2010. Том 51, № 2

Март – апрель

C. 391 – 395

КРАТКИЕ СООБЩЕНИЯ

УДК 549.737:539.26

НОВЫЕ СУПРАМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ ХЛОРОАКВАКОМПЛЕКСОВ $[M_3(\mu_3-S)S_{3-x}Se_xCl_v(H_2O)_{9-v}]^{(4-y)+}$ (M = M0, W) С КУКУРБИТ[6]УРИЛОМ

© 2010 П.А. Абрамов¹*, А.Л. Гущин^{1,2}, М.Н. Соколов^{1,2}, В.П. Федин^{1,2}

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

Статья поступила 18 марта 2009 г.

При обработке смесей продуктов в системах Мо—S—Se—Br и W—S—Se—Br были выделены и структурно охарактеризованы следующие аддукты кукурбит[6]урила со смешанными по халькогену треугольными кластерными хлороаквакомплексами молибдена и вольфрама: $\{[W_3S_3Se(H_2O)_7Cl_2]_2(C_{36}H_{36}N_{24}O_{12})\}Cl_2 \cdot 15H_2O$ (1), $\{[W_3S_{1,5}Se_{2,5}Cl_{1,5}(H_2O)_{7,5}]_2(C_{36}H_{36}N_{24}O_{12})\}Cl_5 \cdot 18,5H_2O$ (2) и $\{[M_0SSe_3(H_2O)_{7,5}Cl_{1,5}]_2 \times (C_{36}H_{36}N_{24}O_{12})\}Cl_5 \cdot 11H_2O$ (3). Во всех кристаллических структурах за счет водородных связей присутствуют супрамолекулярные комплексы кукурбит[6]урил—кластерный катион состава 1:2.

Ключевые слова: кластеры, сера, селен, хлороаквакомплексы, кукурбитурил, супрамолекулярные комплексы, кристаллическая структура.

Интересной синтетической проблемой в химии треугольных халькогенидных кластерных комплексов молибдена и вольфрама $M_3Q_4L_y$ (M = Mo, W; Q = S, Se, Te; L — лиганды) является селективный синтез смешанных по атомам халькогена кластеров $M_3Q_xQ'_{4-x}^{4+}$. Эту задачу можно

решить, используя допированные разными халькогенами исходные координационные полимеры $M_3Q_7X_4$ (X = Cl, Br, I), с последующим переводом их в растворимые мономерные комплексы. Нами был предложен подход для выделения в твердую фазу полиядерных кластерных аква-комплексов металлов, основанный на образовании комплементарных водородных связей между атомами кислорода порталов кавитанда кукурбит[6]урила ($C_{36}H_{36}N_{24}O_{12}$, CB[6]) и координированными молекулами воды полиядерного кластерного аквакомплекса [1]. В настоящей работе этот метод использован для выделения в твердую фазу из разбавленных солянокислых растворов новых треугольных тиоселено-комплексов молибдена и вольфрама.

Экспериментальная часть. Кукурбит[6]урил был синтезирован по известной методике [2]. Все остальные реагенты, включая концентрированную соляную кислоту и органические растворители, были получены из коммерческих источников и использовались без дополнительной очистки. В работе были использованы: 98,5 % *n*-толуолсульфокислота $CH_3C_6H_4SO_3H\cdot H_2O$ (Hpts·H₂O), катионообменная смола Dowex 50W-X2, гипофосфорная кислота (H₃PO₂) в виде водного 50%-го раствора производства Sigma Aldrich. Исходные продукты состава $W_3SSe_6Br_4$ и (Bu₄N)₃[Mo₃SSe₆Br₆]Вг получены согласно [3].

Получение $[W_3S_3SeCl_2(H_2O)_7]_2Cl_2(C_{36}H_{36}N_{24}O_{12}) \cdot 15H_2O$ (1). К суспензии полимера $W_3SSe_6Br_4$ (2,0 г) в концентрированной соляной кислоте (20 мл, 11,4 М) добавляли избыток H_3PO_2 (4 мл), полученную смесь нагревали до 90 °C в токе Ar и выдерживали в этих условиях 10 ч. При этом раствор приобретает зеленую окраску, и наблюдается выделение H_2Se . После

^{*} E-mail: abramov@niic.nsc.ru

этого смесь охлаждали, отфильтровали нерастворимый осадок, а полученный темно-зеленый раствор разбавили до концентрации соляной кислоты примерно 0,2 М и поместили на хромато-графическую колонку (2,2 см × 45 см) с катионообменной смолой Dowex 50W-X2. Далее колонку последовательно промыли 100 мл 0,2 М и 0,5 М соляной кислоты. Продукты реакции элюировали 2 М HCl, при этом наблюдается разделение на три фракции: бордовую (W₃S⁴⁺_{4аq}),

синюю и зеленую (основную). К 3 мл 2,5 мМ раствора кукурбит[6]урила в 2 М HCl добавили 3 мл синего раствора. При стоянии раствора на воздухе в течение 4 дней образуются синие кристаллы соединения 1. Твердый продукт был отфильтрован, промыт холодной водой, MeOH, эфиром и высушен на воздухе. Состав и строение кристаллов определены методом РСтА.

