УДК 536.53:533.6

РЕЖИМЫ ТЕЧЕНИЯ В ОДИНОЧНОЙ ЛУНКЕ, РАСПОЛОЖЕННОЙ НА ПОВЕРХНОСТИ КАНАЛА

Г. В. Коваленко, В. И. Терехов*, А. А. Халатов

Институт технической теплофизики Национальной академии наук Украины, 03057 Киев, Украина

* Институт теплофизики им. С. С. Кутателадзе СО РАН, 630090 Новосибирск E-mails: terekhov@itp.nsc.ru, khalatov@vortex.org.ua

С использованием известных результатов экспериментов определены границы областей существования режимов обтекания одиночных лунок на плоской пластине, выполненных в виде сферических сегментов. Рассмотрены режим диффузорно-конфузорного обтекания, режим подковообразного вихря и режим столбообразного вихря в лунке. Ни подковообразный, ни столбообразный вихри не наблюдались в лунках с относительной глубиной менее 0,1. Установлено, что переходы от режима диффузорно-конфузорного обтекания к режиму подковообразного вихря, а также от режима подковообразного вихря к режиму столбообразного вихря зависят не только от числа Рейнольдса, но и от относительной глубины сферического сегмента. Предложены зависимости для определения границ областей существования режимов и указаны параметры, при которых можно провести обобщение результатов экспериментов.

Ключевые слова: лунка, вихревые структуры, подковообразный и столбообразный вихри, интенсификация теплообмена.

Введение. К настоящему времени накоплен большой объем экспериментальной информации об особенностях структуры течения и теплообмена в случае обтекания поверхностей при наличии каверн сферической формы. Имеется ряд обобщающих работ, в которых рассмотрены многочисленные аспекты вихреобразования в лунках при воздействии большого числа факторов [1-6]. Так, в первых экспериментах было установлено, что при обтекании поверхностей с лунками в виде сферических сегментов рост теплоотдачи сопровождается незначительным относительным увеличением гидравлического сопротивления [7]. Внутри лунок и вблизи них возникают крупномасштабные динамические вихревые структуры, наблюдаемые в широком диапазоне режимов течения. Однако, несмотря на большое количество публикаций, посвященных изучению проблем использования поверхностей с лунками, ряд дискуссионных вопросов остался нерешенным (гипотеза о смерчевом механизме интенсификации теплообмена [7, 8], роль лунок, обтекаемых потоками с большой степенью турбулентности [9, 10], определение границы между областями существования режимов отрывного и безотрывного обтекания лунок [11, 12]). Это объясняется сложностью явления, на которое оказывают влияние не только скорость потока, но и размеры лунок, форма кромок, характер и толщина пограничного слоя на входе в лунку, высота канала.

В настоящей работе предпринята попытка определить границы областей существования режимов течения в лунке в зависимости от скорости внешнего потока и геометри-

Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 07-08-00025, 10-08-00105).

ческих характеристик лунки на основе анализа известных экспериментальных данных. Подобные исследования проводились и ранее (см., например, [11, 13]), однако использование большого числа новых экспериментальных данных позволяет уточнить полученные ранее результаты.

Режимы обтекания лунок. В процессе обтекания поверхности с лункой можно выделить следующие режимы течения. При малых скоростях поток имеет диффузорноконфузорный характер. Линии тока, проходящие рядом с лункой, прогибаются. При увеличении скорости потока вблизи входной кромки лунки поток отрывается, образуя зону рециркуляции, и впоследствии присоединяется ко дну углубления (режим течения N на рис. 1,*a*) [7, 10, 14]. В данном случае увеличение теплообмена, вызванное перестройкой профиля скорости в лунке, по сравнению с теплообменом на плоской поверхности не превышает 20 %.

При дальнейшем увеличении скорости потока в лунке образуется подковообразный вихрь, концы которого опираются на боковые стенки углубления по обе стороны от его плоскости симметрии (режим течения HS на рис. $1, \delta$) [7, 10, 12, 15]. В проекции на плоскость стенки, на которой образована лунка, видна пара симметричных вихрей. Пограничный слой над лункой периодически сворачивается, отрывается и превращается в дорожку Кармана [16].

