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Рассмотрено влияние предварительного механического активирования порошковых составов на

закономерности горения — скорость распространения и максимальную температуру. Скорость
горения может увеличиваться, уменьшаться или проходить через экстремум при возрастании
времени активации. Утверждается, что такое сложное поведение наиболее полно описывает мик-
рогетерогенная модель горения; рассмотрены также гомогенная и конвективно-кондуктивная
модели. Обсуждается вопрос о том, накапливается ли дополнительная энергия в порошковых
смесях при механической обработке и почему не наблюдаются сверхадиабатические температу-
ры горения в активированных составах.
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ВВЕДЕНИЕ

В первой части данного обзора было рас-
смотрено влияние предварительного механи-
ческого активирования порошковых составов

на их воспламенение [1]. Результаты работ

разных авторов однозначно показали увеличе-
ние чувствительности горючих составов после

механоактивации, которое выражается в сни-
жении температуры зажигания при термиче-
ском инициировании или снижении критиче-
ской энергии удара при ударном иницииро-
вании. Это явление объясняется возрастанием
скорости экзотермической реакции в активиро-
ванных составах, которое можно описать про-
стым выражением

Wa = FaW, (1)

где Wa — скорость реакции в механически ак-
тивированной смеси, W — скорость реакции в

неактивированной смеси при той же темпера-
туре. Коэффициент

Fa =
Sa
S

exp
(∆E

RT

)
� 1, (2)

названный фактором активирования, учитыва-
ет совокупное влияние удельной площади кон-
такта реагентов в активированном составе (Sa)
по отношению к площади контакта в том же
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составе до активации (S) и уменьшения энер-
гии активации реакции (∆E) вследствие фор-
мирования наноразмерных зародышей продук-
та. Здесь R — универсальная газовая постоян-
ная, T — абсолютная температура.

Исходя из принципов классической теории

распространения пламени, ускорение экзотер-
мической реакции горения (или ее ведущей ста-
дии) должно приводить к увеличению линей-
ной скорости распространения волны горения,
которая измеряется почти во всех эксперимен-
тальных работах, посвященных горению по-
рошковых составов. Однако в экспериментах
до сих пор не удалось установить прямой кор-
реляции между скоростью реакции W и скоро-
стью распространения волны горения u. Так-
же не решен вопрос о влиянии механическо-
го активирования на максимальную темпера-
туру горения Tc. Из общих соображений ясно,
что механоактивация может приводить как к

увеличению температуры горения, если часть
механической энергии аккумулируется каким-
либо образом в структуре реакционной смеси,
так и к ее уменьшению, если экзотермическая
реакция частично происходит уже на стадии

механической обработки и приводит к образо-
ванию инертных продуктов реакции. Таким об-
разом, проблема воздействия предварительно-
го механического активирования на закономер-
ности горения, прежде всего на линейную ско-
рость распространения и температуру, заслу-
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живает отдельного обсуждения. Этому и посвя-
щена вторая часть обзора.

1. СКОРОСТЬ И ТЕМПЕРАТУРА ГОРЕНИЯ:
ЭКСПЕРИМЕНТ

Так как в тепловых теориях распростране-
ния пламени утверждается прямая связь меж-
ду скоростью u и температурой горения Tc,
целесообразно представить все полученные к

настоящему времени экспериментальные дан-
ные в виде диаграммы в координатах темпе-
ратура — скорость. Для более удобного со-
поставления данных температура нормирует-
ся на адиабатическую температуру Tad (т. е.
на температуру горения при 100%-м химиче-
ском превращении в отсутствие теплопотерь),
а скорость горения активированного состава

ua — на скорость горения неактивированно-
го состава u, как сделано на рис. 1. Для та-
кого представления использованы результаты

работ, в которых были измерены одновремен-
но скорость и температура горения смесей при

разных условиях их активирования. Таких ра-
бот относительно немного; чаще всего иссле-
дователи ограничиваются определением толь-
ко скорости горения, тем не менее представлен-
ные на рис. 1 данные позволяют сделать опре-
деленные выводы.

Как видно из рис. 1, абсолютное боль-
шинство экспериментальных точек находится

в квадранте II, т. е. в большинстве работ уве-
личение скорости горения происходит при тем-
пературе ниже адиабатической. Гораздо мень-
ше точек соответствуют ситуации, когда ско-
рость горения уменьшается после механоакти-
вации, при том что температура остается ни-
же адиабатической (квадрант III). Лишь два
измерения показали температуру выше адиа-
батической при росте скорости горения (квад-
рант I); квадрант IV остается пустым, т. е.
данных о том, что скорость может уменьшать-
ся с одновременным увеличением температуры

выше адиабатической, в настоящее время нет.
Зависимости скорости горения от продол-

жительности механического активирования ta
часто проходят через максимум: вначале ско-
рость горения возрастает с увеличением време-
ни активирования, а затем начинает снижать-
ся. В качестве примеров на рис. 2 представле-
ны зависимости для трех очень разных систем,
сильно отличающихся как по составу, так и
по характеристикам горения. Смесь Si + C с

Рис. 1. Скорость и температура горения ме-
ханически активированных составов, норми-
рованные соответственно на скорость горения

неактивированного состава и на адиабатиче-
скую температуру горения:

1 — 3Ni + Al [2], 2 — 3Ni + Al [3], 3 — (Ti +
2.1B) + 60 % Cu, активация при 60g [4], 4 —
(Ti + 2.1B) + 60 % Cu, активация при 40g [4], 5 —
Ti + Ni [3], 6 — Ti + C [5], 7 — Nb + 2Si [6],
8 — Nb + 0.6Si [6], 9 — Ta + 2Si [7], 10 — Ti +
2Si [8], 11 — Ti + 0.6Si [8], 12 — Mo + 2Si [9]

добавкой 3 % NH4Cl, помещенная в графи-
товый тигель в среде воздуха, горела чрез-
вычайно медленно [10]; такой процесс скорее
можно назвать тлением (рис. 2,а). Неактиви-
рованные смеси или активированные в шаро-
вой мельнице в течение 2 ч не удалось под-
жечь, горение наблюдалось только после ак-
тивации в течение 4 ч и более. Как видно из
рис. 2,а, скорость горения сначала увеличива-
ется, а затем начинает снижаться с увеличе-
нием времени активирования, при этом темпе-
ратура горения изменяется слабо, увеличива-
ясь от 2 013 до 2 033 K. Эти значения замет-
но выше адиабатической температуры реакции