Получение $[W_3S_{1,5}Se_{2,5}Cl_{1,5}(H_2O)_{7,5}]_2Cl_5(C_{36}H_{36}N_{24}O_{12}) \cdot 18,5H_2O$ (2). К 3 мл 2,5 мМ раствора кукурбит[6]урила в 2 М HCl добавили 3 мл зеленого раствора из синтеза соединения 1. При стоянии на воздухе при комнатной температуре в течение 4 дней наблюдается образование зеленых кристаллов соединения 2. Твердый продукт отфильтровали, промыли холодной водой, МеOH, эфиром и сушили на воздухе. Состав и строение кристаллов определены методом РСтА.

Получение [Mo₃SSe₃Cl_{1,5}(H₂O)_{7,5}]₂Cl₅(C₃₆H₃₆N₂₄O₁₂)·11H₂O (3). 250 мг (Bu₄N)₃{[Mo₃(μ_3 -S)(μ_2 -Se₂)₃Br₆]Br} (0,12 ммоль) растворили в 25 мл 4 М Нрts при перемешивании в течение 2 ч. К полученному оранжевому раствору добавили раствор трифенилфосфина (95 мг, 0,36 ммоль) в хлористом метилене (10 мл). Смесь перемешивали 20 ч. После удаления CH₂Cl₂ раствор разбавляли водой в 2 раза, при этом наблюдается выпадение осадка SPPh₃, который был отфильтрован. После этого раствор разбавили 0,2 М Нрts и поместили на хроматографическую колонку (2,2 см × 20 см) с катионообменной смолой Dowex 50W-X2. Колонку последовательно промывали растворами по 100 мл 0,2 М и 0,5 М соляной кислоты, после чего основной продукт элюировали 2 М HCl. К 3 мл раствора кукурбит[6]урила в 2 М HCl (3,0 мМ) добавляли 3 мл раствора коричневой фракции в 2 М HCl. При стоянии раствора в течение двух дней образуются игольчатые кристаллы комплекса **3**. Твердый продукт был отфильтрован, промыт 1 мл холодной воды, 1 мл этилового спирта и 2 мл эфира и затем высушен на воздухе. Состав и строение комплекса установлены методом PCTA.

Рентгеноструктурное исследование. Строение соединений 1—3 установлено методом рентгеноструктурного анализа монокристаллов. Измерения проведены по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Арех, оснащенном двухкоординатным ССD-детектором с использованием излучения молибденового анода ($\lambda = 0,71073$ Å) и графитового монохроматора. Интенсивности отражений измерены методом φ и ω -сканирования узких (0,5°) фреймов до $2\theta_{\text{макс}} = 62,8°$. Поглощение учтено эмпирически по программе SADABS [4]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXTL [5]. Атомы водорода были уточнены в приближении жесткого тела. Кристаллографические характеристики комплекса и детали дифракционного эксперимента приведены в табл. 1. Файлы СIF, содержащие полную информацию по исследованным структурам, депонированы в Кембриджской базе структурных данных [6] под номерами 716528, 716529, 716530, откуда могут быть свободно получены по запросу на следующем интернет-сайте: www.ccdc.cam.ac.uk/data request/cif.

Обсуждение результатов. Кристаллическая структура комплексов **1**—**3** построена из супрамолекулярных ассоциатов $\{(M_3)_2CB[6]\}$ (M = Mo, W), образованных за счет водородных связей между кластерными комплексами и атомами кислорода порталов кукурбит[6]урила (O(CB[6]—H₂O) 2,7—3,1 Å) (рис. 1). При этом μ_3 -мостиковые атомы халькогена кластеров направлены в порталы CB[6]. Пространство между супрамолекулярными ассоциатами занято сильно позиционно разупорядоченными молекулами кристаллизационной воды и позиционно разупорядоченные молекулы воды. Для удобства описания координационной сферы вокруг кластера $M_3(\mu_3-Q)(\mu-Q)_3^{4+}$ предложены следующие обозначения: *с*-позиция — позиция,