Наконец, при еще большей скорости подковообразный вихрь "не помещается" в лунке, один из его концов поднимается над углублением и "ищет возможность" зафиксироваться на верхней стенке канала или на поверхности, где расположена лунка. Верхняя часть вихря сносится потоком по течению. Положение столбообразного вихря неустойчиво, и его

Рис. 1. Режимы течения:

а — диффузорно-конфузорный режим обтекания углубления N; б — режим подковообразного вихря в углублении HS; в, г — режимы столбообразного вихря в углублении R; ЗР — зона рециркуляции

нижний конец может перескакивать из левой части лунки в правую и наоборот (режим течения R на рис. 1,6,c) [7, 10, 15]. В ряде работ этот режим назван "переключательным" [16–18]. Подобные режимы обнаружены при продольном обтекании цилиндрической выемки на поверхности канала [19]. Среда из основного потока поступает в лунку вблизи передней кромки, однократно омывает ее поверхность, устремляясь к основанию столбообразного вихря, а затем почти полностью выносится во внешний поток. Помимо сравнительно медленных перемещений из одной половины лунки в другую вихрь совершает колебания с высокой частотой перпендикулярно своей продольной оси. Слой над лункой с частью столбообразного вихря отрывается и образует вихревую дорожку. Для режимов течения HS и R увеличение теплообмена значительно, в некоторых случаях оно пропорционально скорости потока. Однако в основном интегральное увеличение теплообмена происходит в зоне за лункой [18, 20]. После появления столбообразного вихря гидравлическое сопротивление возрастает, и теплогидравлические характеристики поверхности с лунками ухудшаются.

Необходимо отметить, что указанное деление режимов является схематичным. В течениях некоторых типов наблюдаются неустойчивые режимы, особенно при переходном и турбулентном режимах течения основного потока. Например, в режиме подковообразного вихря HS наблюдается смена направления вращения [21, 22]. Вблизи границ областей существования рассматриваемых режимов при неизменных начальных условиях возможен переход к следующему режиму с возвратом в дальнейшем к предыдущему режиму течения. В этих случаях, если время существования режима мало, визуализация течения затруднена. Поэтому в ряде случаев использованы результаты расчетов по моделям, прошедшим идентификацию с использованием достоверных данных экспериментов [21, 23].

Результаты анализа. Характерные параметры вихревых течений, полученные в работах [7, 9, 11, 12, 15, 20, 24–45], приведены в таблице. В таблице приведены также данные о ширине канала $B_{\rm k}$ и толщине пограничного слоя перед лункой δ .

При построении карты режимов течения в лунках в качестве определяющих параметров были выбраны относительная глубина лунки h/d и число Рейнольдса Re_d , определенное по диаметру сферической каверны d (h — глубина лунки, $\text{Re}_d = U_{\infty}d/\nu$, ν кинематическая вязкость). Экспериментальные данные в этих координатах представлены на рис. 2.

Большинство экспериментальных данных получено для относительно глубоких каверн (0,1 < $h/d \leq 0,5$). Экспериментальные данные для более мелких лунок имеют фрагментарный характер. Числа Рейнольдса для анализируемых данных изменяются в широком диапазоне 5 · 10^2 < Re_d < 10^5 , причем за счет как скорости потока, так и размеров каверны.

Анализ представленных данных позволяет сделать следующие выводы.

В лунках с относительной глубиной h/d < 0,1 не наблюдался ни подковообразный, ни столбообразный вихрь. Ниже линии h/d = 0,1 расположена рассчитанная по данным работы [46] для диффузоров граница Е области, в которой возникает отрыв в лунке. Граница области, в которой появляется отрыв в лунке, определенная в работе [33], достаточно хорошо согласуется с этой границей.

С границей режимов N и HS в диапазоне чисел Рейнольдса $\text{Re}_d < 10^4$ удовлетворительно согласуется линия критических высот шероховатости h_{cr} [46], достаточных для перехода исходного ламинарного пограничного слоя в турбулентный, если в качестве высоты шероховатости принять глубину лунки [46]

$$\frac{h_{cr}}{d} = \frac{15}{\operatorname{Re}_d \sqrt{0.332\sqrt{d/(x\operatorname{Re}_d)}}}\tag{1}$$

(x -расстояние от входа в канал).