Si + C (1 873 K), однако процесс горения в рас-
сматриваемом примере происходит на возду-
хе в две стадии и имеет сложный механизм,
с образованием большого количества SiO2 [10],
поэтому рассчитать адиабатическую темпера-
туру невозможно. Второй пример представля-
ет традиционный процесс самораспространяю-
щегося высокотемпературного синтеза (СВС)
с типичной скоростью горения порядка санти-
метров в секунду (рис. 2,б). Скорость горения
реакционной смеси порошков титана и бора,
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Рис. 2. Зависимости параметров горения от
продолжительности механического активиро-
вания:

а — (Si + C) + 3 % NH4Cl [10], б — (Ti + 2.1B)
+ 60 % Cu [4], в — (20 % Al + 80 % NH4ClO4) +
3 % фторопласта Ф-42, порошки микронных раз-
меров [11]

сильно разбавленной медным порошком, уве-
личивается в несколько раз после краткосроч-
ного активирования (до 3 мин в высокоэнерге-
тической планетарной мельнице АГО-2), а за-
тем также резко падает [4]. При этом темпе-
ратура горения монотонно снижается с увели-
чением продолжительности активирования. В
третьем примере (рис. 2,в) показаны экстре-
мально высокие скорости переходящего в де-
тонацию горения смеси порошков алюминия и

перхлората аммония NH4ClO4 [11]. Вначале ме-
ханическое активирование в планетарной ша-
ровой мельнице «Активатор-2SL» приводило к
тому, что конвективное горение с исходной ско-
ростью фронта реакции u = 110÷120 м/с уско-
рялось и переходило в детонацию, которая рас-
пространялась со скоростью D = 2 500 м/с. Но
при дальнейшем увеличении времени предва-
рительного активирования наблюдалось неко-
торое снижение скорости детонационной вол-
ны (рис. 2,в). При использовании наноразмер-
ного алюминиевого порошка Alex с размером
частиц 150÷200 нм скорость детонации D так-
же уменьшалась с увеличением времени акти-
вации: максимальное значение D = 2 960 м/c
было получено уже при минимальном времени

активации 1 мин, при дальнейшем увеличении
времени скорость снизилась до 2 600 м/с и да-
лее не менялась (в пределах ошибки измерения)
до максимальной продолжительности актива-
ции 30 мин [11].

Кратное увеличение скорости горения по-
сле механоактивации наблюдалось для многих

составов безгазового горения. Скорость горе-
ния состава Ni + Al + Ti возросла в 4 ÷ 7 раз
после 5-минутного активирования в планетар-
ной мельнице АГО-2, при этом температура го-
рения уменьшилась на 10÷ 15 % [12]. Следует
заметить, что при горении цилиндрические об-
разцы удлинялись, причем удлинение активи-
рованных образцов (17 ÷ 23 %) было больше
удлинения неактивированных (6÷ 12 %). Уве-
личение скорости горения в несколько раз заре-
гистрировано и для системы Ni—Al—SiO2 [13].
Например, скорость горения состава Ni +
Al + 10 % SiO2 увеличилась в 13 раз после

активации в АГО-2 в течение 5 мин, темпе-
ратура горения при этом снизилась на 3 %,
т. е. практически не изменилась. Активирован-
ные образцы этого состава удлинялись больше,
чем неактивированные. Линейная скорость го-
рения состава Ni + Al насыпной плотности (в
кварцевой трубке) увеличилась в десять раз,



А. С. Рогачёв 17

с 0.5 до 5 см/с, после активирования в течение
5 мин в среде воздуха в АГО-2 [14]. Образцы
того же состава, спрессованные до пористости
40÷ 50 %, горели со скоростью 2.5 см/с до ак-
тивации и 5.5 см/с — после.

Итак, краткосрочное механическое акти-
вирование практически всегда приводит к воз-
растанию линейной скорости горения, а более
продолжительное — к ее снижению. Если уве-
личение скорости ожидаемо и его можно объ-
яснить ускорением реакционного тепловыделе-
ния и снижением температуры воспламенения,
то причины уменьшения линейной скорости

остаются предметом дискуссии. Наиболее оче-
видным, на первый взгляд, является предполо-
жение, что при длительной механической об-
работке в планетарной мельнице происходит

частичное реагирование и образуются инерт-
ные продукты, которые разбавляют реакцион-
ную смесь. Постепенная «наработка» продук-
та в процессе активирования в планетарной

мельнице наблюдалась для некоторых слабо-
экзотермических или труднозажигаемых СВС-
составов (Ti + BN, Ti + SiC + C), что приводи-
ло к повышению температуры инициирования,
когда продолжительность активирования пре-
вышала некоторое критическое значение, одна-
ко следов самих продуктов не было обнаружено

методами рентгенофазового анализа и сканиру-
ющей электронной микроскопии [15, 16]. Для
большинства традиционных безгазовых соста-
вов, таких как Ni + Al, Ti + C и др., при
достижении критического времени активиро-
вания происходит быстрая и полная реакция в

размольном барабане (см. первую часть данно-
го обзора [1]). До этого времени температура
воспламенения продолжает снижаться с увели-
чением продолжительности размола, и не уда-
ется обнаружить продукты реакции, которые
могли бы заметно разбавить горючую смесь.
Для системы Ti—B—Cu было высказано пред-
положение, что отсутствие следов продуктов
реакции в активированных смесях при рент-
генофазовом анализе (РФА) объясняется тем,
что продукты представляют собой не отдель-
ные фазы, а пересыщенные твердые растворы
титана в меди и меди в титане [4]. Продукты
могут также быть рентгеноаморфными вслед-
ствие очень малых размеров этих фаз. Нано-
размерные включения NiAl, NiAl3, Ni3Al были
обнаружены с помощью просвечивающей элек-
тронной микроскопии высокого разрешения в

предварительно активированной смеси Ni +

Al [17]. Необходимо, однако, отметить, что ги-
потеза о разбавлении реакционной смеси про-
дуктами частичной реакции, произошедшей на
стадии активирования, не согласуется с неко-
торыми экспериментальными зависимостями.
В ряде случаев скорость горения увеличива-
лась на фоне снижения температуры горения

(см., например, рис. 2,б), в других эксперимен-
тах скорость снижалась, несмотря на стабиль-
ность или рост температуры горения (рис. 2,а).

