2017

УДК 622.276.66

НОВЫЙ ПОДХОД К ОПРЕДЕЛЕНИЮ РАЗМЕРА ТРЕЩИН МНОГОСТУПЕНЧАТОГО ГИДРОРАЗРЫВА ПЛАСТА ПО ДАННЫМ ДЕБИТА СКВАЖИНЫ

Чжоу Цяофэн, А. Б. Золотухин, А. Т. Гаюбов

Российский государственный университет нефти и газа (НИУ) им. И. М. Губкина, E-mail: gubkin.cup@yandex.ru, anatoly.zolotukhin@gmail.com, Ленинский проспект, 65, 119991, г. Москва, Россия

Предложена упрощенная двухзональная модель описания течения флюида при установившемся режиме работы горизонтальных скважин с многоступенчатым гидроразрывом пласта и приведено аналитическое решение для расчета размеров таких трещин. Применение новой методики для определения размеров трещин с многоступенчатым гидроразрывом пласта в горизонтальной скважине рассмотрено по промысловым данным месторождения КНР. Результаты расчетов показали, что разработанная методика эффективна при выявлении установившегося режима; с ее помощью представляется возможным получить решение оптимизационной задачи проектирования гидроразрыва пласта.

Горизонтальная скважина, многоступенчатый гидроразрыв пласта, размеры трещин, анализ промысловых данных

DOI: 10.15372/FTPRPI20170608

В настоящее время значительная часть новых вводимых в разработку месторождений нефти и газа характеризуется сложными фильтрационно-емкостными свойствами (ФЕС). Для эффективной разработки таких месторождений требуется технология бурения горизонтальных скважин (ГС) с проведением многоступенчатого гидроразрыва пласта (МГРП). При интерпретации промысловых данных ГС с МГРП по стандартному методу, представленному в [1], часто встречаются следующие проблемы: недостаточность промысловых данных по техническим причинам и невозможность их использования (например, данные слишком рассеянны, дискретны). Для решения такого рода проблем разработана новая упрощенная модель описания течения флюида при установившемся режиме в коллекторах с двумя зонами, обладающими разными ФЕС. На основе [2] получено усовершенствованное аналитическое решение для расчета размеров трещин МГРП. Применение предложенной методики для определения размеров трещин МГРП в ГС проиллюстрировано примером с использованием промысловых данных на примере месторождения КНР. Предложенная модель может быть использована также для анализа влияния числа трещин на дебит скважины с целью оптимизации проектирования гидроразрыва пласта.

<u>№</u> 6

ПОСТАНОВКА ЗАДАЧИ

В процессе схематизации течения флюида в ГС с МГРП принимаются следующие допущения (рис. 1*a*): ГС находится в пласте с полосообразной областью дренирования постоянной мощности, насыщенном однофазной жидкостью; кровля и подошва пласта непроницаемы; проницаемость пласта по вертикали незначительна; режим течения флюида в зоне I представляет собой одномерное плоско-линейное течение флюида к поперечным трещинам ГРП, перпендикулярным стволу скважины, а в зоне II — плоско-линейное течение к границе зон I и II; вдоль горизонтального ствола скважины и в трещинах отсутствует перепад давления; дебит горизонтальной скважины определяется как суммарный дебит всех трещин.

Рис. 1. Схема течения флюида в ГС с поперечными трещинами гидроразрыва пласта

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАДАЧИ

Зона I. Приток флюида, приходящий в половину трещины в сегменте зоны I (рис. 1*б*), рассчитывается по формуле

$$q_1 = -\frac{k_1}{\mu B} \iint \frac{\partial p}{\partial x} dS , \qquad (1)$$

где k_1 — проницаемость зоны I; μ — вязкость нефти; B — объемный коэффициент нефти; S — площадь сечения, нормальная потоку флюида; dS = dzdy.

В настоящей работе в целях простоты изложения рассматривается установившееся течение. Предположим, что на границе между зонами I и II в точке, равноотстоящей от соседних трещин, давление будет равно некоторому значению p_0 , меньшему первоначального пластового давления (рис. 1*в*).

