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In this paper, a linear second-order finite difference scheme is proposed for the Allen–Cahn equation with
a general positive mobility. The Crank–Nicolson scheme and Taylor’s formula are used for temporal dis-
cretization, and the central finite difference method is used for spatial approximation. The discrete maximum
bound principle (MBP), the discrete energy stability and L∞-norm error estimation are discussed, respectively.
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1. Введение

В этой статье интерес для нас представляет следующее уравнение Аллена–Кана для
общего случая коэффициента мобильности M(φ) ≥M0 > 0:

∂φ

∂t
= −M(φ)

(
−ε2∆φ+ F ′(φ)

)
, (x, t) ∈ Ω× (0, T ],

φ(x, 0) = φ0(x), x ∈ Ω.
(1)
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Здесь Ω — ограниченная по Липшицу область в Rd (d = 1, 2, 3). Параметр T > 0 обозна-
чает конечное время, φ(x, t) — неизвестная функция и ε — положительный параметр,
называемый параметром ширины диффузного интерфейса. F (φ) =

1

4

(
1 − φ2

)2 — функ-
ция двухъямного потенциала, F ′(φ) = φ3 − φ и F ′′(φ) = 3φ2 − 1. Обычно считается, что
задача (1) подчиняется однородному граничному условию Неймана, периодическому или
однородному граничному условию Дирихле. Уравнение Аллена–Кана (1) сохраняет два
присущих ему свойства. Одно из них — ПМ, т. е. если |φ(x, 0)| ≤ 1 для всех x ∈ Ω, то
|φ(x, t)| ≤ 1 для всех x ∈ Ω и t > 0. Для уравнения Аллена–Кана (1) очень важно разра-
ботать численные схемы, сохраняющие ПМ на дискретном уровне. Поскольку численные
схемы, не имеющие этого физического свойства, приведут к отрицательному коэффици-
енту мобильности M(φ) (например, M(φ) = 1−φ2) и численное моделирование не будет
успешным. Другое свойство — диссипация энергии, а именно

d

dt
E(φ) = −

∫
Ω
M(φ)µ2dx ≤ 0,

где свободная энергия определяется следующим образом:

E(φ) =

∫
Ω

(
ε2

2
|∇φ|2 + F (φ)

)
dx.

В последние десять лет много работ [1, 6, 7, 9–13] было посвящено разработке поша-
гового расчета с сохранением ПМ для уравнения Аллена–Кана, особенно для случаев с
постоянным коэффициентом мобильности. Среди существующих работ Тан с соавтора-
ми предложили линейные стабилизированные полунеявные схемы первого порядка для
уравнения Аллена–Кана (1) в [11] и для обобщенного случая с членом адвекции в [10].
Эти схемы безусловно сохраняют дискретный ПМ в обоих случаях и энергетическую
устойчивость в случае с постоянным коэффициентом мобильности. Хоу с соавторами [2]
разработали нелинейную схему Кранка–Николсона второго порядка для дробного по про-
странству уравнения Аллена–Кана и обсудили дискретный ПМ и энергетическую устой-
чивость. Ляо с соавторами [8] предложили нелинейную полностью неявную двухшаговую
схему BDF (“backward differentiation formula” или формула обратного дифференцирова-
ния) второго порядка с переменным шагом по времени, и было доказано сохранение
дискретного ПМ и энергетической устойчивости при некоторых ограничениях на размер
временного шага и соотношение двух последовательных временных шагов. Хоу с соавто-
рами [3] исследовали конечно-разностную схему второго порядка с двумя параметрами
для уравнения Аллена–Кана для общего случая коэффициента мобильности. Эта схема
будет линейной или безусловно энергетически устойчивой за счет выбора различных па-
раметров. Совсем недавно Хоу с соавторами [5] предложили линейную устойчивую схему
BDF2 с переменным размером временного шага для уравнения Аллена–Кана для общего
случая коэффициента мобильности и доказали дискретный ПМ при некоторых ограни-
чениях на размеры временного шага и соответствующие отношения временных шагов.
Хоу с соавторами [4] разработали линейную схему Кранка–Николсона с двойной устой-
чивостью для уравнения Аллена–Кана для общего случая коэффициента мобильности и
доказали, что она безусловно сохраняет ПМ. Однако энергетическая устойчивость схем,
предлагаемых в [4,5], получена только в том смысле, что дискретная свободная энергия
равномерно ограничена энергией в начальный момент времени плюс постоянная вели-
чина.