В работе [18] было высказано предполо-
жение, что горение в активированных смесях
происходит по эстафетному механизму, при ко-
тором скорость движения фронта определяет-
ся временем передачи тепла между частицами.
Высокоскоростная микровидеосъемка волн го-
рения механоактивированного состава Ni + Al
подтвердила это предположение [19]. Обрабо-
танная в планетарной мельнице смесь состояла

из биметаллических частиц размером поряд-
ка 100 мкм, в каждой из которых присутство-
вали перемешанные слои никеля и алюминия.
Статистическая обработка видеокадров пока-
зала, что время сгорания такой частицы было
в 10÷ 20 раз короче времени перехода горения
через контакт частиц, а скорость распростра-
нения фронта горения внутри частицы в десят-
ки раз превышала среднюю макроскопическую

скорость горения образцов разной плотности.
В этом случае средняя скорость горения опре-
деляется не скоростью реакции, а микрострук-
турой реакционной среды (размер частиц, по-
ры) и тепловыми свойствами контактов между
частицами. Изменения этих параметров вслед-
ствие механической активации могут приво-
дить как к увеличению, так и к уменьшению
средней скорости горения.

Изменение скорости очень быстрого горе-
ния, а также скорости детонации наноразмер-
ных и механически активированных составов

(см., например, рис. 2,в) может найти объяс-
нение на основе особенностей микроструктуры

реакционной среды. Еще в ранней работе [20]
было высказано предположение, что скорость
распространения детонации в конденсирован-
ной пористой среде может определяться ско-
ростью движения раскаленных струек газооб-
разных продуктов реакции, которые во мно-
жестве образуются на фронте детонации, про-
бивают и поджигают впереди лежащие слои

взрывчатого вещества, которое сгорает в ви-
де мелких капель или частиц в зоне высокой

температуры и давления. Такой механизм, на-
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званный струйно-пробойным [20], был привле-
чен для объяснения снижения скорости детона-
ции D при увеличении времени активации сме-
сей алюминия с перхлоратом аммония и фто-
ропластом [11]. Согласно струйно-пробойному
механизму процесс образования горячих очагов

реакции и высокоскоростных микроструй га-
зообразных продуктов зависит от размера пор

в реакционной среде; отклонение от оптималь-
ного размера, вызванное механической обра-
боткой, может приводить к снижению скоро-
сти детонации. Ведущая роль газовых потоков
была показана также для смесей нанопорош-
ков оксидов с наноалюминием, которые полу-
чили название нанотермитов (или супертерми-
тов, метастабильных интермолекулярных ком-
позитов и т. п.), которые горят со скоростя-
ми порядка километра в секунду без перехода

горения в детонацию [21, 22]. Например, при
горении нанотермита MoO3—Al в трубке ско-
рость фронта до 900 м/с достигается благо-
даря переносу расплавленного диспергирован-
ного Al и газифицированного MoO3 сверхзву-
ковым газовым потоком [21]. Более подробно
закономерности и механизмы горения нанотер-
митов были рассмотрены ранее в нашем обзо-
ре [23]. Важная роль конвективного переноса
(как расплавов, так и газов) при СВС следует
из обширного экспериментального материала,
в рамках конвективно-кондуктивного механиз-
ма [24]. Механическая активация, как правило,
приводит к более интенсивному примесному га-
зовыделению, что влияет на скорость горения.

Таким образом, зависимости скорости го-
рения порошковых составов от предваритель-
ной механоактивации могут быть обоснованы с

трех позиций: влияние активации на скорость
химического тепловыделения (квазигомогенная
модель), влияние на микроструктуру и кон-
такты между частицами (дискретная или мик-
рогетерогенная модель) и влияние на конвек-
тивный массо- и теплоперенос (конвективно-
кондуктивная модель). Все три подхода обсуж-
даются ниже.

Относительно экспериментальных дан-
ных о температуре горения можно констати-
ровать, что вопрос о передаче механической
энергии реакционным смесям остается откры-
тым. Практически все результаты, показыва-
ющие увеличение температуры горения после

предварительной механической активации ре-
акционной смеси, находятся в квадранте II на
рис. 1, т. е. ниже адиабатической температу-

ры горения. Наиболее естественное объяснение
этих результатов — ускорение реакции и бо-
лее полное реагирование вследствие измельче-
ния и увеличения площади контакта реаген-
тов. Когда реакция проходит быстрее, тепло-
потери в окружающую среду менее существен-
ны и максимальная температура горения рас-
тет, но не превышает адиабатическое значе-
ние. Когда благодаря механоактивации умень-
шается недогорание и глубина экзотермическо-
го превращения приближается к 100 %, темпе-
ратура горения также растет, но не может пре-
высить адиабатическую температуру. Надеж-
ным доказательством того, что энергия пред-
варительного механического активирования в

каком-либо виде аккумулируется в реакцион-
ной смеси и добавляется к энергии химиче-
ской реакции, могло бы служить только су-
щественное превышение температуры горения

над уровнем адиабатической температуры. Но
таких экспериментальных данных пока не по-
лучено.