При приближенном расчете функции распределения давления в зоне I представлены в следующем виде [2]:

$$p(x=0, y) = p_{wf} + \frac{p_0 - p_{wf}}{x_f} y, \qquad (2)$$

$$p(x, y) = p(x = 0, y) - \frac{p(x = 0, y) - p_{wf}}{x_s/2} x,$$
(3)

где p_{wf} — забойное давление; p_0 — давление на границе между зонами I и II в точке, равноотстоящей от соседних трещин; x_f — полудлина трещин; $x_s = L/(N-1)$ — расстояние между трещинами, L — горизонтальный участок ствола скважины, N — число трещин. Следовательно, функция распределения давления имеет вид:

$$p(x, y) = p_{wf} + \left(1 - \frac{2x}{x_s}\right) \frac{p_0 - p_{wf}}{x_f} y .$$
(4)

Отметим, что в соотношении (4), ввиду цикличности вычислений в случае, когда число трещин больше одной, переменная x может принимать значения от 0 до $x_s / 2$. На рис. 2 показано распределение давления в трехмерном пространстве в соответствии с уравнением (4).

Рис. 2. Распределение давления в трехмерном пространстве (зона I)

Приток флюида, приходящий в половину трещины в сегменте, получен после интегрирования:

$$q_{1} = \frac{k_{1}h}{\mu x_{s}B} (p_{0} - p_{wf}) x_{f}, \qquad (5)$$

где *h* — толщина пласта.

Таким образом, общий дебит ГС с МГРП можно представить следующим образом:

$$Q_1 = 4q_1(N-1) + Q_D = (N-1)^2 \frac{4k_1h}{\mu LB} (p_0 - p_{wf}) x_f + Q_D,$$
(6)

здесь Q_1 — приток флюида ГС с МГРП; Q_D — приток извне к первой и последней трещинам (рис. 3).

Рис. 3. Схема притока Q_D (единственная трещина на всей длине ствола скважины)

В [3] на основе известной формулы Дюпюи получено соотношение, позволяющее рассчитать этот дебит:

$$Q_{D} = \frac{2\pi kh(p_{k} - p_{wf})}{\mu B \left[\ln \left(\frac{R_{k}}{r_{w}} \right) + s \right]},$$
(7)

где k — проницаемость пласта; p_k — давление на контуре питания; R_k — радиус контура питания; r_w — радиус скважины; s — псевдоскин-фактор.

В [3] введен в рассмотрение псевдоскин-фактор, который позволяет учитывать все многообразие специальных случаев притока к скважинам не только вертикальным, но и более сложного профиля (горизонтальным, разветвленным, с трещиной гидроразрыва и т. п.).

Зона II. Предполагается, что распределение давления по оси x на границе раздела зон I и II области течения (рис. 4 β) представляет собой линейную функцию:

$$p(x, y = 0) = p_0 - \frac{p_0 - p_{wf}}{x_s / 2} x.$$
(8)

Рис. 4. Схема течения флюида в ГС с поперечными трещинами гидроразрыва пласта (зона II)

Приток флюида от границы зоны дренирования до поперечных трещин в зоне II (рис. 4б) записывается в виде

$$q_2 = -\frac{k_2}{\mu B} \iint \frac{\partial p}{\partial y} \, dS \,, \tag{9}$$

где q_2 — приток флюида к трещинам в сегменте зоны II; k_2 — проницаемость зоны II; dS = dxdz; $\partial p / \partial y = [p_k - p(x, y = 0)]/l$, $l = R_k - x_f$ — расстояние от границы зоны дренирования до границы зоны II.

На рис. 5 показано распределение давления в зоне II, основанное на указанных выше допущениях.

Рис. 5. Распределение давления в трехмерном пространстве (зона II)

В соответствии со сделанными допущениями, приток к горизонтальной скважине с трещинами гидроразрыва можно записать следующим образом:

$$Q_2 = 4(N-1)q_2 + Q_D = 2\frac{k_2hL}{\mu lB} \left(p_k - \frac{p_0}{2} - \frac{p_{wf}}{2} \right) + Q_D, \qquad (10)$$

где Q_2 — приток от границы зоны дренирования к поперечным трещинам.