Источник	Условия эксперимента	h/δ	d, _{MM}	h, MM	h/d	$H_{\kappa},$ MM	$B_{\kappa},$ MM	x, MM	δ , mm	Re_d	Режим течения
7	Вода	1.0	36	10	0.2778	20	80	800	10	2500	HS
7	Вода	1,0	36	10	0,2778	20	80	800	10	11250	R
7	Вода	1,0	36	10	0,2778	20	80	800	10	135000	R
7	Вода	1,0	36	10	0,2778	20	80	800	10	1875	HS
9	Воздух	1,0	30	10	0,3333	20		400	10	14985	R
9	Воздух	1,5	30	15	0,5	20		400	10	14985	\mathbf{R}
9	Воздух	1,5	30	15	0,5	20		400	10	37463	R
9	Воздух	1,0	30	10	0,3333	20		400	10	37463	R
11	Воздух	3.666	58	29	0.5	12	96	190	6	4350	HS
11	Воздух	4,000	58	24	0,4138	12	96	190	6	4375	$_{ m HS}$
11	Воздух	3,000	58	18	0,31	12	96	190	6	2167	HS
11	Воздух	2,133	58	$12,\!18$	0,21	12	96	190	6	1600	$_{ m HS}$
11	Воздух	1,353	58	8,12	0,14	12	96	190	6	1800	$_{ m HS}$
11	Воздух	1,498	58	$8,\!99$	0,155	12	96	190	6	600	Ν
11	Воздух	$1,\!353$	58	8,12	0,14	12	96	190	6	1336	Ν
12	Вода		20	3,5	0,175					10 000	HS
12	Вода		20	4	0,2					50000	R
12	Вода		50	10	0,2					200 000	R
14	Воздух		36	2,4	0,069	16,5				2500	N
15 15	Воздух Воршуу	5,0	150 150	$75 \\ 75$	0,5	202			15 15	182000	R P
24	Вода	0.707	100	5.09	0,5	15	115	600	75	9579	
24	Вода	0,797	40	0,90	0,13	15	115	600	7,5	8572	115 HS
24	Вода	1,595	40	11,90 11.06	0,20	15	115	600	7,5	17145	P
24 24	Воздух	3 067	40	23	0,20	15	115	600	7,5	8572	л НS
$\frac{24}{24}$	Воздух	3.067	40	$\frac{25}{23}$	0,5	15	115	600	7,5	17145	R
	р	0,001	-10	10 5	0,0	10	110 0F	50.5	1,0	1/140	
25	Вода	4,31	25	12,5	0,5	10	65	52,5	2,9	14952	R
25	Вода	5,734	25	12,5	0,5	10	05 65	52,5 52,5	2,18	62300 104.665	R D
20	Вода Вода	0,345	20	12,5	0,5	10	00	52,5	1,97	104 005	K HC
20 25	Бода Воло	1,10 1 15	2,3	$^{1,10}_{1.15}$	0,5		19	400	1	4000	пэ
20 25	Вода	1,10 1 15	2,3	$^{1,10}_{1.15}$	0,5		19	400	1	13730	n B
25 25	Вода	1,15	2,3	1,10	0,5		10	400	2	7074	нс
$\frac{25}{25}$	Вода	1,0	4	2	0,5	4	19	400	2	39.872	R
20	Deserver	1.050	27 5	0.05	0.99	165	10	100		700	
26	Воздух	1,258	37,5	8,25	0,22	16,5			6,56 6,56	1000	
26	Воздух	1,258	37,5	8,25	0,22	16,5			6,56 6,56	1000	HS
20 26	Воздух	1,208	37,5	8,20 8.95	0,22	10,5			0,00	2500	
20	Боздух	1,208	57,5 65	0,20		10,5			0,50	25 500	л ЦС
20	Боздух	1,0	00 65	9	0,14	10			9	2500	пэ це
20 26	Вортич	1.0	65	9	0,14	10		_	9	2000 23.000	нс
20 26	Возлич		65	9	0,14 0.14	18			0	64 000	HS
20		1,0	00	J	0,14	10			3	10.000	п
21	Боздух	1.0			0,22		150	0.475		10 000	к по
$\frac{28}{28}$	Воздух Возлух	1,0 1.0	50 50	$\frac{25}{25}$	$ \begin{bmatrix} 0,5 \\ 0.5 \end{bmatrix} $	50 50	150	$2475 \\ 2475$	$\frac{25}{25}$	2929 12738	HS B
		1,0	50	10.0	0.0004	054	100	2110	10.7	10,000	п
29 29	воздух Воздух	$0,803 \\ 0,803$	50,8 50,8	$10,2 \\ 10,2$	0,2024 0,2024	25,4 25,4			12,7 12,7	18000 123000	R R

Характерные параметры течения в одиночной лунке, полученные в различных экспериментах