2. О ПРИРОДЕ ВЛИЯНИЯ
МЕХАНОАКТИВАЦИИ НА СКОРОСТЬ

ГОРЕНИЯ

Согласно классической теории распро-
странения пламени, линейная скорость горения
определяется скоростью химического тепловы-
деления в зоне реакции, которая, в свою оче-
редь, сильно зависит от температуры [25, 26]:

u =

√√√√√√ 2λ

cρ(Tc − T0)

Tc∫
T0

WdT. (3)

Здесь u — линейная скорость распространения

фронта горения, м/с; λ — теплопроводность,
Вт/(м ·K); c — массовая теплоемкость среды,
Дж/(кг ·K); ρ — плотность, кг/м3; T0 — на-
чальная температура. Все параметры относят-
ся к неактивированному составу. Для активи-
рованной смеси, используя формулы (1), (2),
это выражение можно записать в виде

ua =

√√√√√√ 2λa
caρa(T a

c − T0)

Ta
c∫

T0

WadT =
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=

√√√√√√ 2λa
caρa(T a

c − T0)

Ta
c∫

T0

FaWdT, (4)

где нижний или верхний индекс a обозначает
соответствующие параметры активированного

состава. Сравнивая (3) и (4), мы видим, что
помимо рассмотренного в первой части данно-
го обзора параметра активации Fa на скорость
горения может влиять изменение теплофизиче-
ских параметров реагирующей смеси; это влия-
ние пока еще не изучено. Наиболее существен-
ным, вероятно, является изменение теплопро-
водности, так как механическая обработка ча-
сто приводит к кардинальному изменению мик-
роструктуры: вместо смеси частиц индивиду-
альных реагентов образуются более крупные

частицы, состоящие из перемешанных слоев
реагентов, что приводит к изменению числа

контактов между частицами порошковой сме-
си и теплопередаче через контакт. Теплоем-
кость не зависит от микроструктуры, а плот-
ность пористых составов определяется давле-
нием прессования и может быть одинаковой

для активированных и неактивированных сме-
сей.

Для того чтобы оценить влияние механи-
ческой активации на скорость распростране-
ния пламени с точки зрения гомогенной теории

горения, будем считать, что теплофизические
параметры λ и cρ, а также температура го-
рения Tc не изменились вследствие механичес-
кого активирования. Тогда из (1), (3) и (4) сле-
дует, что

ua =

√√√√√√
Tc∫

T0

FaWdT
/ Tc∫
T0

WdT u. (5)

Предполагая, что W = const × exp (−E/RT ) и
применяя известное преобразование показате-
ля экспоненты Франк-Каменецкого [26, 27], из
формулы (5) получаем

ua =
√
Fa u =

√
Sa
S

exp
(∆E

RTc

)
u. (6)

Как было показано в [1], удельная площадь
контакта после механоактивации может увели-
чиваться в десятки раз, а ∆E может дости-
гать десятков килоджоулей на моль. На рис. 3
представлены зависимости скорости горения

Рис. 3. Зависимости относительной скорости
горения от изменения только энергии актива-
ции (а) и от изменения энергии активации и
площади контакта (б):
1 — Tc = 1500 K, 2 — Tc = 2000 K, 3 — Tc =
2500 K, 4 — Tc = 3000 K

от этих параметров, рассчитанные по форму-
ле (6). Видно, что скорость горения вследствие
механоактивации может возрастать примерно

на порядок и этот эффект наиболее заметен

для систем с относительно низкой температу-
рой горения. Это согласуется с теми экспери-
ментальными данными, которые показывают
увеличение скорости горения вследствие меха-
ноактивации, но никак не объясняет падение
скорости горения, которое также наблюдается
в экспериментах.

Заметим, что в системах безгазового ти-
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па с конденсированными продуктами реакции

скорость горения может зависеть не от мак-
симальной температуры горения Tc, а от так
называемой ведущей температуры T ∗ < Tc
[28, 29]. Эта температура соответствует мак-
симальной скорости химического тепловыделе-
ния в волне горения и может быть заметно

меньше Tc, если при температурах выше T
∗

реакция сильно тормозится образовавшимися

конденсированными продуктами. Гипотетиче-
ски можно представить ситуацию, когда меха-
ническое активирование приводит к смещению

максимума тепловыделения в более низкотем-
пературную область и, как следствие, к сни-
жению ведущей температуры и скорости горе-
ния. Однако экспериментальные данные, кото-
рые могли бы подтвердить или опровергнуть

данное предположение, в настоящее время от-
сутствуют.

Второй подход к объяснению зависимости

скорости горения от механического активиро-
вания основан на микрогетерогенной модели

горения, которую называют также дискретной
моделью [30, 31]. Реакционная среда представ-
ляется как совокупность микроскопических ре-
акционных ячеек, причем выравнивание тем-
пературы внутри ячейки происходит намного

быстрее, чем передача тепла от одной ячей-
ки к другой. Такое представление хорошо опи-
сывает микроструктуру пористых порошковых

смесей, в которых частицы металлических реа-
гентов обладают высокой теплопроводностью,
но имеют с соседними частицами лишь точеч-
ные контакты, через которые тепло передается
медленно. Составы, прошедшие предваритель-
ную механическую обработку в шаровых мель-
ницах, еще лучше соответствуют такой моде-
ли, так как они, как правило, состоят из компо-
зитных частиц, в которых все реагенты пере-
мешаны на субмикронном уровне. Каждая та-
кая частица представляет собой реакционную

ячейку, которая сгорает «внутри себя» очень
быстро за время tR, а передача горения следу-
ющей ячейке занимает гораздо более длитель-
ное время tT [19, 32]. Среднюю скорость горе-
ния одномерной цепочки таких ячеек, каждая
из которых имеет линейный размер L, можно
представить как

u =
L

tR + tT
=

L

L/v + tT
=

=
v

1 + vtT /L
=

v

1 + tT /tR
, (7)

где v — скорость распространения фронта го-
рения внутри реакционной ячейки (композит-
ной частицы). Три последних выражения в

формуле (7) применимы только в том случае,
когда ячейка зажигается локально в точке кон-
такта с уже сгоревшей ячейкой и по ней рас-
пространяется волна горения. Это происходит
не всегда. Если теплопроводность ячейки боль-
шая, а коэффициент теплообмена со сгоревшей
ячейкой и размер ячейки малы (т. е. число
Био много меньше единицы), то ячейка сгорит
в режиме теплового взрыва. Эксперименталь-
но подтверждены оба режима, причем распро-
странение фронта горения внутри ячейки на-
блюдается для сравнительно крупных компо-
зитных частиц с L ' 1 мм [19, 32, 33]. На
рис. 4 показаны кадры высокоскоростной ви-
деосъемки, на которых видно движение фронта
горения внутри относительно крупной компо-
зитной частицы Ni/Al [34]. Ранее было экспе-
риментально показано, что скорость движения
фронта внутри реакционной ячейки на 1–2 по-
рядка выше средней скорости сгорания образ-
ца [19, 23, 31, 33].

