказаться более целесообразной. В принципе как в той, так и в другой схеме отработанный легкий газ может быть использован повторно в другом аэродинамическом шлюзе, предназначенном для вывода излучения [7].

В точной постановке задача взаимодействия двухфазного потока с гиперзвуковым течением, в котором возбуждены внутренние степени свободы, является сложной и пока не решена. Численное решение этой задачи без учета колебательной релаксации, но с учетом испарения можно получить на основе программы, позволившей рассчитать разгон частиц [3] (фиг. 2, 4), однако это весьма трудоемкая задача, особенно в связи с необходимостью оптимизации решения по несколько параметрам. Поэтому и после получения точного решения будет иметь смысл упрощенная постановка, состоящая в следующем. Пусть течение в области взаимодействия является плоским и невязким и обратное влияние частиц на газ отсутствует. Обозначим параметры легкого газа-носителя индексом 1, а рабочего газа, в который вводятся частицы, индексом 2. В данной работе исследуемыми газами были соответственно водород и азот и использовалась та же программа расчета плоских сверхзвуковых течений, что и в работе [3]. Из основного требования минимизации возмущений в потоке 2 следует, что ударная волна должна находиться в легком газе, а на границе соприкосновения потоков должен располагаться контактный разрыв. Определим диапазон параметров течения, в котором это условие выполнено. Учет при этом результатов решения задачи резона частиц, приведенные на фиг. 4. С этой целью удобно ввести два безразмерных параметра $W_1 = \frac{u}{u_1}$ и $W_2 = \frac{u}{u_2}$, характеризующих относительное отставание частиц в ускоряющем газе 1 и рабочем газе 2 ($u$ — угол встречи двух потоков). На фиг. 5 для заданных значений $W_3$, $\alpha$ и числа Маха $M_2$ получены изохоры $p_1/p_2$, с помощью которых можно подобрать такие значения $W_1$ и $M_1$, чтобы ударная волна располагалась в водороде. Штриховыми линиями изображены зависимости $W_1(M_1)$ для трех разгонных водородных сплавов углами раствора $\theta = 1, 3, 5^\circ$ (см. фиг. 4). Точки на фиг. 5 соответствуют различным длинах $x$ разгонных сплавов (в миллиметрах), при которых с учетом соответствующих изохор выполняется условие минимизации возмущений в газовой фазе.

Введение частиц в спутный сверхзвуковой поток ставит вопрос об однородности смешения многофазных течений. Однородное газодинамическое поле необходимо иметь в рабочей части аэродинамической трубы и в зоне действия резонатора. Однако в зоне смешения могут возникать ударные волны как вследствие взаимодействия газовых потоков, так и перед коллективом входящих частиц, если их скорость относительно газа сверхзвуковая. Кроме того, волновые возмущения в зоне смешения возникают из-за того, что частицы переносят массу, импульс и энергию, могут испариться и тем самым изменять макроскопические параметры перво-

* Предполагается, что взаимный контакт смешивающихся потоков имеет место только в области двухфазного течения в разгонном сплаве с постоянным распределением параметров по сечению (правая часть фиг. 4).
начального течения. Некоторые вопросы, связанные с исследованием условий, при которых многофазное гиперзвуковое смешение может быть однородным, рассмотрены в работах [3, 4]. В этих работах исследовано также влияние колебательной релаксации на процесс испарения частиц и получены конечные соотношения для глубины проникновения различных частиц в слой сверхзвуковой плотности в режиме сильно́й среды, переходного и свободномолекулярного обтекания.