Основываясь на предыдущих работах [3, 4], в данной статье предложена и проана-
лизирована линеаризованная конечно-разностная схема второго порядка для уравнения
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Аллена–Кана (1) для общего случая коэффициента мобильности. Обсуждаются дискрет-
ный ПМ, дискретная энергетическая устойчивость и оценка ошибки в L∞-норме. С по-
мощью численных результатов показано, что предлагаемая схема очень эффективна (на
каждом временном уровне необходимо решить только два уравнения Пуассона).

Статья построена следующим образом. В пункте 2 путем явной трактовки коэффи-
циента мобильности M(φ) мы представляем полностью дискретную линейную конечно-
разностную схему для уравнения (1) на основе схемы Кранка–Николсона и формулы Тей-
лора. В этом пункте рассматриваются также дискретный ПМ и энергетическая устойчи-
вость. В п. 3 получена оценка дискретной ошибки в L∞-норме на основе установленного
дискретного ПМ. В п. 4 приводится несколько численных экспериментов для проверки
теоретических результатов. В последнем пункте мы подводим итоги полученных резуль-
татов и обсуждаем некоторые их возможные будущие расширения.

2. Полностью дискретная конечно-разностная схема

Без потери общности рассмотрим двумерную задачу (1) только с периодическим гра-
ничным условием. Пусть Ω = (0, L)× (0, L) и h = L/K.

2.1. Линеаризованная схема Кранка–Николсон

Пусть 0 = t0 < t1 < t2 < · · · < tN = T — равномерное разбиение временного интерва-
ла [0, T ] с размером временного шага τ = T/N , tn+ 1

2
= (tn+1 +tn)/2. Сначала представим

стабилизированную схему BDF первого порядка для решения уравнения Аллена–Кана
для общего случая коэффициента мобильности (1), называемую схемой BDF1, и обозна-
чим ее Φn+1 = BDF1(Φn, τ) (см. [10, 11]):

Φn+1 − Φn

τ
− ε2ΛnMDhΦn+1 + ΛnMF

′(Φn) + S1(Φn+1 − Φn) = 0, (2)

где Φn = (Φn
1 , . . . ,Φ

n
K ; . . . ; Φn

K2−K+1, . . . ,Φ
n
K2)>, Dh = I ⊗ Gh + Gh ⊗ I ∈ RK2×K2 , Gh —

трехдиагональная матрица с диагональным преобладанием, задаваемая как

Gh :=
1

h2


−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2


K×K

,

ΛnM = diag(M(Φn)) и S1 ≥ 0 — стабилизирующий параметр. Определим ‖Φ‖∞ =
max1≤i≤K2 |Φi|.

В соответствие с теоремой 3.2 из [10] и теоремой 3 из [11] полностью дискретная схема
BDF1 (2) является безусловно сохраняющей ПМ.

Лемма 2.1 [10, 11]. Предположим, что ‖Φ0‖∞ ≤ 1 и стабилизирующий параметр S1

удовлетворяет соотношению

S1 ≥ max
ρ∈[−1,1]

(
M ′(ρ)F ′(ρ) +M(ρ)F ′′(ρ)

)
. (3)

Тогда схема BDF1 (2) безусловно сохраняет дискретный ПМ.
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Теперь представим следующую полностью дискретную линейную схему Кранка–Ни-
колсона второго порядка для уравнения Аллена–Кана (1) для общего случая коэффи-
циента мобильности

Φn+ 1
2 = BDF1(Φn, τ/2),

Φn+1 − Φn

τ
− ε2Λ

n+ 1
2

M Dh
Φn+1 + Φn

2
+ Λ

n+ 1
2

M

(
F ′(Φn) +

1

2
F ′′(Φn)(Φn+1− Φn)

)
= 0.