Исходя из формулы (7) может сложиться
ошибочное представление, что с увеличением
L средняя скорость горения u увеличивается
и приближается к значению скорости горения

внутри ячейки v. Действительно, если части-
цы более крупные, то на единицу длины образ-
ца приходится меньше контактов между части-
цами, следовательно, и задержек фронта будет
меньше. Но при увеличении размера реакцион-
ных ячеек время задержки зажигания ячейки

tT сильно возрастает. Если контакты между

частицами «точечные», т. е. размер контакт-
ной площадки намного меньше размера части-
цы L, то кондуктивный перенос тепла из од-
ной частицы в другую определяется свойства-
ми контактной площадки, которые слабо зави-
сят от размера частиц. Тогда время, необхо-
димое для прогрева частицы до ее зажигания,
пропорционально массе частицы, т. е. пропор-
ционально кубу ее размера:

tT = bL3, (8)

где b — константа, с/см3. Подставляя (8) в (7),
получаем

u =
v

1 + bvL2
, (9)

т. е. при прочих равных условиях средняя ско-
рость горения уменьшается при укрупнении

реакционных ячеек.
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Рис. 4. Скоростная видеосъемка горения механоактивированного состава Ni + Al (интервал
между кадрами 0.25 мс (4 000 кадр/с) [34])

В системах с пластичными металлами

при увеличении времени обработки в шаровой

мельнице происходит укрупнение композитных

частиц вследствие холодной сварки, что и при-
водит, на наш взгляд, к наблюдаемому в экс-
периментах уменьшению средней скорости го-
рения.

Приведенные выше рассуждения и форму-
лы (7)–(9) дают упрощенное объяснение эффек-
ту снижения скорости в рамках микрогетеро-
генной модели. Более точная формула получе-
на аппроксимацией результатов компьютерно-
го моделирования [35]:

u =
10αsL

cρV
exp

(
− 3.9

c(Tign − T0)

Q

)
. (10)

Здесь α — коэффициент теплообмена на кон-
такте, s — площадь контакта, V — объем ре-

акционной ячейки, Tign — температура само-
воспламенения ячейки, Q — тепловой эффект

на единицу массы ячейки. Полагая, что s не
зависит от размера ячейки, а V = πL3/6 (ша-
рообразные ячейки диаметром L), можно пере-
писать (10) в виде

u =
60αs

cρπL2
exp

(
− 3.9

c(Tign − T0)

Q

)
≈

≈ 60αs

cρπL2
exp

(
− 3.9

Tign − T0
Tc − T0

)
. (11)

Для активированного состава соответственно

ua ≈
60αs

cρπL2
a

exp
(
− 3.9

T a
ign − T0
Tc − T0

)
, (12)



22 Физика горения и взрыва, 2024, т. 60, N-◦ 5

где La — размер реакционных ячеек после

активации, T a
ign — температура воспламене-

ния активированного состава (для простоты
мы пренебрегли изменениями формы частиц

и свойств межчастичных контактов). Разде-
лив (12) на (11), получаем

ua =
( L
La

)2
exp

(
3.9

Tign − T a
ign

Tc − T0

)
u. (13)

Если после механоактивации размер композит-
ных частиц увеличивается, а температура вос-
пламенения уменьшается, то скорость горения
будет увеличиваться или уменьшаться в зави-
симости от того, какой из двух сомножителей в
правой части этого уравнения преобладает. Ес-
ли более сильное влияние оказывает отношение

квадратов размеров, то скорость уменьшится,
если больше влияет экспонента — увеличит-
ся. На разных этапах активирования главный
сомножитель может меняться, что приведет к
сложной зависимости с одним или более экс-
тремумами. Применим выражение (13) для хо-
рошо изученной системы Ni—Al.

Экспериментально определенные в рабо-
тах [17, 36] зависимости температуры воспла-
менения от продолжительности активирования

порошков приведены на рис. 5,а. Температура
горения состава Ni + Al равна 1 911 K, соста-
ва 3Ni + Al — 1 566 K [37]. Сложнее обстоит
дело с зависимостью размера частиц от вре-
мени активирования, так как данных о форме
такой зависимости в литературе нет. Имеются
данные о распределении по размерам частиц

порошковой смеси Ni + Al до и после активи-
рования [38, 39]. Согласно этим данным рас-
пределения частиц по размерам имеют доволь-
но сложный вид, с двумя и более максимума-
ми. После 5 ÷ 8 мин обработки в планетар-
ной мельнице размер частиц Ni/Al достигает
100 ÷ 400 мкм в зависимости от режима об-
работки. Для приблизительных оценок исполь-
зуем простую линейную зависимость La(ta),
представленную прямой 4 на рис. 5,а. Подстав-
ляя данные из рис. 5,а в формулу (13), получа-
ем расчетные зависимости относительной ско-
рости горения от времени активирования, по-
казанные на рис. 5,б. Эти кривые весьма похо-
жи на соответствующие зависимости, опреде-
ленные в экспериментах.