продолжение таолици											
Источник	Условия эксперимента	h/δ	d, _{MM}	h, мм	h/d	$H_{\kappa},$ MM	$B_{\kappa},$ MM	x, MM	$\delta,$ _{MM}	Re_d	Режим течения
24 24	Воздух Воздух	$0,025 \\ 0,067$	$7,5 \\ 7,5$	$_{0,5}^{0,5}$	$0,0667 \\ 0,0667$	80 80	$\frac{300}{300}$	900 900	20,3 7,48	$596 \\ 2600$	N N
$25 \\ 25$	Воздух Воздух		$\begin{array}{c} 20\\ 20 \end{array}$	$ 10 \\ 5 $	$0,5 \\ 0,25$		$130 \\ 130$	$175 \\ 175$		$33222 \\ 33222$	R R
30 30	Воздух Воздух		50 50	$\frac{25}{25}$	0,5	100				55313 132 187	R B
18	Воздух	0 797	46	5.98	0.13	15	115	481	7.5	190.000	B
31	Воздух	1 595	46	11.96	0.26	15	115	600	7.5	100.000	R
31	Воздух	0,797	46	5,98	0,13	15	115	600	7,5	100 000	HS
17	Вода	1,595	46	11,96	0,26	15	115	481	7,5	9170	HS
17	Вода	1,595	46	11,96	0,26	15	115	481	7,5	36 682	R
27	Вода	1,595	46	11,96	0,26	15	115	660	7,5	9200	HS
$\frac{20}{20}$	Вода Вода	2,041 3.061	$\frac{8}{20}$	$\frac{2}{3}$	$0,25 \\ 0,15$				$0,98 \\ 0.98$	$3987 \\ 9968$	HS HS
20	Вода	2,041	8	2	0,25		_		0,98	6424	HS
20	Вода	3,061	20	3	0,15		—		0,98	16060	HS
20	Вода	2,041	8	2	0,25		—	—	0,98	13200	$_{ m HS}$
20	Вода	2,041	8	2	0,25		—		0,98	13291	R
20	Вода	3,061	20	3	0,15				0,98	33200	$_{ m HS}$
20	Вода	3,061	20	3	0,15				0,98	33227	R
20	Вода	1,690	46	12	0,261	14,2	115	650	7,1	73365	R
26	Воздух		73,2	$36,\!6$	0,5					72861	R
26	Воздух		73,2	$36,\!6$	0,5					320586	R
28	Воздух		66	33	0,5	80	140			2191	$_{ m HS}$
28	Воздух		66	33	0,5	80	140			4382	HS
32	Воздух		30	15	0,5		—			7100	HS
32	Воздух		30	15	0,5		—			7171	R
32	Воздух		30	15	0,1		—			6000	$_{ m HS}$
32	Воздух		30	15	0,5					6000	HS
33	Воздух				0,025					600	Ν
33	Воздух				0,025					100000	Ν
33	Воздух		—		0,5					1000	HS
34	Вода		18	3	0,17					10 000	HS
35	Вода	2,0	4	2	0,5	2	19	800	1	182000	R
35	Вода	2,0	4	2	0,5	2	19	800	1	330000	R
35	Вода	2,0	4	2	0,5	2	19	800	1	23857	R
35	Вода	2,0	4	2	0,5	2	19	800	1	59642	R
35	Вода	1,5	3	1,5	0,5	2	19	800	1	17893	R
35	Вода	1,5	3	1,5	0,5	2	19	800	1	44732	R
35	Вода	1,0	2	1	0,5	2	19	800	1	11928	R
35	Вода	1,0	2	1	0,5	2	19	800	1	29821	R
36	Возлух				0.025					600	N
36	Возлух				0.025					10 000	N
36	Воздух				0,025	_				100 000	N

Продолжение таблицы

									-		
Источник	Условия эксперимента	h/δ	<i>d</i> , мм	<i>h</i> , мм	h/d	$H_{\kappa},$ MM	$B_{\kappa},$ MM	<i>х</i> , мм	$\delta,$ _{MM}	Re_d	Режим течения
37	Воздух				0,14		90			1893	HS
37	Воздух				0,21		90			1904	HS
37	Воздух				0,31		90			2419	HS
37	Воздух				0,41		90			4390	HS
37	A			—	0,5		90			4400	HS
38	Воздух	1,154	20	9	0,45			504	7,80	3571	HS
38	Воздух	1,217	20	9	0,45			504	7,40	3968	HS
38	Воздух	1,44	20	9	0,45	_		504	6,25	5555	HS
22	Вода	1,102	50,8	5,08	0,1	610	457	62,6	4,61	3220	N
22	Вода	1,129	50,8	5,08	0,1	610	457	62,6	4,50	4170	N
22	Вода	1,251	50,8	5,08	0,1	610	457	62,6	4,06	5125	HS
22	Вода	1,431	50,8	5,08	0,1	610	457	62,6	3,55	6710	HS
39	Вода	1,553	50,8	5,08	0,1	610	457	62,6	3,27	7892	HS
40	Вода	2,674	50,8	5,08	0,1	610	457	62,6	1,90	23450	HS
41	Вода	0,223	15	5	0,33	20	200	950	22,4	14951	R
42	Вода	0,417	30	5	0,167			694	12,0	3588	N
43	Вода	1,129	20	9	0,45			504	7,97	3984	HS