Поскольку течение флюида в зонах I и II установившееся, дебиты, рассчитываемые по соотношениям (6) и (10), равны. Приравнивая эти соотношения, получим:

$$p_{0} = \frac{p_{k} - \left[\frac{1}{2} - (N-1)^{2} \frac{2x_{f}l}{L^{2}}\lambda\right] p_{wf}}{\frac{1}{2} + (N-1)^{2} \frac{2x_{f}l}{L^{2}}\lambda},$$
(11)

где $\lambda = k_1 / k_2$ — соотношение проницаемостей зон I и II.

Подставив формулу (11) в (6), находим

$$x_{f} = \frac{1}{4(N-1)^{2} \left(\frac{2k_{1}h}{\mu BL} \frac{p_{k} - p_{wf}}{Q_{1} - Q_{D}} - \frac{\lambda l}{L^{2}}\right)}.$$
(12)

В (12) заменим параметр l на $R_k - x_f$ и получим

$$x_{f} = \frac{1}{4(N-1)^{2} \left(\frac{2k_{1}h}{\mu BL} \frac{p_{k} - p_{wf}}{Q_{1} - Q_{D}} - \frac{\lambda R_{k}}{L^{2}}\right) + \frac{4(N-1)^{2}\lambda}{L^{2}} x_{f}}.$$
(13)

Данное выражение можно использовать для расчета полудлины трещин при известных значениях параметров, присутствующих в (13). Если записать (13) в другом виде, то можно определить дебит скважины и проанализировать его зависимость от полудлины трещин и числа трещин, что позволяет оптимизировать проектирование МГРП.

При течении газа в пласте формулу (13) следует переписать в другом виде, учитывая перепад псевдодавления и заменяя параметр $\mu B/2$ на параметр $p_{sc}T/T_{sc}$. В таком случае псевдодавление

$$m(p) = 2 \int \frac{p}{\mu_g z} dp \,, \tag{14}$$

 $\mu_{\rm g}$ — вязкость газа; z— коэффициент сверх
сжимаемости газа.

Перепад псевдодавления можно рассчитывать при средних значениях коэффициента сверхсжимаемости газа и вязкости:

$$m(p_k) - m(p_{wf}) = 2 \int_{p_{wf}}^{p_k} \frac{p}{\mu_g z} dp = \frac{p_k^2 - p_{wf}^2}{\overline{\mu}_g \overline{z}}.$$
 (15)

Здесь $\overline{\mu}_g = \mu(p_k + p_{wf})/2$ — среднее значение вязкости газа; $\mu(p)$ — вязкость флюида в зависимости от давления; $\overline{z} = z(p_k + p_{wf})/2$ — средний коэффициент сверхсжимаемости газа; z(p) — коэффициент сверхсжимаемости газа в зависимости от давления [4]. 78 Таким образом, формула для расчета полудлины трещин при течении газа имеет следующий вид:

$$x_{f} = \frac{1}{4(N-1)^{2} \left(\frac{T_{sc}k_{1}h}{Tp_{sc}L} \frac{p_{k}^{2} - p_{wf}^{2}}{(Q_{g} - Q_{D})\overline{\mu}_{g}\overline{z}} - \frac{\lambda R_{k}}{L^{2}}\right) + \frac{4(N-1)^{2}\lambda}{L^{2}}x_{f}},$$
(16)

где Q_g — дебит газа в поверхностных условиях; p_{sc} — давление при стандартных условиях; T — пластовая температура; T_{sc} — температура при стандартных условиях.