Третий подход к объяснению зависи-
мости скорости горения от механического

активирования базируется на конвективно-
кондуктивной модели горения [24]. Идея этой

Рис. 5. Зависимость температуры самовос-
пламенения (а) и рассчитанная по форму-
ле (13) зависимость относительной скорости
горения (б) от времени активирования:
а: кривая 1 —Ni + Al, активация при 60g [17], 2 —
Ni + Al, активация при 90g [17], 3 — 3Ni + Al [36],
4 — упрощенная зависимость размера частиц от

времени активирования; б: 1 ′ — Ni + Al, актива-
ция при 60g, 2 ′ — Ni + Al, активация при 90g,
3 ′ — 3Ni + Al

модели состоит в том, что предполагается фор-
мирование во фронте волны горения газонепро-
ницаемого слоя расплава, который движется
вместе с фронтом и влияет на скорость горе-
ния. Даже в так называемых безгазовых соста-
вах (Ni + Al, Ti + C и т. п.) имеются гази-
фицирующиеся примеси, а также газ в порах
образца, поэтому при прохождении волны го-
рения давление газов в порах резко возраста-
ет относительно внешнего давления. Соглас-
но конвективно-кондуктивной модели возника-
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ет также разность давлений газа по обе сто-
роны упомянутого выше слоя расплава, кото-
рая действует на этот слой как на мембрану.
Если давление выше перед слоем расплава (в
исходной смеси), распространение волны горе-
ния тормозится; если давление выше за сло-
ем расплава (в продукте), горение ускоряется.
Скорость горения равна сумме двух составляю-
щих: кондуктивной ucond, экспоненциально за-
висящей от Tc, и конвективной uconv, опреде-
ляемой разностью давлений перед расплавом и

за его слоем [24]:

u = ucond + uconv =

= ucond + k(pgc − pin), (14)

где k — коэффициент пропорциональности,
pgc — давление газа за фронтом реакции, pin —
давление газа перед фронтом реакции. В на-
стоящее время, к сожалению, отсутствуют ре-
зультаты прямого измерения ucond, k, pgc и
pin, поэтому все эти величины являются произ-
вольно задаваемыми параметрами. Естествен-
но, что наличие четырех произвольных пара-
метров позволяет объяснить любые закономер-
ности горения, что и делается в работах, ис-
пользующих данную модель для объяснения

влияния механоактивации на скорость горе-
ния [12–14, 40–42]. Некоторое подтверждение
этой модели дали результаты по увеличению

скорости горения при спутной продувке газом

(инертным или реакционным) порошковых и
гранулированных смесей [43, 44]. Заметим, что
структура гранулированных смесей напомина-
ет структуру смесей механоактивированных,
так как при обкатке порошков в планетарных

мельницах образуются своего рода гранулы —
композитные частицы. С другой стороны, по-
стулаты конвективно-кондуктивной модели не
согласуются с некоторыми экспериментальны-
ми результатами. В волне горения безгазовых
составов действительно повышается давление

примесных газов и давление газа, находяще-
гося в порах образца, что приводит к удлине-
нию [45], а иногда и к растрескиванию образ-
цов с переходом горения в пульсирующий ре-
жим [46], но величина этого давления намного
меньше, чем требуется для управления движе-
нием расплава в микроскопических каналах ре-
акционной смеси или продукта. Дилатометри-
ческие измерения показали, что было достаточ-
но давления 0.25÷ 0.3МПа (груз около 3 кг для

диаметра образца 12 мм), чтобы полностью по-
давить удлинение состава Ti + C, даже если он
находился в кварцевой трубке и выход газа был

затруднен [47]. Для свободно стоящих цилин-
дрических образцов, из которых газы выходи-
ли через боковую поверхность, требовалось на
порядок меньшее давление [48]. Сравним эти

результаты c оценками капиллярного давления
расплавленного металла в порах образца по хо-
рошо известной простой формуле

pcap = 2σ/r,

где pcap — давление силы смачивания, создава-
емое жидкостью с поверхностным натяжением

σ в капилляре радиуса r. Например, в смеси
Ti + C самые мелкие поры соразмерны части-
цам неплавящегося реагента — углерода (са-
жи), т. е. r ≈ 0.1 мкм = 10−7 м; поверхностное
натяжение жидкого титана при 2 000 K равно

1.46 Н/м [49]. Следовательно, капиллярное дав-
ление расплава титана в мелких порах дости-
гает примерно 30 МПа. Этого более чем доста-
точно, чтобы уравновесить давление примес-
ных газов, и это на 2–3 порядка больше экспе-
риментально измеренного дилатометрами дав-
ления в этой системе.

Тот факт, что порошковые частицы более
легкоплавких реагентов плавятся и превраща-
ются в капли расплава, который растекается
в окрестности частицы под действием сил по-
верхностного натяжения, не вызывает сомне-
ний. Но формирование сплошного газонепрони-
цаемого слоя расплава, который движется вме-
сте с фронтом горения, не нашло пока убеди-
тельных подтверждений. Нет ответа на вопрос,
куда исчезает движущийся вместе с фронтом

горения слой металлического расплава, когда
горение достигает края образца. Поверхность,
на которую вышла волна горения, должна быть
металлизирована или, по крайней мере, обога-
щена металлическим реагентом, но такие дан-
ные неизвестны. Не удалось пока и зарегистри-
ровать слой расплава в процессе горения с по-
мощью микровидео- или фотосъемки. Хотелось
бы надеяться, что ответы на эти вопросы бу-
дут получены в ближайшем будущем.

Можно констатировать, что в настоящее
время микрогетерогенная модель дает наибо-
лее адекватное объяснение зависимости скоро-
сти горения от предварительного механическо-
го активирования.
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3. О ВЛИЯНИИ МЕХАНОАКТИВАЦИИ
НА ТЕМПЕРАТУРУ ГОРЕНИЯ

Представление о том, что обработанные в
шаровых мельницах порошки аккумулируют в

своей структуре дополнительную энергию, по-
лученную при механическом воздействии, име-
ет глубокие корни. Еще «отец» механохимии
Мэттью Кэри Ли в конце XIX в. выдвинул
предположение, что механическая энергия мо-
жет превращаться в химическую и сохранять-
ся в веществе [50]. Эта идея получила развитие
и конкретизацию в 80–90-х годах XX в. [51–53].
Было рассмотрено накопление энергии за счет

образования центров хемосорбции и парамаг-
нитных дефектов, полиморфных превращений,
накопления упругих напряжений, увеличения
удельной поверхности межфазных и межзерен-
ных границ, аморфизации структуры и фор-
мирования пересыщенных твердых растворов.
Подробный разбор этих вопросов представлен

в обзоре [54]. Здесь мы остановимся только на
влиянии механической активации на темпера-
туру горения.