Окончание таблицы

Рис. 2. Диаграмма режимов течения в углублении в координатах h/d-Re_d: I — диффузорно-конфузорный режим N; II — подковообразный вихрь HS; III — столбообразный вихрь R; IV — границы между областями существования режимов N и HS, определенные по уравнению (1) с использованием результатов экспериментов при различных значениях x/d; V — граница между областями существования режимов HS и R, определенная по уравнению (2); VI — данные [22] для малых чисел Рейнольдса; вертикальные сплошные линии — граница между областями ламинарного и турбулентного течений внутри углубления по данным [15, 27, 44]; Е — граница области, в которой возникает отрыв в лунке [46]; номера экспериментальных точек — номера источников в списке литературы

Отметим, что на положение границы режимов N и HS существенное влияние оказывает толщина пограничного слоя перед лункой, которая в свою очередь зависит от расстояния между исследуемым углублением и входом в рабочий участок. Получены результаты экспериментов в широком диапазоне значений d/x: от $d/x = 5,75 \cdot 10^{-3}$ в работе [15] до d/x = 0.813 в работе [22], что и объясняет "размытость" границы между областями течений различного типа.

Границей режимов подковообразного HS и столбообразного R вихрей является гипербола, определяемая уравнением

$$h/d = 3200/\operatorname{Re}_d + 0.0536$$
 (2)

при $7\cdot 10^3 \leqslant {\rm Re}_d \leqslant 7\cdot 10^4$ и $0,1\leqslant h/d\leqslant 0,5.$

На обеих границах областей существования режимов N и HS, HS и R отмечен гистерезис: при медленном изменении скорости вблизи границы возможно существование этих режимов в нехарактерных для них областях. При наличии тонкого пограничного слоя переход с одного режима на другой происходит при меньших скоростях, при увеличении скорости потока в канале с малым отношением его высоты к диаметру лунки смена режима обтекания задерживается (см. таблицу).

Болышинство точек вблизи границы режимов подковообразного HS и столбообразного R вихрей соответствует ламинарному пограничному слою перед лункой. Отношение толщины пограничного слоя δ к полувысоте канала $H_{\rm K}/2$ для этих точек находится в диапазоне $0.8 \leq 2\delta/H_{\rm K} \leq 1.0$. При наличии турбулентного пограничного слоя перед лункой устойчивость подковообразного вихря выше, чем при наличии ламинарного слоя. Данные о наличии перехода ламинарного режима течения в турбулентный внутри лунки (полученные в результате наблюдений или косвенно по изменению закона теплоотдачи) значительно различаются. Соответствующие данные [15, 27, 44] показаны на рис. 2 вертикальными линиями. Большинство экспериментальных данных получено в нестесненных каналах ($H_{\rm K}/d > 0.4$). При этом возмущения потока, генерируемые лунками, могли диффундировать в его ядро, не оказывая влияния на течение вблизи стенки. Естественно, смена режима обтекания в таких каналах может происходить в условиях, отличающихся от условий в стесненных каналах ($H_{\rm K}/d < 0.4$), чем и обусловлено "размывание" границ их существования.

Каверна в виде сферического сегмента является типичным трехмерным элементом, поэтому число Рейнольдса, вычисленное только по одному линейному размеру, например по диаметру (см. рис. 2), не может в полной мере характеризовать все особенности формирования вихревой структуры внутри каверны и в ее ближнем поле. В дальнейшем была предпринята попытка учесть как диаметр лунки, так и ее глубину. При вычислении числа Рейнольдса $\text{Re}_c = U_{\infty}C/\nu$ в качестве геометрического размера принималась глубина Cцилиндрической лунки, объем которой равен объему лунки такого же диаметра, имеющей форму сферического сегмента:

$$C = (h/6)(3 + 4(h/d)^2).$$
(3)

На рис. 3 приведены те же экспериментальные данные, что и на рис. 2, но в координатах h/d-Re_c. Диапазоны значений числа Рейнольдса, характеризующие границы режимов, значительно уменьшились. Граница между областями существования диффузорноконфузорного режима течения N и режима подковообразного вихря HS при $h/d = 0.1 \div 0.5$ находится в диапазоне Re_c = 95 ÷ 125 (отношение максимального и минимального значений диапазона равно 1,3). В координатах h/d-Re_d это отношение составляло 73,3. При $h/d = 0.1 \div 0.5$ граница между областями существования режима течения с подковообразным вихрем HS и режима течения со столбообразным вихрем R находится в диапазоне

Рис. 3. Диаграмма режимов течения в углублении в координатах h/d-Re_c: I — диффузорно-конфузорный режим N; II — режим существования подковообразного вихря HS; III — режим существования столбообразного вихря R; IV — граница между областями существования режимов N и HS, определенная по уравнению (1); V — граница между областями существования режимов HS и R, определенная по уравнению (2); VI — граница между областями существования режимов N и HS для цилиндрических лунок, рассчитанная по данным [45]; вертикальные сплошные линии — граница между областями ламинарного и турбулентного течений внутри углубления по данным [15, 27, 44]; Е — граница области, в которой возникает отрыв в лунке [46]; номера экспериментальных точек — номера источников в списке литературы

 $\text{Re}_c = 2500 \div 3300$ (отношение максимального и минимального значений диапазона равно 1,33). В координатах h/d-Re_d это отношение составляло 14,3. Таким образом, использование геометрического масштаба C позволяет получить более четкую границу между областями существования различных режимов, что является важным при выборе размеров лунок с заданным режимом течения внутри них.