Все упомянутые исследования выполнены для идеального течения без учета пограничных слоев, срывных зон и т. д. Однако при гиперзвуковых режимах смешения относительная роль вязких явлений возрастает по сравнению с течениями умеренной сверхзвуковой скорости. Кроме того, при вводе и испарении частиц может измениться давление [3, 4], что приведет к распространению возмущений вверх по потоку и к отрыву пограничного слоя. Это, в свою очередь, нарушит однородность невязкого ядра течения, а также степень инверсии и усиления среды. Поэтому остановимся на явлениях, связанных с наличием пограничных слоев, более подробно. Для этой цели используем результаты, полученные в работах [8]. Течение, в которое вводятся частицы, гиперзвуковое, расширяющееся в сопле специальной формы до значений числа Маха M_2 = 6—8. Распределение толщины вытеснения пограничного слоя в таком сопле характеризуется по- ложительной второй производной, и тем не менее, как показывают расчеты, отношение толщины вытеснения к величине невязкого ядра в выходном сечении сопла невелико (см. фиг. 4). При безотрывном режиме течения влияние сил вязкости сосредоточено вблизи стенок сопла, однако резкое изменение контура сопла или повышения давления в рабочей части могут привести к отрыву пограничного слоя и к изменению параметров течения в области, сравнимой по толщине с радиусом сопла. Изменения давления, имеющие место при вводе частиц, и степень этого изменения в ту или другую сторону в зависимости от количества частиц, их скорости относительного газа, степени испарения и т. д. могут быть определены из соотношений, полученных в [4]. Таким образом, остается установить, каковы те критические перепады, при которых отрыв пограничного слоя происходит вверх по потоку от сечения ввода частиц. В данной работе для оценки этих перепадов в случае ламинарного и турбулентного режимов течения в пограничном слое использовались соотношения, полученные в [8, 9]. На фиг. 6 сплошной линией показано изменение давления при истечении из клиновидного сопла с углом полураствора θ₀ = 10° при p₀ = 6 МПа и T₀ = 3000 K, штриховые линии (турбулентный пограничный слой) и штрихpunktирные линии (ламинарный пограничный слой), выходящие
из различных точек этой кривой, дают величину давления, при котором в соответствующем сечении сопла происходит отрыв потока. Видно, что турбулентный режим более устойчив к отрыву. На фиг. 6 показан также угол α, под которым происходит отрыв и развитие вязкой зоны смещения. Хотя этот угол меньше угла полугаива клина (θ ≈ 4°), сварное течение может занимать довольно значительную часть площади в выходном сечении сопла. Расчеты показывают, что с увеличением p0 и при неизменной величине Δp, связанной с вводом частиц, точка отрыва перемещается вверх по потоку. Это объясняется ростом числа Рейнольдса и уменьшением критической величины перепада давления, вызывающей отрыв в заданном сечении сопла. Заметим, что отсос пограничного слоя в сопловой системе рассматриваемого типа должен приводить к уменьшению нежелательных эффектов, связанных с вязкостью. Для уточнения полученных результатов необходим также дальнейший анализ, учитывающий пространственный характер течения, а также обратное влияние пограничного слоя на отрыв на внешнее невязкое течение. Учет вязких явлений требует изменения подхода к постановке задачи о течении в соплах для рассматриваемого круга проблем. В общем случае геометрическая конфигурация этих сопел требует решения пространственной задачи. В настоящее время соответствующие ретроспективы программы находится в стадии разработки, поэтому существен вопрос, насколько корректными являются двумерные расчеты при наличии пограничного слоя. Одним из возможных путей решения состоит в использовании метода последовательных приближений, когда по заданной геометрии сначала оценивается профиль пограничного слоя, затем по эффективной форме полученного сопла идет расчет неоднородного течения или течения колебательно-волновавенного газа, затем вновь уточняется пограничный слой и т. д. В данной работе именно этот путь и использовался. При этом, конечно, в качестве нулевого приближения можно взять и результаты расчета невозмущенного потока [3]. Это целесообразно делать в тех случаях, когда исходная конфигурация сопловой системы не вызывает сомнений в двумерности течения. В тех же случаях, когда «трехмерность относительно невелика (например, в пирамидальных соплами с малым углом раствора) по одной из координат), есть оснований надеяться на то, что она фактически будет устранена за счет пограничного слоя, при этом за нулевое приближение лучше взять эффективный контур, полученный с учетом толщины вытеснения.

На фиг. 4 штрихпунктирной линией показана толщина вытеснения δ пограничного слоя на верхней границе сопла. Видно, что величина δ/y* < 4 x 10e-2 во всем расчетном диапазоне x, относительная же локальная толщина δ/y будет еще на порядок меньше. Для расчета течения в пограничном слое использовалась схема второго порядка точности аппроксимации производных по переменным x и y. Предполагалось, что толщина пограничного слоя в области до критического сечения равна нулю. Предварительно проведенные расчеты подтвердили справедливость этого предположения. Изменение начальной точки расчета на величину ~y* практически не оказывало влияния на распределение толщины вытеснения пограничного слоя в сверхзвуковой части сопла.

В заключение заметим, что проблема однородности поля течения в зоне неоднородного смещения требует решения задачи о распределении продуктов расщепления частиц среды колебательно-волновавенной молекул [3]. Очевидно, функцию распределения частиц по размерам и режим смещения следует выбирать так, чтобы на различных линиях тока конценрации (например, CO₂ и N₂) были бы близки к равномерным. В настоящее время эта задача не решена ни экспериментально, ни теоретически, однако использованные в данной работе методы позволяют определить локальную плотность источников массы за счет исчерпания частиц и следовательно, решить задачу о распределении концентрации пара по сечению потока.
в который вводятся испаряющиеся частицы. При этом в принципе существует возможность выбора такого массового спектра частиц, который при испарении обеспечивал бы равномерную концентрацию пара по сечению зоны смещения.