Ключевым вопросом является соотноше-
ние «накопленной» в реакционной среде энер-
гии и тепловыделения химической реакции.
Как показано выше (см. рис. 1), в настоя-
щее время нет надежных экспериментальных

данных о превышении адиабатической темпе-
ратуры горения, рассчитанной только с уче-
том энергии химической реакции. Но есть ли
принципиальная возможность в процессе ме-
ханической обработки аккумулировать в твер-
дых реагентах дополнительную энергию, сопо-
ставимую с химической? Если энергия накап-
ливается дефектами кристаллической струк-
туры (включая границы между кристаллита-
ми), то максимально она будет накапливать-
ся в структуре, состоящей из одних дефек-
тов, т. е. твердое вещество перейдет в аморф-
ное состояние. Чистые металлы, аморфизи-
руясь при длительном размоле, аккумулиру-
ют энергию до нескольких килоджоулей на

моль [55]. Длительный размол интерметалли-
да Ni3Al позволил накопить до 22 кДж/моль,
которые при дифференциальной сканирующей

калориметрии (ДСК) обработанного порошка
проявились в виде двух экзотермических пи-
ков (413 K и 593 K) [56]. В течение первых

15 ч размола количество аккумулированной

энергии возрастало почти линейно со време-
нем, а затем оставалось на постоянном уровне
вплоть до 50 ч обработки в шаровой мельнице.

Тепловыделение экзотермической реакции го-
рения при синтезе из элементов традиционных

СВС-продуктов типа NiAl или TiC составляет

100 ÷ 200 кДж/моль. Следовательно, механи-
ческое активирование теоретически может до-
бавить к химическому теплу еще 10 ÷ 20 %,
что, несомненно, должно сказаться на темпе-
ратуре горения. Эта величина близка к теп-
лоте девитрификации, т. е. переходу аморф-
ного металлического сплава (так называемо-
го металлического стекла) в кристаллическое
состояние. Сравнительно недавно было пока-
зано, что одной лишь теплоты девитрифика-
ции достаточно, чтобы по лентам из аморф-
ных сплавов CuAl, Fe84B16 и др. распростра-
нялась волна взрывной кристаллизации [57,
58]. Перепад температур во фронте этой вол-
ны (150 ÷ 200 К) на порядок меньше перепа-
да температур в волне безгазового горения, но
эта волна имеет другие характерные особен-
ности, которые позволяют сравнить ее с волна-
ми горения: уникальность и постоянство скоро-
сти распространения, независимость этой ско-
рости от метода инициирования, наличие авто-
колебательных режимов [59, 60]. Почему же в
механоактивированных порошковых составах

не было замечено превышения температурой

горения адиабатического значения? Вероятное
объяснение этого в том, что обработка в пла-
нетарных шаровых мельницах в течение де-
сятков часов, которая необходима для аккуму-
лирования заметной дополнительной энергии,
неприменима для реакционных составов. Как
было показано в первой части данного обзо-
ра, самовоспламенение высокоэкзотермических
порошковых составов происходит значитель-
но раньше, иногда через 5 ÷ 7 мин размо-
ла, с образованием инертных продуктов ре-
акции уже в размольном барабане. Заметное
количество дополнительной энергии удалось

аккумулировать в низкокалорийных составах

3Ni + Al, Ti + 0.17C, Nb + Al, 3Ti + Al [61],
TiNi + 1.1C и Ni3Al + 1.2Si [62], а такжеW + C
[63], которые реагировали в режиме теплово-
го взрыва. В работах [61, 62] утверждается,
что всего за 3 мин обработки в высокоэнер-
гетической планетарной мельнице АГО-2 при
ускорении 40g смесь 3Ni + Al аккумулирует
19.67 кДж/моль, т. е. почти 13 % от энталь-
пии образования продукта химического взаи-
модействия в данном составе. Такой вывод сде-
лан на основании результатов ДСК в калори-
метре NETZSCH DSC 204F1 Phoenix, получен-
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ных при нагреве со скоростью 10 К/мин, ко-
торые показали наличие экзотермического пи-
ка в диапазоне 450 ÷ 560 K. Так как образова-
ние первого продукта реакции (NiAl3) наблю-
далось после отжига в печи при температу-
ре 600 K, был сделан вывод, что полученный
в калориметре низкотемпературный пик име-
ет не химическую природу, а обусловлен от-
жигом дефектов, созданных в результате ин-
тенсивной пластической деформации при меха-
нической активации, т. е. «эта часть тепловы-
деления в первом приближении и является за-
пасенной при механоактивации энергией» [61].
Однако необходимо заметить, что данная энер-
гия никак не проявляет себя в режиме тепло-
вого взрыва: максимальная температура, до-
стигаемая при тепловом взрыве, уменьшается
с увеличением времени активации. Как отме-
чает сам автор [61], «несмотря на аккумули-
рование образцом во время механоактивации

части подводимой механической энергии, по-
ка не найдены составы, в которых экспери-
ментальные значения Tmax теплового взрыва

превышали бы значения адиабатической тем-
пературы реакции». Такие условия не найде-
ны и сейчас. Это заставляет рассмотреть два
альтернативных объяснения наблюдаемых эф-
фектов. Первый — накопление дополнительной

энергии, которая выделяется при небольшом
нагреве вследствие отжига дефектов и микро-
напряжений, как предложено в [61]. Второй —
снижение энергии активации вследствие обра-
зования зародышей продуктов, рассмотренное
в первой части данного обзора. Оба предполо-
жения объясняют снижение температуры вос-
пламенения, но первое предполагает при этом
рост тепловыделения и максимальной темпе-
ратуры, а второе — снижение максимальной

температуры горения или теплового взрыва. В
обоих случаях триггером горения или теплово-
го взрыва в активированных составах являют-
ся твердофазные низкотемпературные процес-
сы — отжиг дефектов или твердофазная ре-
акция в активных центрах. Примечательные
результаты были получены при исследовании

теплового взрыва смеси W—C: всего лишь по-
сле 4 мин обработки этой смеси в мельнице

АГО-2 была получена максимальная темпера-
тура теплового взрыва 1 623 K [63], что почти
в два раза больше адиабатической температу-
ры горения, теоретически возможной для это-
го состава (943 K). После 5 мин механоакти-
вации максимальная температура составляла

