2010. Том 51, № 2

Март – апрель

C. 316 – 321

УДК 546.77:546.22:541.49:548.73

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВЫХ КОМПЛЕКСОВ АРСЕНИТОВОЛЬФРАМАТОВ С ТРЕУГОЛЬНЫМИ СУЛЬФИДНЫМИ КЛАСТЕРАМИ МОЛИБДЕНА И ВОЛЬФРАМА: Cs_{5,6}K_{4,4}[{Mo₃S₄(H₂O)₅}(H₂AsW₉O₃₃)₂]·19,15H₂O И K_{6,35}(NH₄)_{2,65}[{W₃S₄(H₂O)₅}(H₂AsW₉O₃₃)(HAsW₉O₃₃AsOH)]·23,7H₂O

© 2010 И.В. Калинина¹*, М.Н. Соколов^{1,2}, Е.В. Чубарова¹, Е.В. Пересыпкина¹, В.П. Федин^{1,2}

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

Статья поступила 30 марта 2009 г.

Реакция лакунарного арсенитовольфрамата $[AsW_9O_{33}]^{9-}$ с $[M_3S_4(H_2O)_9]^{4+}$ в водном растворе приводит к образованию комплекса $[\{Mo_3S_4(H_2O)_5\}(H_2AsW_9O_{33})_2]^{10-}$. Для соли состава $Cs_{5,6}K_{4,4}[\{Mo_3S_4(H_2O)_5\}(H_2AsW_9O_{33})_2] \cdot 19,15H_2O$ (1) выполнен PCA. Аналогичная реакция $[AsW_9O_{33}]^{9-}$ с $[W_3S_4(H_2O)_9]^{4+}$ и NaAsO₂ приводит к $[\{W_3S_4(H_2O)_5\}(H_2AsW_9O_{33})\times (HAsW_9O_{33}AsOH)]^{9-}$. Кристаллическая структура определена для $K_{6,35}(NH_4)_{2,65} \times [\{W_3S_4(H_2O)_5\}(H_2AsW_9O_{33})(HAsW_9O_{33}AsOH)] \cdot 23,7H_2O$ (2). В структуре обоих соединений кластерные ядра $\{M_3S_4\}^{4+}$ координированы одним бидентатно-мостиковым полиоксометаллатным лигандом, соединяющим два атома металла, и одним бидентатным полиоксометаллатным лигандом. Остальные пять координационных мест заняты молекулами воды. Комплексные анионы образуют димерные ассоциаты за счет водородных связей и контактов S...S.

Ключевые слова: молибден, вольфрам, сера, халькогенидный кластер, полиоксовольфрамат, арсенит, рентгеноструктурный анализ.

введение

Направленный синтез больших кластеров с использованием полиядерных комплексов как строительных блоков позволяет получить наноразмерные полифункциональные неорганические материалы [1]. На роль таких строительных блоков хорошо подходят полиоксометаллаты (ПОМ), обладающие большим структурным разнообразием. Материалы на основе ПОМ представляют интерес для катализа и материаловедения и т.д.; ряд ПОМ обладает противовирусной активностью [2]. Богатство и разнообразие лакунарных гетерополивольфраматов позволяют широко использовать их в качестве лигандов по отношению к ионам переходных и непереходных металлов; при этом наиболее часто используется замещение координированных молекул воды в аквакомплексах [3, 4]. Этот подход был распространен и на полиядерные катионные аквакомплексы, такие как халькогенидо-мостиковые кластерные аквакомплексы $[Mo_3S_4(H_2O)_9]^{4+}$ [5—8]. Описаны реакции между $[Mo_3S_4(H_2O)_9]^{4+}$ и моновакантными анионами $[SiW_{11}O_{39}]^{8-}$, $[P_2W_{17}O_{61}]^{10-}$, дивакантным анионом γ - $[SiW_{10}O_{36}]^{8-}$ [9, 10] и тривакантными анионами $[AsW_9O_{33}]^{9-}$ и $[AsW_9O_{33}(AsOH)]^{7-}$ [11]. Можно ожидать, что получающиеся в итоге {Mo₃S₄}-содержащие гибридные полиоксометаллатные комплексы будут проявлять свойства как халькогенидных кластерных комплексов [12, 13], так и ПОМ.