КРАТКИЕ СООБЩЕНИЯ

Таблица 1

Параметр	1	2	3	
Эмпирическая формула	$C_{36}H_{94}Cl_8N_{24}O_{41}S_6Se_2W_6$	$C_{36}H_{88}Cl_8N_{24}O_{38}S_3Se_5W_6$	$_{6}$ C ₃₆ H ₈₈ Cl ₈ N ₂₄ O ₃₈ S ₂ Se ₆ Mo ₆	
Молекулярный вес	3256,33	3342,98	2862,42	
Гемпература, К	150(2)	150(2)	150(2)	
Длина волны излуче- ния, Å	0,/10/3	0,/10/3	0,71073	
Сингония	Моноклинная	Моноклинная	Моноклинная	
Пространственная груп- па	C2/m	C2/m	C2/m	
<i>a</i> , Å	16,7071(7) 16,8192(4)		16,6506(6)	
b, Å	18,4922(8)	18,4677(5)	18,5363(6)	
<i>c</i> , Å	15,0757(6)	15,2018(4)	15,1056(4)	
β, град.	105,400(2)	105,682(1)	05,682(1) 104,831(1)	
$V, Å^3$	4490,4(3)	4546,1(2)	4506,9(2)	
Ζ	2	2	2	
ρ(выч), г/см ³	2,408	2,442	2,109	
Коэффициент поглоще- ния, мм ⁻¹	8,940	9,958	3,609	
F(000)	3100	3148	2800	
Размеры кристалла, мм	0,10×0,08×0,04	0,36×0,15×0,14	0,20×0,08×0,06	
Область сканирования по θ, град.	1,96 до 27,48	1,67 до 30,52	1,68 до 28,29	
Интервалы индексов	$-21 \le h \le 21,$	$-16 \le h \le 24,$	$-22 \le h \le 22,$	
отражений	$-22 \le k \le 24,$	$-24 \le k \le 26,$	$-24 \le k \le 24,$	
	$-16 \le l \le 19$	$-21 \le l \le 21$	$-20 \le l \le 12$	
Общее число рефлексов	17403	21512	18398	
Число независимых рефлексов	5306	7145	5647	
T _{max} / T _{min}	0,7163 / 0,4684	0,3362 / 0,1240	0,8126 / 0,5322	
Число ограничений / число уточняемых параметров	36 / 339	42 / 338	30 / 326	
Добротность по F^2	1,107	1,089	1,094	
R -факторы по $F > \sigma(F)$	$R_1 = 0,0463,$ $wR_2 = 0,1264$	$R_1 = 0,0505,$ $wR_2 = 0,1348$	$R_1 = 0,0484,$ $wR_2 = 0,1524$	
R -факторы (по всем	$R_1 = 0,0702,$	$R_1 = 0,0623,$	$R_1 = 0,0536,$	
отражениям)	$wR_2 = 0,1360$	$wR_2 = 0,1406$	$wR_2 = 0,1552$	
Остаточная электронная плотность (max/min), e/Å ³	3,833 / -2,102	8,251 / -3,603	2,241 / -1,418	

Кристаллографические характеристики и параметры дифракционных экспериментов

находящаяся в *транс*-положении относительно µ₃-мостикового атома халькогена и *d*-позиция — позиция, находящаяся в *цис*-положении соответственно (рис. 2) [7, 8]. Основные геометрические параметры кластерных ядер приведены в табл. 2.

В комплексе 1 два кластерных катиона [W₃S₃SeCl₂(H₂O)₇]²⁺ образуют ассоциат с молекулой кукурбит[6]урила посредством водородных связей между координированными молекулами во-

393

Рис. 1. Строение ассоциата кукурбит[6]урил—кластерный катион $[M_3(\mu_3-S)Q_3(H_2O)_{9-x}Cl_x]^{(4-x)+}$ (M = Mo, W; Q = S/Se) (пунктиром показаны водородные связи)

Рис. 2. Строение кластерного катиона $[M_3(\mu_3-S)Q_3(H_2O)_{9-x}Cl_x]^{(4-x)+}$ (M = Mo, W; Q = S/Se)

ды в *с*-позиции и атомами кислорода порталов. В кластерном катионе позиция μ_3 -мостикового атома занята полностью, в то время как позиции μ_2 -мостиковых атомов статистически заняты атомами S и Se с кратностями 0,6667(S)/0,3333(Se), что соответствует суммарному составу кластерного ядра $W_3SSe_3^{3+}$. Атомы вольфрама координированы молекулами воды в *d*-позициях и хлорид-ионами в *c*-позициях, причем наблюдается статистическое разупорядочение H₂O/Cl в двух кристаллографически независимых *c*-позициях с кратностями 0,5/0,5 и 0,75/0,25 соответственно. При уточнении не удается разделить данные позиции. Итоговое распределение Cl/H₂O отвечает ориентационно разупорядоченному 1*c*2*c*-изомеру по классификации, принятой в [8]. Кристаллографическая картина, отвечающая составу $W_3SSe_3^{3+}$, может быть интерпретирована либо как результат ориентационного разупорядочения единственного кластерного катиона $[W_3(\mu_3-S)(\mu-S)_2(\mu-Se)Cl_2(H_2O)_7]^{2+}$, либо как результат суперпозиции ориентационно разупорядоченных кластеров $[W_3(\mu_3-S)(\mu-S)_3Cl_2(H_2O)_7]^{2+}$ в мольном отношении 0,25:0,25.