Основные результаты данной работы состоят в следующем.
1. В двумерной постановке рассмотрена задача о влиянии испарения твердых частичек CO₂ на характеристики легкого газа H₂, ускоряющего частицы в сверхзвуковом сопле. Получено, что при условии торможения в разгонном сопле (p₀ ≈ 7 МПа, T₀ = 250 K) в процессе ускорения заметно испаряются только частицы размером ≤ 1 мкм. Если отношение массы частиц к массе легкого газа < близко к единице и основная часть спектра составляют частицы размером ≥ 10 мкм, то общее количество пара, образовавшегося в процессе разгона, незначительно изменяет характеристики несущего легкого газа.

2. Приведены оценки максимально возможного разгона частиц различными газами (He, Ne, CH₄, воздух) при низких температурах в форкамере (T₀ ≈ 250 K), необходимых для уменьшения влияния испарения. Показано, что наибольшую скорость разгона частиц uₘₐₓ ≈ 2 км/с (при ε ≈ 1) можно получить в водороде. Численное решение двумерной задачи разгона частиц водородом, учитывающее реальную существующую неравномерность по скорости в многофазном потоке, показало, что при ε ≈ 1 величина uₘₐₓ ≈ 1,2 км/с и практически не может быть заметно увеличена.

3. Задача взаимодействия легкого газа с гиперзвуковым течением, в которое вводятся частицы, решалась в упрощенной постановке: ускорение двух плоских невязких сверхзвуковых потоков, направленных под углом друг к другу. Такой подход позволяет с приемлемой для практики точностью провести быструю оптимизацию по различным параметрам задачи. Это необходимо для выбора таких начальных условий, при которых сильные возмущения (ударные волны), возникающие при взаимодействии газов, отсутствуют в рабочем колебательно-возвужденном газе.

4. Проведен анализ, связанный с влиянием вязкости на поле течения инверсно-возвужденной среды. Получены толщины вытеснения в ламинарном и турбулентном режиме течения, а также возможные положения точек отрыва и срывных зон в сечениях вверх по потоку от места ввода частиц. Получено, что турбулентный режим течения более устойчив к отрыву. Если повышение давления, связанное с выводом частиц, значительно, что зависит от ε, скорости частиц, угла ввода и других параметров, срывное течение может занимать значительную часть невязкого ядра потока, что также ухудшает параметры рабочей зоны.

**Поступила 10 IV 1980**

**ЛИТЕРАТУРА**

1. Джонсон, Огейн. Получение газов со сверхвысокими значениями полной энтальпии по принципу многокомпонентных потоков.— Ракет. техника и космонавтика, 1972, № 12.

2. Бириюков А. С., Мартемио В. М., Прокопов А. М. Инверсия населенности колебательных уровней при смещении потоков неравновесного азота и аэрозоля углекислоты.— ЖЭТФ, 1976, т. 71, вып. 5(11).


4. Куценков В. М., Куценков М. М. Некоторые вопросы тепло- и массообмена аэрозоля в неравновесном потоке колебательно-возвужденной среды.— ПМТФ, 1979, № 6.

5. Благосклонов В. И., Стасенко А. И. Двумерные сверхзвуковые течения смеси пара и капель в сопле и затопленной струе.— Изв. АН СССР. Энергетика и транспорт, 1978, № 1.
НЕИЗОТЕРМИЧЕСКОЕ ТЕЧЕНИЕ КУЭТТА НЕБЫТОНОВСКОЙ ЖИДКОСТИ ПОД ВЛИЯНИЕМ ГРАДИЕНТА ДАВЛЕНИЯ

Г. В. Жижин
(Ленинград)


1. Система уравнений неизотермического течения Куэтта небытононовской жидкости со степенным резисторическим законом и соотношением Рейнольдса для эффективной вязкости жидкости в поле переменного давления имеет вид [15]

\[
\frac{d^2 T}{dy^2} + \frac{v^2}{\mu} = 0; \tag{1.1}
\]

\[
\tau = \mu \frac{du}{dy}; \tag{1.2}
\]

\[
\mu = \mu_0 e^{-\beta T}; \tag{1.3}
\]

\[
\mu_1 = \mu_0 e^{-\beta T}; \tag{1.4}
\]

\[
dx/dy = A, \tag{1.5}
\]

где \( \lambda \) — коэффициент теплопроводности; \( T \) — температура; \( y \) — координата, перпендикулярная поверхности пластины; \( \tau \) — касательное напряжение; \( \mu_1 \) — эффективная вязкость; \( u \) — скорость; \( \mu_0 \), \( A \), \( \beta \), \( n \) — постоянные параметры.

Систему уравнений (1.1)—(1.5) после введения переменных \( v = du/dy, w = dT/dy \) можно привести к автономной системе трех дифференциальных уравнений первого порядка

\[
\frac{dv}{dy} = -\frac{\beta}{n} v^2 \text{sign } v; \tag{1.6}
\]

\[
\frac{dw}{dy} = \frac{\beta}{n} u v^2 + A v \text{sign } v; \tag{1.7}
\]

\[
\frac{d\mu_1}{dy} = -\beta \mu_1 w. \tag{1.8}
\]