^{*} E-mail: caesar@niic.nsc.ru

В продолжение наших исследований по изучению полиоксометаллатов и халькогенидных комплексов переходных металлов мы сообщаем о получении и структурном исследовании двух новых соединений состава $C_{5,6}K_{4,4}[\{Mo_3S_4(H_2O)_5\}(H_2AsW_9O_{33})_2] \cdot 19,15H_2O$ (1) и $K_{6,35}(NH_4)_{2,65} \times [\{W_3S_4(H_2O)_5\}(H_2AsW_9O_{33})(HAsW_9O_{33}AsOH)] \cdot 23,7H_2O$ (2), в которых халькогенидный кластерный фрагмент координирован двумя тривакантными полиоксометаллатными лигандами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение Cs_{5,6}K_{4,4}[{Mo₃S₄(H₂O)₅}(H₂AsW₉O₃₃)₂]·19,15H₂O (1). К 25 мл 0,04 М водного раствора [Mo₃S₄(H₂O)₉]Cl₄ (получен упариванием солянокислого раствора аквакомплекса [Mo₃S₄(H₂O)₉]⁴⁺ [14] с последующим растворением зеленого твердого остатка в охлажденной льдом воде; раствор быстро подвергается гидролизу и должен использоваться немедленно) добавили в несколько приемов 5,2 г (1,93 ммоль) Na₉[AsW₉O₃₃]·13H₂O [15]. Выпавший осадок постепенно растворяется при перемешивании с нагреванием до 50 °C и подкислении с помощью 1 М HCl до pH 3. Через 30 мин к прозрачному коричнево-зеленому раствору добавили 5,2 г KCl и поместили на ледяную баню. Через 1 ч выпавший осадок (5,3 г) отфильтровывали, растворяли в 80 мл 0,1 М водного NH₄Cl и оставляли в открытом кристаллизаторе. По данным рентгенофлюоресцентного анализа и ДТА вещество имеет состав K₇(NH₄)₇[Mo₃S₄(H₂O)₅× ×(AsW₉O₃₃)₂]·20H₂O. Для получения пригодных для PCA монокристаллов 0,03 г этого вещества растворяли в 4 мл воды и осторожно наслоили этот раствор на раствор 0,1 г хлорида цезия в 2 мл глицерина. Получены темно-зеленые объемные кристаллы **1**. Выход количественный.

Получение $K_{6,35}(NH_4)_{2,65}[\{W_3S_4(H_2O)_5\}(H_2AsW_9O_{33})(HAsW_9O_{33}AsOH)] \cdot 23,7H_2O$ (2). Твердый образец $[W_3S_4(H_2O)_9]Cl_4$, полученный упариванием в вакууме 25 мл 0,04 М раствора аквакомплекса $[W_3S_4(H_2O)_9]^{4+}$ [16], добавили к интенсивно перемешиваемому раствору 5,2 г (1,93 ммоль) Na₉[AsW₉O₃₃] · 13H₂O в 25 мл воды, предварительно нагретому до 50 °C. Осторожным добавлением 1 М HCl pH раствора довели до 2. Через 30 мин к прозрачному коричневому раствору добавили твердый NaAsO₂ (0,13 г, 1 ммоль). Перемешивали еще 30 мин, затем осадили калиевую соль добавлением 5,2 г KCl, как описано в предыдущей методике. Осадок после отделения перекристаллизовали из 0,1 М водного раствора NH₄Cl. При медленном упаривании полученного раствора на воздухе через несколько дней образовались коричневые монокристаллы 2, пригодные для рентгеноструктурного анализа.