(4)

2.2. Дискретный принцип максимума

В данном подпункте докажем, что наша схема сохраняет дискретный ПМ.

Теорема 2.1. Предположим, что стабилизирующий параметр S1 удовлетворяет ус-
ловию (3) и |φ0(x)| ≤ 1. Предлагаемая схема (4) является условно сохраняющей ПМ в
том смысле, что если

τ ≤ 1

8L
min

{
1,
h2

ε2

}
, (5)

то ‖Φn‖∞ ≤ 1 для всех n = 1, 2, . . . , N .

Доказательство. Будем действовать по индукции. Во-первых, мы имеем ‖Φ0‖∞ ≤
maxx∈Ω |φ0(x)| ≤ 1. Предположим, что этот результат верен для k = n, т. е. ‖Φn‖∞ ≤ 1.
Теперь проверим, что ‖Φn+1‖∞ ≤ 1. Используя Φn+ 1

2=BDF1(Φn, τ/2), ‖Φn‖∞ ≤ 1 и
лемму 2.1, получим

∥∥Φn+ 1
2

∥∥
∞ ≤ 1. Перепишем (4) следующим образом:(

I − τ

2
Λ
n+ 1

2
M

(
ε2Dh − ΛnF ′′

))
Φn+1 =

(
I +

τ

2
Λ
n+ 1

2
M

(
ΛnF ′′ + ε2Dh

))
Φn − τΛ

n+ 1
2

M F ′(Φn),

где ΛnF ′′=diag(F ′′(Φn)). Пусть p — положительное целое число такое, что |Φn+1
p | =

‖Φn+1‖∞. Тогда[
1 +

τ

2
M
(

Φ
n+ 1

2
p

)
F ′′(Φn

p )

]
Φn+1
p − τε2

2
M
(

Φ
n+ 1

2
p

) 1

h2

K2∑
j=1

dpjΦ
n+1
j

=
1

4
Φn
p +

τε2

2
M
(

Φ
n+ 1

2
p

) 1

h2

K2∑
j=1

dpjΦ
n
j︸ ︷︷ ︸+

1

2

(
1 + τM

(
Φ
n+ 1

2
p

)
F ′′(Φn

p )

)
Φn
p︸ ︷︷ ︸+

1

4
Φn
p − τM

(
Φ
n+ 1

2
p

)
F ′(Φn

p )︸ ︷︷ ︸ . (6)

Возьмем абсолютное значение в обеих частях уравнения (6). Поскольку 1+
τ

2
M
(

Φ
n+ 1

2
p

)
×

F ′′(Φn
p ) ≥ 0 для 0 < τ ≤ 2

L
и Dh является диагонально преобладающей, мы находим,

что
[
1 + τ

2M
(

Φ
n+ 1

2
p

)
F ′′(Φn

p )

]
Φn+1
p и −τε

2

2
M
(

Φ
n+ 1

2
p

)
1

h2

∑K2

j=1 dpjΦ
n+1
j одновременно непо-

ложительны или неотрицательны. Поэтому

|Левая часть| ≥
[
1 +

τ

2
M
(

Φ
n+ 1

2
p

)
F ′′(Φn

p )

]
|Φn+1
p |. (7)

Кроме того, используя ‖Φn‖∞ ≤ 1 и M0 ≤M
(

Φ
n+ 1

2
p

)
≤ L, можем заключить, что
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∣∣∣∣14Φn
p +