Результаты проведенных исследований показывают, что границы между областями существования диффузорно-конфузорного режима течения N и режима течения с подковообразным вихрем HS, определенные в настоящей работе и в работе [11], качественно согласуются. В работе [13] сделан вывод о том, что область существования пары симметричных вихрей соответствует диапазону значений числа Рейнольдса $\operatorname{Re}_d = 4000 \div 9000$. Этот вывод также качественно согласуется с данными, приведенными на рис. 2. Однако использование большего объема экспериментальных данных, полученных в последнее время, позволило расширить эту область с учетом зависимости положения ее границ от числа Рейнольдса.

Заключение. При больших относительных глубинах лунок $0.1 \leq h/d \leq 0.5$ границей между областями существования диффузорно-конфузорного режима N и режима течения с подковообразным вихрем HS может служить линия критических высот шероховатости h_{cr} (1).

Столбообразный вихрь R существует в течениях, удовлетворяющих следующим двум условиям: 1) значения числа Рейнольдса должны быть больше соответствующих значений, определяемых с помощью уравнения (2); 2) $h/d \ge 0.1$.

Область существования режима подковообразного вихря HS ограничена линией критических высот шероховатости h_{cr} (1), линией, соответствующей минимальному отношению h/d = 0,1, и гиперболой (2).

Ни подковообразный HS, ни столбообразный R вихрь не наблюдался в лунках с относительной глубиной h/d < 0.1.

При малых относительных глубинах лунок h/d < 0,1 во всем исследованном диапазоне значений числа Рейнольдса ($15 < \text{Re}_h < 15 \cdot 10^4$) наблюдается диффузорно-конфузорный режим течения N (вблизи входной кромки возможен отрыв).

Для экспресс-оценки режима течения в лунке целесообразно использовать координаты h/d-Re_c.

ЛИТЕРАТУРА

- 1. **Халатов А. А.** Теплообмен и гидродинамика около поверхностных углублений (лунок). Киев: Ин-т техн. теплофизики НАНУ, 2005.
- Кикнадзе Г. И., Олейников В. Г. Самоорганизация смерчеобразных вихревых структур в потоках газов и жидкостей и интенсификация тепло- и массообмена. Новосибирск, 1990. (Препр. / Ин-т теплофизики СО АН СССР; № 227).
- 3. Щукин А. В., Козлов А. П., Чудновский Я. П., Агачев Р. С. Интенсификация теплообмена сферическими выемками: Обзор // Изв. РАН. Энергетика. 1998. № 3. С. 47–64.
- 4. **Терехов В. И., Калинина С. В.** Структура течения и теплообмен при обтекании единичной сферической каверны. Состояние вопроса и проблемы (Обзор) // Теплофизика и аэромеханика. 2002. Т. 9, № 4. С. 497–520.
- Гортышов Ю. Ф. Теплогидравлическая эффективность перспективных способов интенсификации теплоотдачи в каналах теплообменного оборудования / Ю. Ф. Гортышов, И. А. Попов, В. В. Олимпиев, А. В. Щелчков, С. И. Каськов. Казань: Казан. гос. техн. ун-т, 2009.
- Дзюбенко Б. В. Интенсификация тепло- и массообмена на макро-, микро- и наномасштабах / Б. В. Дзюбенко, Ю. А. Кузма-Кичта, А. И. Леонтьев, М. М. Федик, Л. П. Холпанов. М.: ЦНИИатоминформ, 2008.
- Гачечиладзе И. А., Кикнадзе Г. И., Краснов Ю. К. и др. Теплообмен при самоорганизации смерчеобразных структур // Тепломассообмен: Минск. междунар. форум, Минск, 24–27 мая 1988 г. Минск: Ин-т тепломассообмена, 1988. С. 83–125.
- Chudnovsky Ya. P. Vortex heat transfer enhancement and its applications // Proc. of the Intern. symp. on turbulence, heat and mass transfer, Lisbon (Portugal), Aug. 9–12, 1994. Redding: Begell-House Inc., 1994. P. 287–294.
- 9. Езерский А. Б., Шехов В. Г. Визуализация потока тепла при обтекании уединенных сферических углублений // Изв. АН СССР. Механика жидкости и газа. 1989. № 6. С. 161–164.
- Кесарев В. С., Козлов А. П. Структура течения и теплообмен при обтекании полусферического углубления турбулизированным потоком воздуха // Вестн. Моск. гос. техн. ун-та. Сер. Машиностроение. 1993. № 1. С. 106–115.
- 11. Щелчков А. В. Теплогидравлическая эффективность интенсификации теплоотдачи в каналах со сфероидальными выемками: Автореф. дис. ... канд. техн. наук. Казань, 2004.
- 12. Кикнадзе Г. И., Гачечиладзе И. А., Олейников В. Г., Алексеев В. В. Механизмы самоорганизации смерчеобразных струй при обтекании трехмерных вогнутых рельефов // Тр. 2-й Рос. конф. "Тепломассообмен и гидродинамика в закрученных потоках", Москва, 15–17 марта 2005. М.: Издат. дом Моск. энерг. ин-та, 2005. С. 104.
- 13. Халатов А. А., Ониценко В. Н. Диаграмма режимов течения в одиночном сферическом углублении с острой кромкой // Пром. теплотехника. 2005. Т. 27, № 4. С. 5–10.