Рентгеноструктурный анализ. Строение соединений 1 и 2 установлено методом рентгеноструктурного анализа монокристаллов. Кристаллографические характеристики и детали дифракционного эксперимента приведены в табл. 1. Все измерения проведены по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Apex, оснащенном двухкоординатным CCD-детектором при пониженной температуре с использованием излучения молибденового анода ($\lambda = 0,71073$ Å) и графитового монохроматора. Интенсивности отражений измерены методом ω - и φ -сканирования узких ($0,5^{\circ}$) фреймов до $2\theta = 55,0^{\circ}$. Поглощение учтено эмпирически по программе SADABS [17]. Структуры 1 и 2 расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXTL [18]. Катионная часть в структурах 1 и 2 частично разупорядочена. Кратности занятости позиций катионов цезия, калия, атомов азота катионов аммония и атомов кислорода сольватных молекул воды уточнялись при фиксированных тепловых параметрах. Атомы водорода не локализованы. Остаточная электронная плотность в 1 находится вблизи атомов вольфрама, а в 2 — вблизи разупорядоченных позиций атомов калия и, вероятно, вызвана большим поглощением кристаллов.

Координаты атомов и величины тепловых параметров депонированы в Inorganic Crystal Structure Database [19], депозитарные коды приведены в табл. 1. Основные длины связей и величины валентных углов приведены в табл. 2. Анализ межмолекулярных контактов и топологии упаковки молекулярных ионов в структурах 1 и 2 проводили при помощи комплекса программ TOPOS4.0 Professional [20].

Таблица 1

Кристаллографицеские данные	параметры эксперимента и утопнения структуры 1	11 2
Пристиллографические бинные,	пириметры эксперименти и уточнения структуры 1	u 4

Параметр	1	2
Формула	$H_{52,30}As_2Cs_{5,60}K_{4,40}Mo_3O_{90,15}S_4W_{18}$	H ₇₂ As ₃ K _{6 35} N _{2 65} O _{95 70} S ₄ W ₂₁
Код CSD	420527	420526
Мол. масса	6286,65	6103,04
Температура, К	90,0(2)	100,0(2)
Излучение (λ, Å)	$MoK_{\alpha}(0,71073)$	$MoK_{\alpha}(0,71073)$
Сингония	Триклинная	Триклинная
Пр. гр.	$P\overline{1}$	$P\overline{1}$
Ζ	2	2
<i>a</i> , <i>b</i> , <i>c</i> , Å	13,2534(5), 19,9574(8), 21,2921(8)	13,0067(3), 20,8752(5), 21,7441(5)
α, β, γ, град.	67,2100(10), 72,2620(10), 85,5020(10)	109,991(1), 95,991(1), 101,133(1)
<i>V</i> , Å ³	4940,3(3)	5350,0(2)
$ ho_{\rm выч}, \Gamma/c { m m}^3$	4,226	3,789
μ, мм ⁻¹	24,300	23,823
F(000)	5506	5388
Размеры кристалла, мм	0,19×0,09×0,02	0,32×0,04×0,05
Область сбора данных по θ , град.	1,22—25,00	1,62—27,50
Интервалы индексов отражений	$-15 \le h \le 15, -23 \le k \le 23,$	$-16 \le h \le 11, -26 \le k \le 27,$
	$-25 \le l \le 25$	$-28 \le l \le 27$
Измерено отражений	38260	47624
Независимых отражений	17196	24178
Отражений с $I \ge 2\sigma(I)$	11958 ($R_{\rm int} = 0,0416$)	18910 ($R_{\rm int} = 0.0317$)
Метод уточнения	Полноматричный МНК по F^2	Полноматричный МНК по F^2
Число уточняемых параметров	1177	1432
$R_1 (I \ge 2\sigma(I))$	0,0758	0,0357
wR_2 (все отражения)	0,2044	0,0921
GOOF (все отражения)	1,048	1,025
Остаточная электронная плотность (min/max), e/Å ³	-6,958 / 11,385	-2,072 / 5,357