τε2

2
M
(

Φ
n+ 1

2
p

) 1

h2

K2∑
j=1

dpjΦ
n
j

∣∣∣∣ ≤ 1

4
, τ ≤ h2

8Lε2
, (8)∣∣∣∣12(1 + τM

(
Φ
n+ 1

2
p

)
F ′′(Φn

p )
)

Φn
p

∣∣∣∣ ≤ 1

2

(
1 + τM

(
Φ
n+ 1

2
p

)
F ′′(Φn

p )
)
, τ ≤ 1

L
, (9)∣∣∣∣14Φn

p − τM
(

Φ
n+ 1

2
p

)
F ′(Φn

p )

∣∣∣∣ ≤ 1

4
, τ ≤ 1

8L
. (10)

Объединив (7)–(10), получим ‖Φn+1‖∞ = |Φn+1
p | ≤ 1. Доказательство завершено.

2.3. Устойчивость дискретной энергии

Рассмотрим устойчивость дискретной энергии схемы (4). Определим дискретную
энергию Eh(·) следующим образом:

Eh(Φn) = −h
2ε2

2
(Φn)>DhΦn + h2

K2∑
i=1

F (Φn).

Теорема 2.2. Предположим, что |φ0(xxx)| ≤ 1. Тогда при условии (5) дискретная энер-
гия Eh(·) приближенной последовательности {Φn}, генерируемая путем (4), удовле-
творяет следующему соотношению устойчивости дискретной энергии:

Eh(Φn+1) ≤ Eh(Φn), 0 ≤ n ≤ N − 1.

Доказательство. Из теоремы 2.1 мы знаем, что ‖Φn‖∞ ≤ 1 для 1 ≤ n ≤ N . Посред-
ством неравенства

1

4

[(
a2 − 1

)2 − (b2 − 1
)2] ≤ [b (b2 − 1

)
+ a− b

]
(a− b) ∀ a, b ∈ [−1, 1]

мы можем получить

Eh(Φn+1)− Eh(Φn) =
h2

4

K2∑
i=1

[(
(Φn+1

i )2 − 1
)2 − ((Φn

i )2 − 1
)2]−

ε2h2

2

((
Φn+1

)T
DhΦn+1 − (Φn)T DhΦn

)
≤ h2

K2∑
i=1

[
Φn
i

(
(Φn

i )2 − 1
)

+
(
Φn+1
i − Φn

i

) ] (
Φn+1
i − Φn

i

)
−

ε2h2

2

((
Φn+1

)T
DhΦn+1 − (Φn)T DhΦn

)
. (11)

С другой стороны, используя L2-скалярное произведение схемы (4) с
(

Λ
n+ 1

2
M

)−1
×

(Φn+1 − Φn), получаем

K2∑
i=1

[
1

τM
(

Φ
n+ 1

2
i

) (Φn+1
i − Φn

i

)2
+

1

2
F ′′ (Φn

i )
(
Φn+1
i − Φn

i

)2
+ Φn

i

(
(Φn

i )2 − 1
)
(Φn+1

i − Φn
i )

]

=
ε2

2

((
Φn+1

)>
DhΦn+1 − ΦnDhΦnv

)
. (12)
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С использованием (11), (12), ‖Φn‖∞ ≤ 1 иM0 ≤M
(

Φ
n+ 1

2
i

)
≤ L, если τ ≤ 2

3L
, получим

Eh
(
Φn+1

)
− Eh(Φn) = h2

K2∑
i=1

(
1− 1

τM
(

Φ
n+ 1

2
i

) − 1

2
F ′′(Φn

i )

)(
Φn+1
i − Φn

i

)2

= h2
K2∑
i=1

3

2

(
1− (Φn

i )2
)
− 1

τM
(

Φ
n+ 1

2
i

)
(Φn+1

i − Φn
i

)2
≤ 0.

Доказательство завершено.