1 613 ± 15 K, а продуктом реакции был одно-
фазный WC. На основании этой эксперимен-
тально измеренной температуры была сдела-
на оценка теплоты реакции, которая оказалась
на 40.15 кДж/моль больше, чем теплота реак-
ции W + C = WC. Однако с выводом о том,
что эту энергию можно считать запасенной об-
разцом в результате 5 мин механоактивации,
трудно согласиться. Как показано в той же ра-
боте [63], тепловой взрыв начинался при тем-
пературе Tign = 1 223 K, следовательно, эту
температуру следует брать в качестве началь-
ной при расчете адиабатической температуры

(пренебрегая выгоранием на стадии нагрева).
Термодинамический расчет с начальной тем-
пературой 1 223 K дает значение адиабатиче-
ской температуры 1 601 K, которое хорошо со-
гласуется с измеренными в [63] величинами без
предположения о накопленной дополнительной

энергии. Тем не менее вопрос остается откры-
тым, так как нет объяснения тому факту, что
тепловой взрыв не происходил при времени ак-
тивации менее 4 мин. Можно предположить,
что для неактивированных или слабо активи-
рованных составов W—C температура нача-
ла теплового взрыва превышала максималь-
ную температуру индукционного нагрева сме-
си 1 673 K, которая была достигнута в рабо-
те [63]. Действительно, как отмечалось в пер-
вой части нашего обзора [1], в неактивирован-
ных смесях температура воспламенения часто

близка к температуре плавления металличе-
ского реагента, которая для вольфрама чрезвы-
чайно высока (3 695 K). Окончательный ответ
могут дать дополнительные эксперименталь-
ные исследования этой системы.

Если механическая энергия накапливает-
ся в дефектах атомно-кристаллической и мик-
роструктуры реагентов, она должна быть за-
метна и при активации отдельных элементар-
ных порошков. Такие данные были получены
для элементарных порошков никеля [64] и алю-
миния [65]. Установлена прямая связь между
размерами кристаллитов, которые уменьша-
ются вследствие механической обработки по-
рошков в шаровых мельницах, и количеством
накопленной порошком энергии. Порошок Ni
с размером кристаллитов 20 нм аккумулиру-
ет 1.0 кДж/моль; эта величина возрастает

до 5.1 кДж/моль при размере кристаллитов
12 ± 3 нм после 40 ч обработки в мельни-
це, а при дальнейшем увеличении времени об-
работки количество запасенной энергии резко
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падает [64]. Похожее поведение зафиксировано
для порошка алюминия: запасенная энтальпия
сначала увеличивалась и достигала максиму-
ма 630 Дж/г = 23 кДж/моль при размере кри-
сталлитов 24 нм (10 ч размола), а затем резко
падала [65]. Абсолютное значение запасенной
энтальпии 23 кДж/моль вызывает сомнения,
так как оно в два раза превосходит удельную

теплоту плавления алюминия (215 % от теп-
лоты плавления). Это противоречит данным
других работ. В обзоре [64] приводятся следу-
ющие максимальные значения запасенной эн-
тальпии: для Al — 43 ± 7 % от теплоты плав-
ления, для Ni — 25 ± 4 %, для других метал-
лов (Ir, Rh, Pd, Cu) — 11÷ 39 % относительно

теплоты плавления соответствующего метал-
ла. Возможность аккумулировать в структуре
твердого тела энергию, превышающую тепло-
ту плавления, и при этом не расплавить его,
на наш взгляд, требует тщательной проверки.
Таким образом, в настоящее время нет оконча-
тельного ответа на вопрос о максимально воз-
можной дополнительной энергии, сохраняемой
в реакционной смеси после механической акти-
вации, и о влиянии этой энергии на температу-
ру горения. Эта интересная и непростая про-
блема требует дополнительных исследований.

ЗАКЛЮЧЕНИЕ

В состоящем из двух частей обзоре рас-
смотрены экспериментальные данные о влия-
нии предварительного механического активи-
рования на температуру воспламенения, ско-
рость и максимальную температуру горения

порошковых составов, а также предложенные
для их объяснения теоретические модели. Ос-
новное внимание уделено СВС-составам. Ана-
лиз имеющихся на сегодняшний день данных

позволяет сделать следующие выводы.
1. Механическое активирование приводит

к существенному снижению температуры вос-
пламенения. Это объясняется формированием
активных точек — зародышей зерен продуктов

горения, что приводит к снижению энергии ак-
тивации реакции. Твердотельная реакция на-
чинается в активных точках при температуре

много ниже температур плавления реагентов и

служит триггером для инициирования основ-
ной экзотермической реакции горения.

2. Экспериментальные зависимости скоро-
сти горения от времени активирования носят

сложный характер. Скорость может увеличи-
ваться, уменьшаться, проходить через макси-

мум или минимум в зависимости от соста-
ва, режимов активирования, пористости и дру-
гих параметров. Общепризнанного объяснения
этим зависимостям пока не получено. Лучше
всего они описываются в рамках микрогетеро-
генной модели, согласно которой средняя ско-
рость горения зависит от условий теплопере-
дачи на контактах между частицами. Согласно
классической гомогенной модели скорость рас-
пространения волны горения определяется ско-
ростью химического тепловыделения и долж-
на увеличиваться по мере активирования со-
става. Кондуктивно-конвективная модель поз-
воляет качественно объяснить как увеличение,
так и уменьшение скорости горения, но содер-
жит параметры, которые трудно или невоз-
можно определить из независимых эксперимен-
тов.

3. Интенсивная механическая обработка в
планетарных мельницах позволяет аккумули-
ровать в порошковых смесях дополнительную

энергию порядка нескольких процентов от эн-
тальпии химической реакции. Для слабокало-
рийных смесей есть данные о накоплении 20 %
энергии от химической реакции, которые нуж-
даются в проверке. Наблюдаемые при низких
температурах экзотермические процессы мо-
гут быть объяснены как отжигом дефектов

структуры, в которых накапливается механи-
ческая энергия, так и твердотельной реакцией
в активных точках (см. § 1).

Дальнейшие экспериментальные и теоре-
тические исследования требуются для решения

очерченных в данном обзоре проблем.
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