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Координация кластерными аквакомплексами $[M_3S_4(H_2O)_9]^{4+}$ (M = Mo, W) лакунарных тривакантных производных Кеггиновской структуры $[AsW_9O_{33}]^{9-}$ и $[AsW_9O_{33}(AsOH)]^{7-}$ (генерирован *in situ* реакцией As(OH)₃ с координированным $[AsW_9O_{33}]^{9-}$) приводит к образованию комплексов $[(H_2AsW_9O_{33})_2\{Mo_3S_4(H_2O)_5\}]^{10-}$ и $[(H_2AsW_9O_{33})\{W_3S_4(H_2O)_5\}(HAsW_9O_{33}(AsOH))]^{9-}$, выделенных в виде смешанных солей и, согласно PCA, имеющих состав $Cs_{5,6}K_{4,4}[\{Mo_3S_4(H_2O)_5\}(H_2AsW_9O_{33})_2]\cdot 19,15H_2O$ (1) и $K_{6,35}(NH_4)_{2,65}[(H_2AsW_9O_{33})\{W_3S_4(H_2O)_5\}\times$ $\times(HAsW_9O_{33}(AsOH))]\cdot 23,7H_2O$ (2) соответственно. Атомы молибдена или вольфрама кластерного ядра $M_3S_4^{4+}$ имеют обычное октаэдрическое окружение (без учета связывания металл металл). При этом два атома M координируют два атома μ_2 -S, атом μ_3 -S, две молекулы воды и атом кислорода ПОМ; оставшийся атом M координирует два атома μ_2 -S, атом μ_3 -S, молекулу воды и два атома кислорода другого аниона ПОМ. Таким образом, два аниона $[H_2AsW_9O_{33}]^{7-}$ в 1 выступают как бидентантно-мостиковый и бидентантно-циклический лиганды (рис. 1),

Таблица 2

M—M	2,695(3)-2,751(3)	2,6881(6)-2,7343(6)
M—S	2,279(7)-2,335(7)	2,295(3)-2,352(3)
M—O _{H2O}	2,17(2)-2,23(2)	2,160(7)-2,200(7)
$M - \mu_2 - O_{POM}$	2,072(18)-2,108(18)	2,078(7)-2,094(7)
As—O _{OH}	—	1,788(9)
As-O _{POM}	—	1,924(8); 1,967(7)
As—µ4-O	1,764(18)-1,82(2)	1,779(8)—1,806(8)
$W\mu_4-O_{As}$	2,30(2)-2,39(2)	1,924(8)-2,381(8)
$W - \mu_2 - O_W$	1,830(19)-2,05(2)	1,852(8)-2,101(8)
W— μ_2 -O _M	1,773(19)-1,80(2)	1,788(8)-1,792(7)
W-O _{term}	1,68(3)-1,82(2)	1,708(8)-1,800(8)
W-OH _{term}	1,91(2)—1,96(2)	1,930(8)—1,963(8)
SS	3,200(10)-3,466(12)	3,354(4)-3,510(5)
W=OO(H ₂)M	2,665(2)-2,677(3)	2,610(10)-2,683(13)
$W=O(H)O(H_2)-M$	2,585(3)-2,686(3)	2,596(13)-2,609(10)
W=OO(H)-W _{POM}	3,100(4)	—
$As - O_{OH} \dots O(H_2)_{solv}$	—	2,85(2)-3,05(3)
(H)O—As…O _{WOW}	—	3,339(9)
(H)O—As…O=W _{POM}	—	3,136(7), 3,19(1)
W—µ4-O—W	90,2(6)—94,1(7)	90,4(2)—94,8(3)
W—µ4-O—As	116,5(10)—120,1(9);	115,7(3)—120,7(4);
	133,0(10)—135,7(11)	132,3(4)—134,5(4)
W—µ2-O—W	119,3(11)—122,3(13);	118,9(4)—122,4(4);
	146,2(11)—154,8(14)	141,1(4)—157,7(4)
W—µ ₂ -O— <i>M</i>	148,1(12)—162,5(10)	149,1(4)—161,9(4)
O—As—O	97,0(9)-98,5(10)	97,3(3)—98,1(3)
O—As—OH	—	95,5(4); 97,9(4)