3. Анализ ошибок

В данном пункте L∞-дискретную оценку ошибки получим с использованием дискрет-
ного ПМ. Пусть en = Φ(tn)−Φn и en+ 1

2 = Φ
(
tn+ 1

2

)
−Φn+ 1

2 , где Φ(tn) и Φ
(
tn+ 1

2

)
— векторы

точного решения при tn и tn+ 1
2
соответственно.

Теорема 3.1. Предположим, что M(·) ∈ C1(R), S1 удовлетворяет (3) и

φ ∈ C3
(
0, T ;L∞(Ω)

)⋂
W 3,∞(0, T ;L∞(Ω)

)⋂
L∞
(
0, T ;W 4,∞(Ω)

)
.

Тогда при условии (5)

‖en‖∞ ≤ C1exp(C2T )
(
τ2 + h2

)
, n = 1, 2, . . . , N. (13)

Доказательство. Для любого 1 ≤ n ≤ N −1 векторы точного решения Φ(tn+1) и Φ(tn)
удовлетворяют соотношению

Φ(tn+1)− Φ(tn)

τ
+ ΛM

(
Φ
(
tn+ 1

2

))
×(

− ε2Dh
Φ(tn+1+Φ(tn))

2
+

[
F ′(Φ(tn))+

1

2
F ′′(Φ(tn))

(
Φ(tn+1)−Φ(tn)

)])
+

Rn1 + ΛM

(
Φn+ 1

2

)
(Rn2 +Rn3 ) = 0, (14)

где

ΛM

(
Φ
(
tn+ 1

2

))
:= diag

(
M
(

Φ
(
tn+ 1

2

)))
,

Rn1 = Φt

(
tn+ 1

2

)
− Φ(tn+1)− Φ(tn)

τ
, Rn2 = −ε2

(
∆Φ
(
tn+ 1

2

)
−Dh

Φ(tn+1) + Φ(tn)

2

)
,

Rn3 = F ′
(

Φn+ 1
2

)
−
[
F ′
(
Φ(tn)

)
+

1

2
F ′′
(
Φ(tn)

)(
Φ(tn+1)− Φ(tn)

)]
.
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Для Rn1 и Rn2 мы имеем следующие оценки:

‖Rn1‖∞ ≤
1

24
τ2‖φ‖W 3,∞(0,T ;L∞(Ω)), (15)

‖Rn2‖ ≤ ε2

[
τ2

8
‖φ‖W 3,∞(0,T ;W 2,∞(Ω)) +

h2

6
‖φ‖L∞(0,T ;W 4,∞(Ω))

]
. (16)

Что касается Rn3 , то с использованием формулы Тейлора и теоремы о среднем значении
получим

‖Rn3‖∞ ≤ C4τ
2, (17)

где C4 — положительная постоянная.
Вычитая (4) из (14), легко можно получить следующее уравнение для ошибки:

en+1 − en

τ
− Λ

n+ 1
2

M

(
ε2Dh

en+1 + en

2
− 1

2
F ′′(Φn)Φn+1 +

1

2
F ′′(Φ(tn))Φ(tn+1)

)
= −Λ

n+ 1
2

M

[
F ′(Φn)− 1

2
F ′′(Φn)Φn − F ′(Φ(tn)) +

1

2
F ′′(Φ(tn))Φ(tn)

]
−[

Λ
n+ 1

2
M − ΛM (Φ(tn+ 1

2
))

]
×[

− ε2Dh
Φ(tn+1) + Φ(tn)

2
+
(
F ′(Φ(tn)) +

1

2
F ′′
(
Φ
(
tn)
)(

Φ(tn+1)− Φ(tn)
))]

+

Rn1 + ΛM

(
Φn+ 1

2

)(
Rn2 +Rn3

)
:= R̂n. (18)