В структуре соединения **2** в кластерном катионе $[W_3S_{1,5}Se_{2,5}Cl_x(H_2O)_{9-x}]^{(4-x)+}$ (x = 1, 2) μ_3 -мостиковая позиция полностью занята атомом серы, одна из двух кристаллографически независимых μ_2 -мостиковых позиций занята атомом селена, а две другие позиции статистически заняты атомами S и Se в соотношении 0,25/0,75, что может быть проинтерпретировано как одновременное присутствие кластеров $W_3(\mu_3-S)(\mu-Se)_2^{4+}$ и $W_3(\mu_3-S)(\mu-Se)_3^{4+}$ в соотношении 1:1. Координированные молекулы воды занимают *d*-позиции, а в двух кристаллографически независимых *c*-позициях наблюдается статистика H_2O/Cl с кратностями 0,5/0,5 и 0,25/0,25 соответственно. При уточнении не удается разделить данные позиции. Наблюдаемая картина отвечает одновременному присутствию ориентационно разупорядоченного изомера 1c2c дихлорогептааквакомплекса и изомера 1*c* монохлорооктоаквакомплекса.

Таблица 2

Расстояние, Å	1	2	3	Расстояние, Å	1	2	3
M—M M—µ ₃ -S M—µ ₂ -Q	2,734(2) 2,371(3) 2,362(2) (Q) 2,345(3) (Q)	2,742(2) 2,396(4) 2,407(3) (Se) 2,396(3) (O)	2,776(2) 2,345(1) 2,400(2) (Se)	M—O M—Cl/O	2,174(22) 2,418(21)	2,183(21) 2,383(31)	2,195(21) 2,431(2)

Основные длины связей кластерных катионов в комплексах 1—3 (Q = S/Se)

Как в 1 и 2, в комплексе 3 два кластерных катиона $[Mo_3SSe_3Cl_x(H_2O)_{9-x}]^{(4-x)^+}$ образуют ассоциат с молекулой CB[6]. В кластерном катионе все μ_2 -позиции полностью заняты исключительно селеном, а μ_3 -позиция — серой, что отвечает присутствию только одного кластера — $Mo_3(\mu_3-S)(\mu-Se)_3^{4+}$. Особенности координации и занятости различных позиций лигандами Cl⁻ и H₂O полностью аналогичны наблюдаемым в соединении 2, что отвечает присутствию ориентационно разупорядоченных кластерных комплексов $[Mo_3SSe_3Cl_2(H_2O)_7]^{2+}$ (1c2c) и $[Mo_3SSe_3Cl(H_2O)_8]^{3+}$ (1c-изомер) в мольном отношении 1:1.

Таким образом, установлено строение трех новых смешанолигандных треугольных тиоселенокомплексов молибдена и вольфрама.

Авторы благодарят к.х.н. Д.Г. Самсоненко за проведение рентгеноструктурного эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соколов М.Н., Дыбцев Д.Н., Федин В.П. // Изв. РАН. Сер. Хим. 2003. № 5. С. 987.
- (a) Behrend R., Meyer E., Rusche F. // Liebigs Ann. Chem. 1905. 339. P. 1. (b) Freeman W.A., Mock W.L., Shih N.-Y. // J. Amer. Chem. Soc. – 1981. – 103. – P. 7367.
- 3. Gushchin A.L., Bee-Lean Ooi, Pernille Harris et al. // Inorg. Chem. 2009. 48. P. 3832 3839.
- 4. Sheldrick G.M. SADABS, Program for empirical X-ray absorption correction, Bruker AXS (1990-2007).
- 5. Sheldrick G.M. SHELXTL, Programs for structure solution and refinement, Bruker AXS (1990-2007).
- 6. Allen F.H. // Acta Crystallogr. 2002. B58. C. 380.
- 7. Fedin V.P., Sokolov M.N., Dybtsev D.N. et al. // Inorg. Chim. Acta. 2002. 331. P. 31 38.
- 8. *Чубарова Е.В., Соколов М.Н., Самсоненко Д.Г. et al.* // Журн. структур. химии. 2006. **47**. № 5. С. 948 954.