- Афанасьев В. Н., Чудновский Я. П. Экспериментальное исследование структуры течения в одиночной впадине // Вестн. Моск. гос. техн. ун-та. Сер. Машиностроение. 1993. № 1. С. 85–95.
- Кикнадзе Г. И. Интенсификация массо- и теплообмена (обзор полученных результатов) / Ю. К. Краснов, Ю. В. Чушкин, А. Г. Самойлов, Ю. М. Ануров, Н. Д. Кузнецов, Г. П. Нагога. М.: ЦНИИатоминформ, 1987.
- 16. Мивидобадзе Ю. М. Аэродинамика и теплообмен в сферической каверне: Автореф. дис. ... канд. техн. наук. Новосибирск, 1997.
- 17. **Терехов В. И., Калинина С. В., Мшвидобадзе Ю. М.** Поле давлений и сопротивление одиночной лунки с острыми и скругленными краями // ПМТФ. 1993. Т. 34, № 3. С. 40–49.
- Терехов В. И., Калинина С. В., Мшвидобадзе Ю. М. Конвективный теплообмен на поверхности в области за каверной сферической формы // Теплофизика и аэромеханика. 1994. Т. 1, № 1. С. 29–35.
- 19. Hiwada M., Kawamura T., Mabuchi J., Kumada M. Some characteristics of flow pattern and heat transfer past a cylindrical cavity // Trans. JSME. 1983. V. 26. P. 1744.
- Волчков Э. П., Калинина С. В., Матрохин И. И. и др. Некоторые результаты экспериментального исследования аэрогидродинамики и теплообмена на поверхности с полусферическими кавернами // Сиб. физ.-техн. журн. 1992. Вып. 5. С. 3–9.
- Исаев С. А., Леонтьев А. И. Моделирование смерчевой интенсификации теплообмена: состояние и перспективы // Тр. 2-й Рос. конф. "Тепломассообмен и гидродинамика в закрученных потоках", Москва, 15–17 марта 2005. М.: Издат. дом Моск. энерг. ин-та, 2005. С. 106.
- Khalatov A. A., Byerley A., Soeng-Ki Min, Ochoa D. Flow characteristics within and downstream of spherical and cylindrical dimple on a flat plate at low Reynolds number: Paper / ASME. N GT 2004–33656. N. Y., 2004.
- 23. Исаев С. А., Леонтьев А. И., Метов Х. Т., Харченко В. Б. Моделирование влияния вязкости на смерчевой теплообмен при турбулентном обтекании неглубокой лунки на плоскости // Инж.-физ. журн. 2002. Т. 75, № 4. С. 98–104.
- 24. Афанасьев В. Н., Леонтьев А. И., Чудновский Я. П. Теплообмен и трение на поверхностях, профилированных сферическими углублениями. М., 1990. (Препр. / Моск. гос. техн. ун-т; № 1-90).
- 25. Боровой В. Я., Яковлев Л. В. Теплообмен при сверхзвуковом обтекании одиночной лунки // Изв. АН СССР. Механика жидкости и газа. 1991. № 5. С. 48–52.
- 26. Снидекер Р., Дональдсон К. Исследование течения с двумя устойчивыми состояниями в полусферической каверне // Ракетная техника и космонавтика. 1966. № 4. С. 227–228.
- Терехов В. И., Калинина С. В., Мшвидобадзе Ю. М. Экспериментальное исследование развития течения в канале с полусферической каверной // Сиб. физ.-техн. журн. 1992. Вып. 1. С. 77–85.
- 28. Щукин А. В., Ильинков А. В., Агачев Р. С. и др. Гидродинамика в полусферической выемке при малых скоростях потока // Внутрикамерные процессы в энергетических установках. Казань: Казан. гос. техн. ун-т, 2001. С. 88–89.
- Ligrani P. M., Harrison J. L., Mahmood G. I., Hill M. L. Flow structure due to dimple depression on a channel surface // Phys. Fluids. 2001. V. 13, N 11. P. 3442–3451.
- 30. Сайред Н., Щукин А. В., Козлов А. П. и др. Влияние продольной кривизны поверхности на гидродинамику в сферической выемке // Изв. вузов. Авиац. техника. 2000. № 1. С. 40–44.
- 31. **Терехов В. И., Калинина С. В., Мшвидобадзе Ю. М.** Теплоотдача от каверны сферической формы, расположенной на стенке прямоугольного канала // Теплофизика высоких температур. 1994. Т. 32, № 2. С. 249–254.