Переместив члены, содержащие en, в правую часть (18), мы видим, что

1

τ
en+1 − Λ

n+ 1
2

M

(
ε2

2
Dhe

n+1 − 1

2
ΛnF ′′e

n+1

)
= R̂n +

1

τ
en +

ε2

2
Λ
n+ 1

2
M Dhe

n −

1

2
Λ
n+ 1

2
M Φ(tn+1)

(
F ′′(Φn)− F ′′(Φ(tn))

)
. (19)

Используя определения Dh, Λ
n+ 1

2
M и ΛnF ′′ , получим следующие оценки:∥∥∥∥1

τ
en+1 − Λ

n+ 1
2

M

(
ε2

2
Dhe

n+1 − 1

2
ΛnF ′′e

n+1

)∥∥∥∥
∞

≥ min
1≤i≤K2

1

τ
+
M
(

Φ
n+ 1

2
i

)
2

(
3(Φn

i )2 − 1
) ‖en+1‖∞ ≥

(
1

τ
− L

2

)
‖en+1‖∞ (20)

и ∥∥∥∥1

τ
en +

ε2

2
Λ
n+ 1

2
M Dhe

n

∥∥∥∥
∞
≤ 1

τ
‖en‖∞. (21)

Заметим, что F (φ) =
1

4
(1− φ2)2. Тогда∥∥∥∥F ′(Φn)− 1

2
F ′′(Φn)Φn − F ′(Φ(tn)) +

1

2
F ′′(Φ(tn))Φ(tn)

∥∥∥∥
∞
≤ 10‖en‖∞. (22)
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Кроме того, мы имеем∥∥∥∥− ε2Dh
Φ(tn+1) + Φ(tn)

2
+ F ′(Φ(tn)) +

1

2
F ′′(Φ(tn))(Φ(tn+1)− Φ(tn))

∥∥∥∥
∞

=

∥∥∥∥− ε2∆Φ
(
tn+ 1

2

)
−Rn2 + F ′(Φ(tn)) +

1

2
F ′′(Φ(tn))(Φ(tn+1)− Φ(tn))

∥∥∥∥
∞

≤ ε2‖φ‖L∞(0,T ;W 2,∞(Ω)) +
2

3
√

3
+ 2 +

ε2

(
τ2

8
‖φ‖W 3,∞(0,T ;W 2,∞(Ω)) +

h2

6
‖φ‖L∞(0,T ;W 4,∞(Ω))

)
:= C5. (23)

Аналогичным образом можно заключить, что∥∥∥∥1

2
Φ(tn+1)

(
F ′′(Φn)− F ′′(Φ(tn)

)∥∥∥∥
∞
≤ 3‖en‖∞. (24)

Используя определения Λ
n+ 1

2
M и ΛM

(
Φ
(
tn+ 1

2

))
, получим

∥∥∥Λ
n+ 1

2
M − ΛM

(
Φ
(
tn+ 1

2

))∥∥∥
∞
≤ max

x∈[−1,1]

∣∣M ′(x)
∣∣ ∥∥en+ 1

2

∥∥
∞. (25)

Умножив (19) на τ , а затем объединив оценки (20)–(25) и (15)–(17), получим

(
1− τL

2

)∥∥en+1
∥∥
∞ ≤ ‖e

n‖∞ +

τ
[
13L‖en‖∞+C5 max

ρ∈[−1,1]

∣∣M ′(ρ)
∣∣ ∥∥en+ 1

2

∥∥
∞+‖Rn1‖∞+L‖Rn2‖∞

]
. (26)

Пусть C6 =
1

1− τL/2 и C7 = C5 max
ρ∈[−1,1]

∣∣M ′(ρ)
∣∣. Мы видим, что

∥∥en+1
∥∥
∞ ≤ C6‖en‖∞ + C6τ

[
13L‖en‖∞ + C7

∥∥en+ 1
2

∥∥
∞ + ‖Rn1‖∞ + L‖Rn2‖∞

]
≤ C6‖en‖∞ +

C6τ

[
13L‖en‖∞ + C7

∥∥en+ 1
2

∥∥
∞ + C8τ

2 +
ε2Lh2

6
‖φ‖L∞(0,T ;W 4,∞(Ω))