Длины связей, невалентных контактов (Å) и валентные углы (град.) в структуре 1 и 2

тогда как в **2** — анион $[H_2AsW_9O_{33}]^{7-}$ координирован по бидентантно-мостиковому, а $[HAsW_9O_{33}(AsOH)]^{6-}$ — по бидентантно-циклическому типу (рис. 2), причем координированные атомы кислорода ПОМ анионов в обеих структурах занимают *цис*-положение относительно атомов µ₃-S. В обеих структурах ПОМ анионы частично протонированы в положениях при терминальных атомах кислорода анионов ПОМ, о чем свидетельствуют удлиненные длины связей W—OH (1,91—1,96 Å) по сравнению с длинами связей W=O (1,68—1,82 Å, см. табл. 2). Длины связей М—O_{POM} варьируют в узком интервале 2,07—2,10 Å и заметно короче длин связей между атомами M и атомами кислорода координированных молекул воды, которые находятся в пределах 2,16—2,23 Å. Расстояния М—M в кластерном ядре составляют 2,68—2,75 Å, причем расстояния W—W несколько короче, чем Мо—Мо (см. табл. 1). По данным КБСД [19] в производных $M_3 E_4^{4+}$, не содержащих мостиковых лигандов в кластерном ядре, расстояния М—M обычно превышают 2,7 Å, однако мостиковые лиганды, такие как карбоксилаты, обладают так называемым "стягивающим" эффектом [22]. В **1** и **2** наиболее короткие связи Мо— Мо (2,695(3) Å) и W—W (2,6881(6) Å) также реализуются между атомами металла, связанными мостиковыми фрагментами {H₂AsW₉O₃₃}.

Рис. 1. Димер $[(H_2AsW_9O_{33})_2\{Mo_3S_4(H_2O)_5\}]_2^{20-}$, построенный на специфических невалентных контактах S...S (жирные пунктирные линии), в структуре **1**.

Водородные связи показаны тонкими штриховыми линиями, черные шары в вершинах полиэдров показывают протонированные положения аниона ПОМ

Puc. 2. Димер [(H₂AsW₉O₃₃){W₃S₄(H₂O)₅}(HAsW₉O₃₃AsOH)]¹⁸⁻₂, построенный на специфических невалентных контактах S...S (пунктирные линии), в структуре **2**. Водородные связи показаны тонкими штриховыми линиями, черные шары в вершинах полиэдров показывают протонированные положения аниона ПОМ

Анионы $[(H_2AsW_9O_{33})_2\{Mo_3S_4(H_2O)_5\}]^{10-}$ в **1** и $[(H_2AsW_9O_{33})\{W_3S_4(H_2O)_5\}(HAsW_9O_{33} \times (AsOH))]^{9-}$ в **2** образуют димеры (см. рис. 1 и 2) за счет специфических невалентных взаимодействий между атомами серы [23], характеризующихся в **1** и **2** укороченными контактами S...S длиной 3,20—3,51 Å. Помимо контактов S...S в структуре **1** и **2** димеры связаны четырьмя водородными связями W=O...O(H_2)—M (×2) и W—O(H)...O(H_2)—M (×2), реализующимися между молекулами воды и атомами кислорода соседних WO₆-октаэдров анионов ПОМ. Интересно отметить, что протонирование анионов ПОМ в димерах **1** и **2** проходит по одним и тем же позициям (см. рис. 1 и 2).