- 32. Громов П. Р., Зобнин А. Б., Рабинович М. И., Сущик М. М. Рождение уединенных вихрей при обтекании мелких сферических углублений // Письма в ЖТФ. 1986. Т. 12, вып. 21. С. 1323–1328.
- 33. **Леонтьев А. И., Олимпиев В. В., Дилевская Е. В., Исаев С. А.** Существо механизма интенсификации теплообмена на поверхности со сферическими лунками // Изв. РАН. Энергетика. 2002. № 2. С. 117–135.
- 34. Кикнадзе Г. И. Самоорганизация смерчеобразных струй в потоках вязких сплошных сред и интенсификация тепломассообмена, сопровождающая это явление / Г. И. Кикнадзе, И. А. Гачечиладзе, В. В. Алексеев. М.: Издат. дом Моск. энерг. ин-та, 2005.
- 35. Кикнадзе Г. И., Краснов Ю. К., Подымака Н. Ф., Хабенский В. Б. Самоорганизация вихревых структур при обтекании водой полусферической лунки // Докл. АН СССР. 1986. Т. 291, № 6. С. 1315–1318.
- 36. Щукин А. В. Интенсификация теплообмена сферическими выемками при воздействии возмущающих факторов / А. В. Щукин, А. П. Козлов, Р. С. Агачев, Я. П. Чудновский. Казань: Казан. гос. техн. ун-т, 2003.
- 37. Гортышов Ю. Ф., Попов И. А., Олимпиев В. В., Щелчков А. В. Течение и теплоотдача в каналах со сфероидальными интенсификаторами при вынужденной конвекции газа // Тр. 2-й Рос. конф. "Тепломассообмен и гидродинамика в закрученных потоках", Москва, 15–17 марта 2005 г. М.: Издат. дом Моск. энерг. ин-та, 2005. С. 102.
- 38. Воскобійник А. В. Формування когерентних вихорових структур у закручених потоках та заглибленнях: Автореф. дис. ... канд. техн. наук. Київ, 2005.
- 39. Khalatov A. A., Byerley A., Soeng-Ki Min, Ochoa D. Application of advanced techniques to study fluid flow and heat transfer within and downstream of a single dimple // Proc. of the 5th Minsk Intern. heat and mass transfer forum, Minsk (Belarus), 19–23 May 2004. Minsk: Inst. Heat and Mass Transfer, 2004. P. 71–82.
- 40. Дрейцер Г. А. Критический анализ современных достижений в области интенсификации теплообмена в каналах // Тр. 2-й Рос. нац. конф. по теплообмену (PHKT-2), Москва, 26–30 окт. 1998 г. Т. 6. Интенсификация теплообмена. М.: Моск. энерг. ин-т, 1998. С. 55–59.
- Мусиенко В. П. Экспериментальное исследование обтекания локализованных углублений // Бионика. 1993. Вып. 26. С. 31–34.
- Бабенко В. В., Мусиенко В. П., Коробов В. И., Пядишюс А. Выбор геометрических параметров лунки, генерирующей возмущения в пограничном слое // Бионика. 1998. Вып. 27/28. С. 42–47.
- 43. Турик В. Н., Бабенко В. В., Воскобойник В. А., Воскобойник А. В. Вихревое движение в полусферической лунке на поверхности обтекаемой пластины // Вестн. Нац. техн. ун-та Украины "Киев. политехн. ин-т". 2006. Вып. 48. С. 79–85.
- 44. Presser K. H. Empirische Gleichungen zur Berechnung der Stoff- und Warmeubertragung für den Speziall der Abgerissenen Stromung // Intern. J. Heat Mass Transfer. 1972. V. 15. P. 2447–2471.
- Wieghardt K. Erhohung des turbulenten Reibungswiderstandes durch Oberflachenstorungen // Techn. Berichte. 1943. Bd 10, N 9. S. 65–81.
- 46. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969.

Поступила в редакцию 23/Х 2009 г.