]
, (27)

где C8 = LC4 +
‖φ‖W3,∞(0,T ;L∞(Ω))

24
+

ε2L

8
‖φ‖W 3,∞(0,T ;W 2,∞(Ω)). Аналогично (18) и (27) мы

также можем получить оценку для en+ 1
2 :

∥∥en+ 1
2

∥∥
∞ ≤ C9‖en‖∞ + C10τ

2 + τ
ε2Lh2

12
‖φ‖L∞(0,T ;W 4,∞(Ω)), (28)
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где C9 = 1 +
C7 + 2L

2
τ и

C10 =
S1 + 2L+ C7

4
‖φ‖W 1,∞(0,T ;L∞(Ω)) +

1

8
‖φ‖W 2,∞(0,T ;L∞(Ω)).

Подставив оценку (28) в (27), получим

∥∥en+1
∥∥
∞ ≤ C6‖en‖∞ + C6τ

[
(13L+ C7C9)‖en‖∞ + (C7C10 + C8)τ2 ×(
ε2L

6
‖φ‖L∞(0,T ;W 4,∞(Ω)) + τ

ε2L

12
‖φ‖L∞(0,T ;W 4,∞(Ω))

)
h2

]
≤ ‖en‖∞ + τ

(
C2‖en‖∞ + C1

(
τ2 + h2

))
, (29)

где C2 = C6(13L+ C7C9) +
L

2− τL и

C1 = max

{
C6(C7C10 + C8), C6

(
ε2L

6
‖φ‖L∞(0,T ;W 4,∞(Ω)) + τ

ε2L

12
‖φ‖L∞(0,T ;W 4,∞(Ω))

)}
.

Суммируя (29) от 0 до n и используя дискретную лемму Гронуолла, получим искомую
оценку (13), которая завершает доказательство.

4. Численные эксперименты

В данном пункте мы представим несколько численных экспериментов для проверки
наших теоретических результатов по предложенной схеме (4) с точки зрения точности,
сохранения дискретного ПМ и устойчивости энергии.

4.1. Сходимость по времени в двумерных случаях

Рассмотрим уравнение Аллена–Кана (1) с параметром ε = 0.01 и начальным условием

φ0(x, y) = 0.1× (cos 3x cos 2y + cos 5x cos 5y).

Мы рассмотрели два случая коэффициента мобильности: M(φ) ≡ 1 и M(φ) = 1 − φ2.
Физическая область Ω = [0, 2π]2, конечное время T = 1. Зафиксируем размер однород-
ной физической сетки h = 1/1000, чтобы убедиться в том, что ошибка пространственной
дискретизации достаточно мала по сравнению с ошибкой временной дискретизации. Ста-
билизирующий параметр S1 = 2 в BDF1. Ввиду отсутствия аналитического решения для
этого численного эксперимента мы определяем ошибки численного решения в дискрет-
ной L∞-норме в виде eT∞(N) = ‖ΦN − Φ2N‖∞, где N — число подинтервалов и ΦN —
соответствующее численное решение в конечный момент времени T = 1.

Результаты проверки скорости сходимости схемы (4) на временных сетках с размером
временного шага τ от 1/5 до 1/320 представлены в таблице 1.
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Таблица 1. Ошибки численного решения и скорости сходимости двумерной схемы (4)

Временные шаги M(φ) = 1 M(φ) = 1− φ2

N τ eT∞ Порядок eT∞ Порядок
5 1/5 1.47 e−3 − 1.67 e−3 −
10 1/10 3.70 e−4 1.9901 4.32 e−4 1.9519
20 1/20 9.31 e−5 1.9911 1.10 e−4 1.9694
40 1/40 2.34 e−5 1.9948 2.79 e−5 1.9832
80 1/80 5.85 e−6 1.9984 7.02 e−6 1.9923
160 1/160 1.47 e−6 1.9898 1.77 e−6 1.9879
320 1/320 3.70 e−7 1.9939 4.44 e−7 1.9945