Для расчета полудлины трещины, учитывая нелинейность соотношения (16), можно использовать следующую модификацию с новыми параметрами *A* и *B*:

$$x_{f} = \frac{A}{2B} \left(\sqrt{1 + \frac{4B}{A^{2}}} - 1 \right),$$
(17)
где $A = 4(N-1)^{2} \left(\frac{T_{sc}k_{1}h}{Tp_{sc}L} \frac{p_{k}^{2} - p_{wf}^{2}}{(Q_{g} - Q_{D})\overline{\mu}_{g}\overline{z}} - \frac{\lambda R_{k}}{L^{2}} \right); B = \frac{4(N-1)^{2}\lambda}{L^{2}}.$

ИНТЕРПРЕТАЦИЯ ПРОМЫСЛОВЫХ ДАННЫХ НА ПРИМЕРЕ МЕСТОРОЖДЕНИЯ КНР

При обработке и интерпретации промысловых данных горизонтальных скважин с многоступенчатым гидроразрывом пласта на месторождении КНР оказалось, что полученные данные слишком рассеяны (рис. 6). По стандартному методу, представленному в [1], невозможно выделить различные течения и определить параметры трещин.

Рис. 6. Динамика изменения устьевого давления (1) и дебита (2) гидроразрыва с МГРП

Из рис. 6 следует, что в период между 95-ми и 170-ми сутками устьевое давление скважины является почти установившимся, что позволяет предположить стационарность притока в этот период. В свою очередь, это предположение дает возможность оценить по предлагаемой методике полудлину трещин x_f , составляющую 153.5 м. Забойное давление скважины можно рассчитать с помощью формулы из [5], учитывая устьевое давление скважины.

Приведены следующие параметры ГС с МГРП и находящегося в пласте флюида (при этом $Q_D = 0.14 \cdot 10^4 \text{ м}^3/\text{сут}$): начальное пластовое давление — 28.5 МПа; пластовая температура — 104°С; толщина пласта — 20 м; длина горизонтального участка — 959 м; количество трещин — 6; вязкость газа — 0.019 мПа·с; коэффициент сверхсжимаемости газа — 0.98; радиус скважины — 0.09 м; проницаемость пласта — 0.015·10⁻³ мкм²; глубина скважины — 3200 м.

выводы

Предложена упрощенная модель течения флюида в горизонтальной скважине с многоступенчатым гидроразрывом пласта при стационарном режиме. На ее основе разработан подход к предварительному определению размеров трещин МГРП. В условиях недостаточной информации при интерпретации промысловых данных новая методика может использоваться в качестве альтернативной, когда исходных данных недостаточно для получения более точных подходов.

Проведены анализ и интерпретация промысловых данных по добыче на примере месторождения КНР и определена полудлина трещин МГРП в ГС.

Полученное аналитическое решение можно использовать для анализа влияния числа трещин на дебит скважины и для выбора оптимального числа и протяженности трещин гидроразрыва при проектировании ГС с МГРП.

СПИСОК ЛИТЕРАТУРЫ

- 1. Чжоу Цяофэн, Золотухин А. Б., Чжан Шичэн. Методика определения свойств трещин после проведения многоступенчатого гидроразрыва пласта // Нефт. хоз-во. — 2016. — № 6. — С. 108–111.
- 2. Елкин С. В., Алероев А. А., Веремко Н. А. Модель для расчета дебита горизонтальной скважины в зависимости от числа трещин гидроразрыва пласта // Нефт. хоз-во. — 2016. — № 1. — С. 64–67.
- 3. Cinco L. H., Samaniego V. F., Dominguez A. N. Transient pressure behavior for a well with a finiteconductivity vertical fracture, Society of Petroleum Engineers J., 1978, Vol. 18 (4). — P. 253–264.
- **4.** Cui Liping, He Shunli, Ning Bo. Discussion on deliverability formulas of horizontal gas well, J. of Southwest Petroleum University (Science and Technology Edition), 2009, Vol. 31 (5). P. 121–124.
- **5.** Xu Shaosong, Liu Weining, Lin Jiaen. Research status of bottomhole pressure calculation methods from wellhead measurements, Well Testing and Production Technology, 1994, Vol. 15 (3). P. 12–18.

Поступила в редакцию 14/IV 2017