В обеих структурах молекулы воды, координированные к кластерному остову $\{M_3S_4\}$, участвуют также в образовании коротких внутримолекулярных водородных связей: двух — с оксогруппами ПОМ и двух — с гидроксогруппами ПОМ (см. табл. 2). Более длинная водородная связь (О...О 3,100(4) Å) реализуется между атомами кислорода оксо- и гидроксогрупп двух ПОМ анионов в структуре 1, координированных к одному и тому же кластерному ядру. В 2 образование такой водородной связи блокируется наличием экранирующей группировки AsOH²⁺ в соответствующей позиции. Расстояния между атомом мышьяка и ближайшими атомами кислорода соседнего фрагмента $\{H_2AsW_9O_{33}\}$ составляют 3,136(7)—3,339(9) Å. Атом кислорода гидроксогруппы при атоме мышьяка образует водородные связи с тремя атомами кислорода сольватных молекул воды (см. табл. 2), причем кратчайший контакт As—O...O(H₂O) 2,85(2) Å, возможно, и указывает на положение нелокализованного из разностного синтеза атома водорода.

В обеих структурах димеры упакованы по искаженному мотиву ОЦК, катионы щелочных металлов, аммония и сольватные молекулы воды находятся в пустотах упаковки крупных структурных фрагментов.

Работа поддержана грантами Российского фонда фундаментальных исследований 08-03-90109 и 09-03-93105.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lon D.L., Burkholder E., Cronin L. // Chem. Soc. Rev. 2007. 36. P. 105 121.
- Polyoxometalates Chemistry for Nano Composite Design. / Eds. T. Yamase, M.T. Pope N. Y.: Kluwer Academic/Plenum Publishers, 2002. P. 1 127.
- 3. Contant R., Hervé G. // Rev. Inorg. Chem. 2002. 22. P. 63 111.

- 4. Kortz U., Hussein F., Reicke M. // Angew. Chem. Int. Ed. 2005. 44. P. 3773 3777.
- 5. Shibahara T. // Coord. Chem. Rev. 1993. 123. P. 73 147.
- 6. Coucouvanis D., Toupadakis A., Hadjikyriacou A. // Inorg. Chem. 1988. 27. P. 3272 3273.
- 7. Secheresse F., Dolbecq A., Mialane P. et al. // C.R. Chimie. 2005. 8. P. 1927 1938.
- 8. Akashi H., Shibahara T., Kuroya H. // Polyhedron. 1990. 9. P. 1671 1676.
- 9. Müller A., Fedin V.P., Kuhlmann C. et al. // Chem. Commun. 1999. P. 1189 1190.
- 10. Изарова Н.В., Соколов М.Н., Кадо Э. и др. // Изв. АН. Сер. хим. 2004. 53. С. 1503 1506.
- 11. Duval S., Pilette M.-A., Marrot J. et al. // Chem. Eur. J. 2008. 14. P. 3457 3466.
- 12. Sokolov M.N., Fedin V.P., Sykes A.G. // Compr. Coord. Chem. 2003. 3. P. 761 824.
- 13. Hernandez-Molina R., Sokolov M.N., Sykes A.G. // Acc. Chem. Res. 2001. 34. P. 223 230.
- 14. Sokolov M.N., Coichev N., Moya H. et al. // Dalton Trans. 1997. P. 1863 1869.
- 15. Tourne C., Revel A., Tourne G. et al. // C.R. Seances Acad. Sci. Ser. C. 1973. 277. P. 643 645.
- 16. Sokolov M.N., Fedin V.P., Virovets A.V. et al. // Inorg. Chim. Acta. 1998. 269. P. 292 296.
- 17. Sheldrick G.M. SADABS, Program for empirical X-ray absorption correction, Bruker-Nonius, 1990.
- 18. Bruker, SHELXTL. Version 6.22. (2003) Bruker AXS Inc. Madison, WI, USA.
- 19. Allen F.H. // Acta Crystallogr. 2002. B58. P. 380 388.
- 20. *Inorganic* Crystal Structure Database. Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany.
- 21. *Blatov V.A.* // Cryst. Comp. Newsletter 2006. 7. P. 4 38. (http://www.iucr.org/iucr-top/comm/ccom/newsletters/)
- 22. Tang Y.-H., Qin Y.-Y., Wu L. et al. // Polyhedron. 2001. 20. P. 2911 2916.
- 23. Вировец А.В., Подберезская Н.В. // Журн. структур. химии. 1993. 34. С. 150 167.