4.2. Сохранение ПМ и устойчивость энергии

В этом численном эксперименте мы исследуем динамику укрупнения фракции, опре-
деляемую уравнением Аллена–Кана (1) с нелинейным коэффициентом мобильности
M(φ) = 1 − φ2 и случайными начальными значениями от −0.3 до 0.3. Взята область
Ω = (0, 1)2 с параметром ширины ε = 1/256 и размером однородной пространственной
сетки h = 1/256. В этом случае сохранение дискретного ПМ имеет решающее значе-
ние, чтобы избежать нефизических решений или некорректности (см. рисунки 1 и 2).
На рис. 3 также показано несколько снимков смоделированных фазовых структур при
t = 500, 1000, 1500 и 3000.

(а) максимальная норма (б) дискретная энергия

Рис. 1. Эволюция во времени максимальной нормы и дискретной энергии при M(φ) = 1− φ2

(а) максимальная норма (б) дискретная энергия

Рис. 2. Эволюция во времени максимальной нормы и дискретной энергии при M(φ) ≡ 1
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Рис. 3. Снимки смоделированных фазовых структур при t = 500, 1000, 1500 и 3000, вычислен-
ные с использованием (4) для задачи укрупнения фракции с M(φ) = 1− φ2

4.3. Сходимость по времени в 3D-случаях

В данном подпункте рассмотрим трехмерное уравнение Аллена–Кана (1) с нелиней-
ным коэффициентом мобильности M(φ) = 1 − φ2, параметром ε = 0.01 и начальным
условием

φ0(x, y, z) = 0.1× (cos 4x cos 3y cos 2z + cos 5x cos 5y cos 5z).

Вычислительная область Ω = (0, 2π)2, конечное время T = 1. Размер шага простран-
ственной сетки h = 1/256. Численные ошибки представлены в табл. 2.

Таблица 2. Ошибки численного решения и скорости сходимости трехмерной схемы КН

N τ eT∞ Порядок
5 1/5 1.67 e−3 –
10 1/10 4.30 e−4 1.9519
20 1/20 1.10 e−4 1.9700
40 1/40 2.78 e−5 1.9850
80 1/80 7.08 e−6 1.9716
160 1/160 1.77 e−6 1.9954

Теперь выполним 3D-моделирование для уравнения Аллена–Кана (1) с нелинейным
коэффициентом мобильности M(φ) = 1−φ2 и случайными начальными данными в диа-
пазоне от −0.9 до 0.9 с параметром ε = 0.01. Вычислительная область Ω = (0, 1)3. Вре-
менной шаг τ = 0.1 и размер шага пространственной сетки h = 1/128. Рис. 4 показывает
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фазовые структуры численных решений при t = 4, 10, 40 и 56 соответственно. Временные
изменения максимальной нормы и энергии численных решений представлены на рис. 5.

Рис. 4. Смоделированные фазовые структуры при t = 4, 10, 40 и 56 (сверху вниз и слева
направо)

Рис. 5. Эволюция максимальной нормы (слева) и энергии (справа) численных решений трех-
мерного уравнения Аллена–Кана (1)

5. Заключительные замечания

В данной работе построена линеаризованная схема КН для уравнения Аллена–Кана
для общего случая коэффициента мобильности. Полностью дискретная система получа-
ется путем использования метода центральных конечных разностей для пространствен-
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ной дискретизации и требует решения двух уравнений типа Пуассона на каждом вре-
менном шаге. Доказано, что схема сохраняет дискретный ПМ и устойчивость энергии
при слабых ограничениях на размер временного шага. Дискретные L∞-оценки ошибки
строго получены для общего случая коэффициента мобильности. Наконец, для проверки
теоретических результатов было проведено несколько численных экспериментов.
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